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Abstract: In this study, the performances of red CsPbI3-based all-inorganic perovskite quantum-dot
light-emitting diodes (IPQLEDs) employing polymeric crystalline Poly(3-hexylthiophene-2,5-diyl)
(P3HT), poly(9-vinycarbazole) (PVK), Poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine (Poly-
TPD) and 9,9-Bis[4-[(4-ethenylphenyl)methoxy]phenyl]-N2,N7-di-1-naphthalenyl-N2,N7-diphenyl-
9H-fluorene-2,7-diamine (VB-FNPD) as the hole transporting layers (HTLs) have been demonstrated.
The purpose of this work is an attempt to promote the development of device structures and hole
transporting materials for the CsPbI3-based IPQLEDs via a comparative study of different HTLs.
A full-coverage quantum dot (QD) film without the aggregation can be obtained by coating it with
VB-FNPD, and thus, the best external quantum efficiency (EQE) of 7.28% was achieved in the VB-
FNPD device. We also reported a standing method to further improve the degree of VB-FNPD
polymerization, resulting in the improved device performance, with the EQE of 8.64%.

Keywords: perovskite; CsPbI3; QD; light-emitting diodes

1. Introduction

Organic–inorganic hybrid perovskite APbX3 (A is an organic cation, such as CH3NH3
+

and NH2CH=NH2
+, and X is a halide) has opened new avenues for optoelectronic ma-

terials in the recent years [1–4]. It is well known that CH3NH3PbX3 (MAPbX3) and
NH2CH=NH2PbX3 (FAPbX3) are easily decomposed into PbX2 and volatile MAX and
FAX in the presence of heat and moisture. To address the issue, more stable all-inorganic
perovskite has been developed, such as CsPbX3. In 2015, size-controlled and composition-
controlled CsPbX3 quantum dots (QDs) were first synthesized using a colloidal method [5].
The colloidal CsPbX3 QDs exhibit high color purity in photoluminescence (PL) spectrum,
and photoluminescence quantum yields (PLQYs) as high as 100%, which makes them
candidates for light-emitting diodes (LEDs) [6–21] and solar cells [22–28]. Up until now,
the development of the colloidal synthesis has been simultaneously promoted in parallel
with the performance of CsPbX3 QDs-based optoelectronic devices.

All-inorganic perovskite QD-based LEDs (IPQLEDs) have drawn much attention
for their solution-processed fabrication and more flexible application [6–21]. To improve
the IPQLED performance, highly efficient exciton recombination in the QD films is a
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significantly critical issue. The hole transporting layers (HTLs) reduce the hole injection
barrier and block the electron to balance the hole and electron and enhance efficient exci-
ton recombination in the QD films. The poly(9-vinycarbazole) (PVK) was usually used
as the HTL in the preliminary stage of the IPQLED development [6,7]. Subsequently,
PVK was replaced with Poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine (Poly-
TPD), because of improved hole injection efficiency, which could be attributed to the hole
mobility of Poly-TPD by about two orders of magnitude higher than that of PVK [8].
To date, Poly-TPD has been selected as the hole transporting material in most of IPQLED
studies [12–21]. Poly(triaryl)amine (PTAA) also shows a high hole mobility, which makes
it another good choice for the hole transporting materials. The defect during the for-
mation process of the QD films could be reduced by PTAA [9,10], which is effective
in enhancing the radiative recombination. The more crystalline Poly(3-hexylthiophene-
2,5-diyl) (P3HT) has a relatively higher hole mobility than that of noncrystalline or-
ganic HTLs and is often used as light-harvesting and hole transporting materials for
CsPbI3-based solar cells [25]. Our previous report demonstrated that a thermal crosslink-
able HTL, 9,9-Bis[4-[(4-ethenylphenyl)methoxy]phenyl]-N2,N7-di-1-naphthalenyl-N2,N7-
diphenyl-9H-fluorene-2,7-diamine (VB-FNPD), also provides excellent hole mobility and
improves the interface between the HTL and the CsPbBr3 QD film [11]. On the other
hand, the studies of the HTLs for deep red CsPbI3-based IPQLEDs are still lacking. Ta-
ble 1 shows only Poly-TPD and PTAA have been used as the HTLs in the CsPbI3-based
IPQLEDs. No literature reported the CsPbI3-based IPQLEDs using VB-FNPD and P3HT as
the HTLs. Therefore, a comparative study of different HTLs for the CsPbI3-based IPQLEDs
is necessary.

