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Abstract: Polyurethanes and polyurethane-ureas, particularly their water-based dispersions, have
gained relevance as an extremely versatile area based on environmentally friendly approaches.
The evolution of their synthesis methods, and the nature of the reactants (or compounds involved
in the process) towards increasingly sustainable pathways, has positioned these dispersions as a
relevant and essential product for diverse application frameworks. Therefore, in this work, it is
intended to show the progress in the field of polyurethane and polyurethane-urea dispersions over
decades, since their initial synthesis approaches. Thus, the review covers from the basic concepts
of polyurethane chemistry to the evolution of the dispersion’s preparation strategies. Moreover, an
analysis of the recent trends of using renewable reactants and enhanced green strategies, including
the current legislation, directed to limit the toxicity and potentiate the sustainability of dispersions, is
described. The review also highlights the strengths of the dispersions added with diverse renewable
additives, namely, cellulose, starch or chitosan, providing some noteworthy results. Similarly,
dispersion’s potential to be processed by diverse methods is shown, evidencing, with different
examples, their suitability in a variety of scenarios, outstanding their versatility even for high
requirement applications.

Keywords: polyurethane and polyurethane-urea dispersions; synthesis methods; materials’ proper-
ties; alternative internal emulsifiers; sustainable strategies; renewable additives; processing methods;
applications; legislation

1. Introduction to WBPU and WBPUU Dispersions

Polyurethanes and polyurethane-ureas are a versatile family of polymers finding use
in a wide range of applications such as biomedical, textile, automotive, paintings, adhesives,
coatings, among others [1–3]. They can present various functionalities in their backbone,
with the urethane as the main one (-NHCOO-). This group is formed by the reaction
between an isocyanate (-NCO) and a hydroxyl group (-OH). In the case of polyurethane-
ureas, besides urethane groups, urea groups (-NHCONH-) are also formed, namely by the
reaction of isocyanates with amine groups (-NH2).

Among the distinct classes, segmented polyurethanes are block copolymers. They are
composed of alternating blocks, namely the soft segment (SS), which consists of the polyol,
and the hard segment (HS), formed by the isocyanate and the low molecular weight chain
extender, a diol in the case of polyurethanes and a diamine in the case of polyurethane-ureas.
These segments are usually thermodynamically incompatible, leading to phase separation,
and thus to a microdomain structure which, depending on the chemical composition, can
give rise to materials with a broad range of properties [4,5]. In general, the soft segment
provides flexibility to the system, whereas the hard segment confers stiffness. Attending to
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the reactive mixture composition and reactants nature, soft and/or hard segments can be
arranged in either amorphous disordered or crystalline ordered domains, as schematically
shown in Figure 1, where segment conformations, hydrogen bonding interactions, and the
resulting ordered and disordered microdomains is exemplified.
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One of the most remarkable differences between urethane and urea groups is their
capacity to form hydrogen bonding. In the case of urea groups, as both hydrogens could
simultaneously participate in hydrogen bonding interactions, polyurethane-urea systems
are characterized by stronger interactions, generally resulting in stiffer materials [6]. Con-
ventional polyurethane and polyurethane-ureas, due to their hydrophobicity, give rise to
solvent-borne systems, e.g., coatings and adhesives.

In the last years, environmental awareness intensification has led to diverse routes
directed to the development of novel systems based on green chemistry approaches. This
concept involves the implementation of pollution prevention policies to the design and
development of new products [7]. In this context, some strategies including non-isocyanate
synthesis routes, which avoid the use of isocyanate compounds and their implied restric-
tions [8], by the formation of polyhydroxyurethanes through amine and cyclic carbonate
compounds reaction, are being implemented [9]. Besides, the replacement of petrochemical
raw materials by naturally-based reactants, including biobased isocyanates [10], oils [9]
or polysaccharides [11], are attractive vias for the synthesis of biobased polyurethanes or
polyurethane-urea systems. Nevertheless, it should be highlighted that one of the most
challenging goals deals with the replacement of the conventional solvent-borne systems
to reduce volatile organic compounds emissions [12], positioning the development and
use of waterborne products, namely waterborne polyurethane (WBPU) and waterborne
polyurethane-urea (WBPUU) systems, at the forefront of polyurethane and polyurethane-
urea based commodities [13]. The water compatibility character of these products can
be achieved by adding an internal emulsifier [14], avoiding the use of organic solvents,
thus reducing the generation of volatile organic emissions. Apart from environmental
advantages, WBPU and WBPUU dispersions combine other excellent features: they exhibit
high solids content and molecular weight, possess low viscosity and non-flammability
properties and have good film-forming ability at room temperature [15,16]. Besides, films
with properties similar to conventional polyurethanes can be obtained, such as excellent
chemical resistance, high flexibility, adhesion to many polymers and surfaces, among
others [17]. Depending on the reactants used, chemical structure, molar ratio, applied
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synthesis procedure, and internal emulsifier nature, WBPU and WBPUU dispersions with
different final properties can be synthesized.

The internal emulsifier forms part of the polymeric chain, being covalently incorpo-
rated in the backbone of the polymer [14], providing stability to the formed nanoparticles
during the phase inversion step leading to the dispersion formation. During this step, the
hydrophobic moieties get arranged inside the particles forming the core. The hydrophilic
ones, formed by the urethane and urea groups, which incorporate the emulsifier, get posi-
tioned at the particle surface (shell). Internal emulsifiers of different nature can be used
to prepare dispersions, i.e., nonionic or ionic type, where the latter comprise cationic and
anionic reactants [18].

The emulsifier content used must be at a minimum level to get stable dispersions, a
concentration that depends on emulsifier nature, reactants type, and hard/soft segments
ratio [19–21]. For example, Nanda and Wicks [20] analyzed the influence of the internal
emulsifier dimethylol propionic acid (DMPA) content in the stability of WBPU dispersions
observing that, for a fixed chemical composition, the required minimum DMPA content
varied from 2 to 4 wt.%.

The effect of other parameters, namely polyols’ structure and molecular weight, are
also known to impact dispersion particle size and viscosity, as evidenced by Haiyun Wang
and co-workers [22]. In general, the particle size of the dispersions varies depending on the
nature of the polyurethane chain, i.e., a higher hydrophilic character favors the obtainment
of lower particle size dispersions, which result in higher viscosity products. Namely, the
synthesis of high solids content polyester-based WBPUs presents less difficulties than
polyether polyol counterparts due to ester groups’ capacity to form hydrogen bonds with
water. However, the use of polyether-based systems can favor specific properties; e.g., the
use of poly(tetramethylene ether) glycol (PTMG) facilitates water vapor permeability in
coated fabric applications.

2. Internal Emulsifiers in WBPU and WBPUU Dispersions

There are different types of internal emulsifiers for the synthesis of WBPU and WBPUU
dispersions. Attending to their nature, emulsifiers can be classified into nonionic or ionic,
where the ionic ones can also be subdivided into cationic or anionic, depending on the
charge of the functional groups conferring hydrophilicity and stability to the system [23].

The stabilization mechanism of particles in nonionic dispersions is based on a steric
stabilization mechanism usually provided by hydrophilic soft segments, as shown in
Figure 2. The portions of the chains containing the nonionic segments spread out to the
continuous phase, that is, to the water phase, hindering the coalescence effect among the
formed polymeric nanoparticles [24].

Regarding ionic emulsifiers, anionic and cationic WBPU or WBPUU differ in the ionic
center pendant from the polymer backbone. In the case of the anionic emulsifiers type,
carboxylic or sulfonated acids are usually used. In the cationic systems, tertiary amines are
generally incorporated, these last ones needing to be neutralized (in anionic systems) or
quaternized (in cationic systems) to form the corresponding salts [1,17]. In ionic WBPU
and WBPUU dispersions, an electrostatic stabilization takes place, based on the electrical
double layer mechanism, by adding a counterion to the emulsifier group previously to the
dispersion step. The counterion is the ion present in the system responsible for maintaining
the ionic center’s electric neutrality [25]. Figure 3 shows the particle’s formation mechanism
of ionic WBPU and WBPUU dispersions.
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When water is added to the polymer, the ionic groups will become placed at the surface
of the particles surrounded by the counterions, forming the electrical double layer [26,27]
and constituting the particle’s shell. The hydrophobic domains will be agglomerated in the
inner part of particles making their core [18]. Thereby, the electrical double layer’s interfer-
ence among particles results in their mutual repulsion, leading to dispersion stabilization
through a mechanism based on the repulsive electrostatic interactions [1,28].