Table 1. Summary of recent reports of CsPbI3-based all-inorganic perovskite quantum-dot light-emitting diodes (IPQLEDs).

Years Emission
Layer

EL Wavelength
(nm) HTLs Peak EQE (%)

Maximal
LUMINANCE

(cd/m2)
Reference

2017 CsPbI3 688 Poly-TPD 5.02 748 [15]

2018 CsPbI3 694 Poly-TPD 14.08 1444 [16]

2019 CsPbI3 682 Poly-TPD 1.8 365 [17]

2020 CsPbI3 687 PTAA 14.6 378 [18]

2020 CsPbI3 676 Poly-TPD 6.2 3762 [19]

2020 CsPbI3 675 Poly-TPD 10.21 401 [20]

2020 CsPbI3 685 Poly-TPD 6.02 587 [21]

- CsPbI3 680 VB-FNPD 8.64 632 This work

Herein, we studied the performance of CsPbI3-based IPQLEDs employing P3HT,
PVK, Poly-TPD and VB-FNPD as the HTLs. Meanwhile, a dense and smooth CsPbI3 QDs
film can be achieved using VB-FNPD HTLs, which are an important factor for the device
performance of the IPQLED. We then demonstrated highly bright and efficient CsPbI3
IPQLED based on VB-FNPD HTLs, achieving an external quantum efficiency (EQE) of
8.64%. Therefore, we believe that our results may promote the development of device
structures and hole transporting materials to achieve stable and low-cost IPQLEDs.

2. Experimental Section
2.1. Materials

P3HT was purchased from Solarmer (El Monte, CA, USA). Cesium carbonate (Cs2CO3;
99.995%), octadecene (ODE; 90%), oleic acid (OA; 90%), octylamine (OAm; 90%), hex-
ane (95%), octane (98+%), mehyl acetate (99%), PbI2 (99.999%), PEDOT:PSS (AI 4083),
TPBi and PVK were purchased from Sigma–Aldrich (Munich, Germany). Poly-TPD,
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n-octylammonium iodide and VB-FNPD were purchased from LUMTEC (Taipei, Taiwan).
All the chemicals were used as received.

2.2. Synthesis of CsPbI3 QDs

Cs2CO3 (200 mg) was loaded into a 25 mL three-neck flask, along with ODE (9 mL)
and OA (0.75 mL), and then stirred and degassed at 120 ◦C for 30 min under nitrogen flow
to obtain a transparent Cs–oleate precursor. The Pb precursor solution was prepared by
dissolving 0.09 M of PbI2 in 30 mL ODE, 3 mL of OA and 3 mL OAM and then stirring and
degassing at 120 ◦C under nitrogen flow. After PbI2 was all dissolved, the temperature was
increased to 150 ◦C, and then a 0.8 mL Cs–oleate precursor was quickly injected into the Pb
precursor solution. After 5 s, the reaction was cooled on an ice bath, and red CsPbI3 QD
crude was obtained. Then n-octylammonium iodide (0.2 mmol) dissolved in toluene (4 mL),
as a capping agent was added into the crude. Subsequently, as-prepared crude solution
and methyl acetate (16 mL) were centrifugated at 12,000 rpm for 15 min. The precipitate
was collected and loaded in 8 mL of hexane and methyl acetate (1:3 v/v), and the solution
was centrifuged at 12,000 rpm for 10 min. The precipitate was collected and dispersed
in octane (2 mL) and centrifuged for 5 min at 12,000 rpm. Finally, the supernatant was
collected and stored at 4 ◦C.