3. WBPU and WBPUU Synthesis Methods
3.1. Overview of The Most Used Synthesis Procedures and Their Characteristics

The WBPU and WBPUU production methods progressed over the years to increasingly
sustainable synthesis routes. The initial method, namely the acetone method, evolved into
designing an alternative method, the prepolymer method, aiming to elude the restrictions
of the patent held by Bayer (e.g., first development on polyurethane dispersions started
in the 1960s, and later in the 1980 the continuous production of dispersions was imple-
mented) [29,30]. Nevertheless, the use of N-methyl-2-pyrrolidone (NMP), a highly toxic
solvent widely used to dissolve the hydrophilizing agent (e.g., DMPA) in the prepolymer
method, required the modification of the process to avoid legislation limitations regarding
the NMP. In this context, the modified prepolymer method displaced the conventional pre-
polymer method, leading to NMP-free dispersions. Even with “green” connotations, since
solvent-free products are achieved, these processes present the disadvantage of needing
organic solvents during the synthesis. Thus, current methods focus on developing green
products through sustainable approaches, i.e., without using organic solvents during the
synthesis. Considering the diversity of available synthesis methods and the wide range of
chemical compositions, Table 1 summarizes these variables’ influence on different WBPU
and WBPUU dispersion systems’ final properties, as gathered from the literature.
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Table 1. Effect of WBPU and WBPUU synthesis methods and composition on dispersion’s properties: chain extension medium (homogeneous or heterogeneous), solids content (SC),
pH, zeta potential (Zpot), average particle size (PS) (Unimodal distribution (UmD), Bimodal distribution (BmD)), viscosity (µ), weight average molecular weight (Mw), number average
molecular weight (Mn), and polydispersity index (PI).

Synthesis Method Chemical Composition Chain Extension
Medium

SC (wt.%)
pH

Zpot (mV)

PS
(nm)

µ
(cp)

Mw or Mn
(g mol−1)

PI
Ref

Modified prepolymer PTMG/DMPA/IPDI/BD/DBTDL
(reactants added simultaneously—one-pot reaction) Homogeneous

SC: 20
-
-

116 (UmD) - - [31]

Modified prepolymer PTMG/DMPA/IPDI/BD/DBTDL
(reactants added step-by step—step-wise reaction) Homogeneous

SC: 20
-
-

50 (UmD) - - [31]

Modified prepolymer PPG/DMPA/IPDI/BD/DBTDL
(reactants added simultaneously—one-pot reaction) Homogeneous

SC: 50
-
-

100–200 and 1500–2000
(BmD) 100-600 Mw: 9800

PI: 1.85 [32]

Modified prepolymer PPG/DMPA/IPDI/BD/DBTDL
(reactants added step-by step—step-wise reaction) Homogeneous

SC: 40
-
-

PS: 200–700 (UmD) 100-1550 Mw: 10,020
PI: 1.83 [32]

Modified prepolymer PCHDO/PPG/PBA/DEG/DMPA/IPDI/HZ Homogeneous
SC: 39

pH: 8.0–8.2
-

With PPG: 61 (UmD);
with PBA: 67 (UmD);

with PHDO: 73 and 247
(BmD)

- - [33]

Modified prepolymer LO/DMPA/IPDI/HDI/HEMA/DBTDL Homogeneous
SC: 36

pH: 9.14
-

261 and 5001 (BmD) 389 - [34]

Modified Prepolymer NPG/PCL/DMPA/AA/MDI/EDA/BHT/DBTDL Homogeneous
SC: 30

-
-

- - Mn: 9600–16,200
PI: 1.6–2.4 [35]

Modified prepolymer PPG (1000; 2000 g mol−1)
/DMPA/IPDI/BD/HEMA/Irgacure 184/DBTDA

Homogeneous
SC: 30

-
-

With PPG (1000): 26–44
(UmD); with PPG

(2000): 66–103 (UmD)
- - [36]

Modified prepolymer SFO/AA/IPDI/MDI/HDI/BD/DBTDL/DABCO/Ti
(i-Pr)4

Homogeneous
SC: 27–30

-
-

91–125 (UmD) - - [37]

Modified prepolymer PTMG/DMPA/H12MDI/APS/HEMA/IBOA/HDFDMA/
BA/DBTDL Homogeneous

-
-
-

48–122 (UmD) 22-39 - [38]

Modified prepolymer Desmophen 1019-55/DMPA/IPDI/BD/BOL/DBTDL Homogeneous
SC: 25–45

-
-

25–250 (UmD) 45-6000 Mn: 3000–23,000 [20]

Modified prepolymer
Desmophen

1019–55/DMPA/IPDI/HMDA/DEA/DBTDL/Abex
EP-110

Heterogeneous
SC: 25–44

pH: 7.7–8.3
-

40–300 (UmD) 30-5500 - [39]
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Table 1. Cont.

Synthesis Method Chemical Composition Chain Extension
Medium

SC (wt.%)
pH

Zpot (mV)

PS
(nm)

µ
(cp)

Mw or Mn
(g mol−1)

PI
Ref

Acetone PBA/AAS/IPDI/TMP/HZ/DBTDL Heterogeneous
SC: 30

-
Zpot: −25–−48

200–4000 (UmD) - - [40]

Modified prepolymer HTNR/HRSO/TDI/DMPA/DBTDL Heterogeneous
SC: 20

pH: 7–8
-

64–195 (UmD) - - [41]

Modified prepolymer PPG/PBA/DMPA/IPDI/IPDA/BD/DBTDL Heterogeneous
SC: 39–55

-
-

76.3–921.9 (UmD) 45.2-6000 - [42]

Solvent-free PEG/PTMG/MDI/SDBS/SDS Homogeneous
-
-
-

12,100 (UmD) - - [43]

Solvent-free PTMG (1000–2000 g
mol−1)/DMPA/IPDI/SAAS/HZ/DMPA Homogeneous

SC: 30
-
-

800–3000 (UmD) - Mw: 52,890–130,800
PI: 1.31–4.02 [44]

Solvent-free CO2-polyols (1350-3500 g mol-1)/
DMPA/IPDI/HDI/HMDI/EDA

Homogeneous
SC: -

-
Zpot: −27.8

45–70 (UmD)
µPrep:

<
20,000–40,000

Mw: 112,000
PI: 3.42 [45]

- Not reported. Poly(oxytetramethylene)glycol (PTMG); dimethylol propionic acid (DMPA); isophorone diisocyanate (IPDI); 1,4-butanediol (BD); dibutyltin (IV) dilaurate (DBTDL); polypropylene glycol
(PPG); polycarbonate of 1,6- hexane diol (PCHDO); poly(1,4-butylene adipate) diol (PBA); diethyleneglycol (DEG); hydrazine hydrate (HZ); linseed oil (LO); hexamethylene diisocyanate (HDI); hydroxyethyl
methacrylate (HEMA); neopentyl glycol (NPG); poly(caprolactone) glycol (PCL); adipic acid (AA); 4,4′-diphenylmethane diisocyanate (MDI); ethylene diamine (EDA); 2,6-di-tert butyl-4-methylphenol (BHT);
1-hydroxycyclohexyl phenyl ketone (Irgacure 184); dibutyltin diacetate (DBTDA); sunflower oil (SFO); 1,4-diazobicyclo[2.2.2] octane (DABCO); titanium isopropoxide (Ti (i-Pr)4); 4,4′-dicyclohexylmethane
diisocyanate (H12MDI); ammonium persulfate (APS); isobornyl acrylate (IBOA); 2-(perfluorooctyl)ethyl methacrylate (HDFDMA); butyl acrylate (BA); poly(hexylene adipate-isophthalate) polyester diol
(Desmophen 1019-55); 1-butanol (BOL); 1,6-hexamethylene diamine (HMDA); diethyl amine (DEA); ethoxylated nonylphenol ammonium sulfate (Abex EP-110); 2-[(2- aminoethyl)amino]ethanesulfonic acid
sodium salt (AAS); trimethylol propane (TMP); hydroxyl telechelic natural rubber (HTNR); hydroxylated rubber seed oil (HRSO); toluene diisocyanate (TDI); isophorone diamine (IPDA); polyethylene glycol
(PEG); sodium 2,4-diaminobenzenesulfonate (SDBS); sodium dodecyl sulfate (SDS); sodium 2-[(2-amino ethyl) amino] ethane sulfonate (SAAS); CO2-polyols (1350–3500 g mol−1).
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3.2. Traditional Synthesis Methods
3.2.1. Acetone Process