2.3. Device Fabrication

The IPQLEDs were constructed with the architecture of indium tin oxide (ITO)/
PEDOT:PSS (40 nm)/ HTLs (~50 nm)/ CsPbI3 QD (~40 nm)/ TPBi (40 nm)/ LiF (1 nm)/Al
(100 nm). Here, P3HT, PVK, Poly-TPD and VB-FNPD were used as the HTLs. The patterned
ITO substrates were wet-cleaned and then O2 Plasma-cleaned. After cleaning, PEDOT:PSS
was spin-coated at 8000 rpm for 40 s on the substrate and annealed at 130 ◦C for 15 min.
Then, the samples were loaded to N2-filled glove box to deposit HTLs and CsPbI3 QDs.
All HTLs were spin-coated with a concentration of 4 mg/mL on PEDOT:PSS and then
heated at 100 ◦C for 5 min. The thickness of each HTL was controlled at ~50 nm by
adjusting the spinning speed. Before heating, VB-FNPD was held standing still for 0, 20,
40 and 60 min and then heated at 100 ◦C for 5 min and annealed at 170 ◦C for 30 min for
thermal crosslinking. The CsPbI3 QDs were spin-coated with a concentration of 40 mg/mL
at 2000 rpm for 60 s. TPBi, LiF and Al cathode were deposited by a thermal evaporation
using a shadow mask to define the device area of 2 × 2 mm2.

2.4. Characterization

Electroluminescence and impedance characteristics were measured through computer-
controlled LQ-100R spectrometer (Enlitech, Kaohsiung, Taiwan) and Material Lab XM
(SOLARTRON analytical, Leicester, UK), respectively. The absorbance and photolumines-
cence (PL)/photoluminescence quantum yield (PLQY) were measured using UV-visible
spectrophotometer (V-770, JASCO, Tokyo, Japan) in Table 2 and fluorescence spectropho-
tometer (F-7000, Hitachi, Tokyo, Japan), respectively. The surface roughness was measured
using an atomic force microscope (AFM, Bruker, Billerica, MA, USA). The electron mi-
croscopy images were obtained by HRTEM (JEM-2100, JEOL, Tokyo, Japan) and FESEM
(JSM-7610F, JEOL, Tokyo Japan), respectively.

Table 2. Summary of photoluminescence quantum yield (PLQY) values of CsPbI3 quantum dot (QD)
films coated on a glass and different hole transporting layers (HTLs).

Glass VB-FNPD Poly-TPD PVK P3HT

PLQY (%) 46.7 42.6 18.0 17.5 15.3

3. Results and Discussion

Figure 1a shows the planar SEM image of the CsPbI3 QD film spun on the glass
substrate. Highly dense surface and good crystalline of the CsPbI3 QD film can be obtained
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without obvious aggregations. Such morphology may be attributed to the well-dispersed
and high-stability suspensions in the as-synthesized QD dispersions, as shown in the
insert in Figure 1. The PL spectrum (Figure 1b) of the CsPbI3 QDs film shows a brightly
red luminescence at 682 nm with a narrow Full width at half maximum (FWHM) of
35 nm, implying a high color purity and preferred optical property. The absorption edge
in the absorption spectrum is close to its emission peak, which agrees with previous
reports [22–25]. TEM image shows as-synthesized CsPbI3 QDs are cubic shaped and well-
dispersed in octan, with an average size of 10.8 nm (Figure 1c,d). All abovementioned
characterization techniques evidently exhibit that the CsPbI3 QD dispersion solutions and
QD solid films with uniform size and distribution have been successfully obtained.
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Figure 1. (a) SEM image and (b) absorbance and photoluminescence (PL) spectra of CsPbI3 QDs spun on glass substrates.
(c) TEM image and (d) size distribution of CsPbI3 QDs evaluated by (c). The inset shows the CsPbI3 QDs dispersed in
octane and excited under UV light at 365 nm.

Figure 2a shows the energy band diagram of the CsPbI3 QD layer and each HTL.
The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) levels of all layers can be referred to the results in [12,25,29]. Figure 2b–d show
the device performance of the CsPbI3 IPQLED using different HTLs. LUMO levels of all
HTLs are much higher than those of the QD layer, resulting in good electron blocking
ability in all HTLs (Figure 2a). HOMO levels of all HTLs are higher than those of the
QD layer, indicating that reducing hole injection barrier is preferred to the HTL with the
lower HOMO level. Therefore, the tendencies of the current in devices’ different HTLs
correspond with the HOMO level of their HTL (Figure 2c). The PVK device shows the
highest current, because of the lowest HOMO in PVK, which is agreed with the lowest
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impedance (Figure S1). In contrast, the lowest current in the P3HT device is caused by the
highest HOMO level and hole injection barrier, leading to the highest impedance (Figure S1)
and turn-on voltage (biased voltage at 1 cd/m2), as shown in Figure 2b. Similar HOMO
levels in VB-FNPD and Poly-TPD lead to their same turn-on voltages, but the excellent
radiative recombination efficiency in the VB-FNPD device gives it higher EQE. In addition,
the PVK device has the highest current, but it simultaneously shows the lowest EQE
(Figure 2d), which may be caused by inefficient radiative recombination in the QD layers,
leading to its higher turn-on voltage than that of VB-FNPD and Poly-TPD devices (Figure
2b). It is interesting to know what dominates as the carrier recombination efficiency for
each device.
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In fact, the determination of the carrier recombination efficiency can be easily observed
by the naked eye. Figure 3a shows the photograph of CsPbI3 QDs films spun on each HTL,
in which the VB-FNPD film shows brighter than others. The thicknesses of all QDs films
were around 40 nm, measured by Alpha–Step. Hence, the brightness of the QD solids should
be attributed to the degree of the aggregation on the different HTL surfaces, rather than the
film thickness. When the well-organized array of the colloidal CsPbI3 QDs is formed on the
surface of the VB-FNPD films without the QD aggregations, the light-induced exciton is
limited in a QD nanoparticle to increase the quantum confinement effect, resulting in the
improved radiative recombination, as illustrated in Figure 3b. In contrast, the light-induced
exciton can transport between nanoparticles, due to the QD aggregations, leading to the
increased dissociation possibility of the exciton prior to its radiative decay [30,31]. It is
the reason why the brightness of VB-FNPD film is much stronger than that of other films,
which is in good agreement with the device results (Figure 2d). The summary of PLQYs
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for CsPbI3 QDs layers spun on different HTLs are listed in Table 1. The PLQY of CsPbI3
QDs layer on the glass is higher than the PLQY of those spun on each HTL, which may
be because the exciton dissociation is suppressed at the insulated glass [32]. On the other
hand, the full-coverage QD films confirm the carrier combination. The films with the QD
aggregations provide a leakage path, which is the reason that the current in the Poly-TPD
device is higher than that in the VB-FNPD device (Figure 2c). The best performance of 7.28%
was achieved in the VB-FNPD device.
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poly(9-vinycarbazole) (PVK) and crystalline Poly(3-hexylthiophene-2,5-diyl) (P3HT) and excited under UV light at 365 nm.
(b) The illustration of the QD aggregations on different HTLs.

To further improve the device performance, the different standing times were intro-
duced into the VB-FNPD film preparation. Figure 4 shows current–voltage–luminance
characteristics, EQE and the normalized electroluminescence (EL) spectrum of the devices
prepared by different standing times. The performances of all devices with the standing
treatment show better than that of the device without the treatment. EL spectrum shows
an emission peak at 680 nm with a narrow FWHM of 32 nm, indicating high color purity.
The EL peak position is close to the PL spectrum, which can be attributed to carrier re-
combination in the QD films. Figure 5 shows the AFM images of the VB-FNPD films with
the different standing times. The AFM phase image exhibits that light and dark colors
are alternately and uniformly distributed on the VB-FNPD film surface without the stand-
ing treatment, indicating two-phase coexistence [33] and low degree of polymerization.
With the increase in the standing times, the deepened colors and the larger domain sizes
on the phase images can be found, which could be attributed to the increased degree of
the polymerization. Therefore, the reduced surface roughness can be seen in the AFM
topography images, leading to the improved hole transporting characteristic and the device
performance. Thus, the highest EQE of 8.64% in the VB-FNPD devices treated for 60 min
were achieved.
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4. Conclusions

In conclusion, polymeric hole transport materials employed for red CsPbI3 IPQLEDs
have been demonstrated. The band-aligned and aggregation characteristics of the CsPbI3
layers deposited on P3HT, PVK, Poly-TPD and VB-FNPD HTLs were discussed. A full-
coverage QD film without the aggregation can be obtained on the VB-FNPD films, and thus,
the best performance was 7.28% in the VB-FNPD device. One of the key issues associ-
ated with the utilization of thermal-crosslinking polymer thin films is the control of their
alignment and orientation. A standing method of increasing the degree of VB-FNPD
polymerization was also presented, resulting in the improved device performance with the
EQE up to 8.64%.
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