The acetone process formerly patented by Bayer uses a hydrophilizing diamine (N-
(2-aminoethyl)-2-aminoethanesulfonic acid) having the double role of chain extender and
internal emulsifier, thus leading to WBPUU dispersions. Briefly, the process starts with
the synthesis of a prepolymer in bulk trough polyol and isocyanate reaction, followed
by the addition of acetone to control viscosity and solubilize the N-(2-aminoethyl)-2-
aminoethanesulfonic acid, thus conducting to a chain extension step in a homogeneous
medium, that is, prior to the phase inversion step. The inversion phase is then conducted
by the addition of water under vigorous stirring to the synthesized polymer in acetone.
The final step comprises the extraction of the organic solvent. The acetone process enables
controlling the molecular weight, and particle size and distribution with high reproducibil-
ity, considering that the polymer synthesis is carried out in a homogeneous solution [20,36].
In fact, the acetone dilution avoids viscosity constraints, being recovered to be reintroduced
in the system. Nevertheless, the used high quantities of acetone and its purification process
could be considered the main drawback of the process [46].

3.2.2. Prepolymer and Modified Prepolymer Processes

Traditionally, the prepolymer process, designed as an alternative to the patented
acetone process, is carried out by synthesizing an NCO-terminated prepolymer of moderate
molecular weight (around 8000 g mol−1) [39] comprising the reaction of an isocyanate, a
polyol, and an internal emulsifier (usually DMPA). Facing to the importance of achieving
high molecular weight polymers due to the need for high performance properties in
service [47], the increase of the molecular weight is later conducted through a chain
extension step. Considering the insolubility of the internal emulsifier (in the prepolymer
and acetone), a highly polar co-solvent (e.g., NMP) whose high boiling point hinders its
removal from the final product, is needed. Before the dispersion step, the ionic groups of the
internal emulsifier are neutralized using a tertiary amine, and the viscosity of the medium
can be adjusted with acetone. The prepolymer is then dispersed in water, and (afterward
or during the addition of water) the molecular weight of the final polymer is increased
through a chain extension reaction with di- or polyamines in a heterogeneous medium (e.g.,
water and acetone medium). It should be worth noting that by this approach, even it is less
widespread, the chain extension step can also be carried out before the phase inversion
step (using a diol or diamine), leading in this case to a homogeneous chain extension step
strategy. Analogously to the acetone process, the incorporated acetone can be removed in a
final step [39] even though the NMP co-solvent will remain in the dispersion.

To avoid the hazard problems derived from NMP containing dispersions, the process
evolved into the modified prepolymer method. This approach involves a slight variation
in the conventional prepolymer method availing the possibility of synthesizing NMP
free WBPU and WBPUU systems. The combined incorporation of the internal emulsifier
with the neutralizing agent enables its dissolution in acetone, avoiding NMP as co-solvent.
Furthermore, compared with the acetone process, the modified prepolymer method ensures
the preparation of WBPU and WBPUU using lower quantities of acetone to control the
viscosity considering the lower molecular weight of the prepolymer before the inversion
step. In Figure 4, a schematic representation of the principal steps of both acetone and
prepolymer methods is presented, including the progress timeline in the field of WBPU
and WBPUU.

3.3. Alternative Solvent-Free Methods

Research investment in the field of environmentally-friendly materials is now focusing
on alternative synthetic routes to achieve not only solvent-free products, but also entirely
solvent-free synthesis processes. For example, Wang and co-workers [45] designed a
solvent-free WBPU synthesis route through a strategy using a dispersing stage at elevated-
temperature (avoiding the need of organic solvents). State of the art emphasizes the
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importance of carrying out the dispersion step at low temperatures (room temperature) to
prevent the NCO groups’ side reactions with water and thus the formation of materials with
poor properties. By contrast, in this work, based on the principle that high temperatures
favor low viscosities, after prepolymer synthesis, a small amount of water is added at
high temperature to pre-disperse the prepolymer, thus reducing the viscosity to proceed
with the prepolymer dispersion at low temperature. By this strategy, the cooling and
solvent-removing steps characteristic of the traditional methods are avoided shortening
the synthesis process’s duration and reducing energy consumption.
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Nevertheless, considering the impossibility of avoiding secondary reactions com-
pletely (between NCO and water), this parameter needs to be controlled to reach an
acceptable value, namely a NCO retention > 90%, for not compromising the mechani-
cal properties of the materials. In another work, Xiao et al. [43] synthesized WBPUU
dispersions by a solvent-free strategy based on a hydrophilic chain extender, sodium
2,4-diaminobenzenesulfonate (SDBS). Water was employed as the dissolving agent of the
solid reactants and to control viscosity, enabling the polymer’s dispersibility without
adding organic solvents. The formed products have shown similar properties (e.g., me-
chanical and water resistance) to conventional WBPU or WBPUU dispersions. Similarly,
Yong and co-workers [44] synthesized solvent-free WBPU mats using DMPA and sodium
2-[(2-aminoethyl)amino] ethane sulfonate (SAAS) as the chain extender agents, without
using organic solvents in the process. The large excess of isocyanate in the medium during
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the pre-polymer step favored its dual action as the reagent and the solvent medium for the
polymerization process.

4. A Step beyond Conventional Internal Emulsifiers

Conventionally, WBPU, and WBPUU are prepared according to nonionic or ionic
dispersing strategies. The nonionic WBPU and WBPUU dispersions, which are based on
the use of hydrophilic internal emulsifiers, e.g., polyethylene oxide, or lateral/terminal
ether moieties [17], were not so widespread as the ionic counterparts, partly due to the
weaker hydrophilic character of the nonionic emulsifiers, which difficult the dispersion in
water. Nevertheless, due to their lower toxicity, better electrolyte stability, and resistance
to shearing at low temperature, nonionic dispersions are the most suitable WBPU and
WBPUU formulations for breathable coating applications, dyeing, finishing, and cosmetics,
among others [23,48,49]. The ionic (anionic and cationic) dispersions are more widespread
and extensively used in diverse applications, including adhesives, textiles, coatings, au-
tomotive topcoats or packaging films [50]. Nevertheless, it has to be worth noting that
the high level of nitrogen in cationic-based dispersions, implies their tendency for yellow-
ing. This fact implies constraints for some applications, and thus cationic dispersions are
not so widespread compared to the industrial applications of anionic dispersions [18,23].
Among anionic emulsifiers, particularly DMPA [51–53], 2,2-bis(hydroxymethyl) butyric
acid (DMBA) [54,55], and sulfonated agents [56,57] are commonly employed in the synthe-
sis of WBPU and WBPUU [58]. Concerning cationic emulsifiers, N-methyldiethanolamine
(MDEA) is the most used one [58–60].

The progressive restrictions in the actual legislation boosted the synthesis methods’
evolution to more sustainable pathways. Some approaches comprise the design of novel
dispersions with alternative emulsification strategies, covering the mixture of conven-
tional emulsifiers, namely the combination of nonionic and ionic agents, novel biobased
hydrophilic chain extender emulsifiers, or hydrophilizing biobased polyols, among others.
In Table 2, some examples of WBPU and WBPUU dispersions based on these evolving
concepts, i.e., from using conventional to alternative emulsifier agents, are summarized.
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Table 2. Summary of gathered examples of WBPU and WBPUU prepared from conventional and alternative emulsifiers highlighting the chemical composition (WBPU composition),
internal emulsifier nature (IEN), internal emulsifier content (IEC), and particle average size (PS).

WBPU Composition IEN (Designation/Nature) IEC (% wt) PS (nm) Reference

PPG/TDI/DMPA DMPA/anionic emulsifier 4.95 35–225 [61]
PBA/PMA/PTMG/PPG/IPDI/H12MDI/TDI/MDI/BD/TMP/HZ/DMPA DMPA/anionic emulsifier 1.6–2.4 100–8000 [62]

PEG/PTMG/MDI/SDBS PEG/nonionic polyol
SDBS/anionic chain extender

3.6–4.0 (PEG)
4.3–8.3 (SDBS) - [63]

PBA/DHA/IPDI DHA/anionic polyol 31.70 92 [64]
MPP/Bayhydur® 3100 polyisoc. MPP/anionic polyol 0–20 150–320 [65]

Phospol/IPDI/HDO/APTES Phospol/anionic polyol 47–53 32–68 [66]

PPO/TDI/DMBA/APTES/SDS DMBA/anionic emulsifier
SDS/external surfactant

3.65 (DMBA)
2.0 (SDS) 189.6–293.4 [67]

PEG/HDI/LYS PEG/nonionic polyol
LYS/anionic chain extender

64.1–71.3 (PEG)
10.4–14.0 (LYS) - [68]

MAHCSO/IPDI/HDO/DHZ MAHCSO/anionic polyol 57–58.7 41–176 [69]
MAHCSO/TDI/HDO/PMDA/BPOTCDA/HFIPDA MAHCSO/anionic polyol 61–72 23–240 [70]

PTMG/PEG/MDI/SDBS PEG/nonionic polyol
SDBS/anionic chain extender

0.38–0.42 (PEG)
3.5–6.8 (SDBS) - [71]

PCL/H12MDI/DMPA/BES/BD DMPA/anionic emulsifier
BES/anionic chain extender

2.1–8.7 (DMPA)
3.7–14.4 (BES)

28–213 (DMPA)
8.3–168 (BES) [72]

CE/PTMG/IPDI/DMPA/EDA DMPA/anionic emulsifier 5–6 61.5 [73]
Oxymer M112/SynDD/IPDI/DMPA/HMD DMPA/anionic emulsifier 3 81.2–139.2 [74]

CO/FA/IPDI FA/anionic polyol 28.77 (CO)
68.26 (CO free)

35.11 (with CO)
56.11 (without

CO)
[75]

PEG/PTMG/IPDI/GQAS/EGDE PTMG/nonionic polyol - - [76]

PEG/HDI/LYS PEG/nonionic polyol
LYS/anionic chain extender 63–71 (PEG2000) and 11–15 (LYS) - [68]

PEG/HMDI/DMPA/MDEA/HTO
PEG/nonionic polyol

DMPA/anionic emulsifier
MDEA/cationic emulsifier

- 64–198 [77]

Poly-G 2056/Priplast 3192/Diexter G 4400-57/IPDI/DMPA/DHSA DMPA/anionic emulsifier
DHSA/anionic polyol

0–4.5 (DMPA)
9.9 (DHA) 500–22,500 [78]

PCDL/CO/IPDI/DMPA/EDA/BD/THAM DMPA/anionic emulsifier 8.4–8.5 50–125 [79]
GLY-polyols/Voranol 4701/IPDI/DMPA DMPA/anionic emulsifier 5–10.8 [80]

PCD/PBA/IPDI/DMPA/HZ DMPA/anionic emulsifier 5 67–84 [51]
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Table 2. Cont.

WBPU Composition IEN (Designation/Nature) IEC (% wt) PS (nm) Reference

PPG/IPDI/DPSA/BDSA DPSA/anionic-nonionic salt
BDSA/anionic salt

(R:DPSA/BDSA)
R:2/10–8/10

(DPSA + BDSA) = 5%
190–320 [81]

PBA/DHA/IPDI/MDI/HDI DHA/anionic polyol 28–45 DHA 90–125 [37]

PTMG2000/PTMEG1000/IPDI/DMPA/SAAS/ HZ DMPA/anionic emulsifier
SAAS/anionic chain extender

0.2–0.4 (DMPA)
0.4–0.6 (SAAS) 800–3000 [44]

PET/PPG/IPDI/DMPA/BD DMPA/anionic emulsifier 5–10 - [82]
PPG/IPDI/DMPA/TMPM/BD/EDA/AEAPTMS/APTES DMPA/anionic emulsifier 4 - [83]

Polypropylene glycol (PPG); toluene diisocyanate (TDI); dimethylol propionic acid (DMPA); poly(1,4-butylene adipate) diol (PBA); poly(1,3-butylene adipate) diol (PMA); poly(oxytetramethylene) glycol (PTMG);
isophorone diisocyanate (IPDI); 4,4′-dicyclohexylmethane diisocyanate (H12MDI); 4,4′-diphenylmethane diisocyanate (MDI); 1,4-butanediol (BD); trimethylolpropane (TMP); hydrazine hydrate (HZ); polyethylene
glycol (PEG); sodium 2,4-diaminobenzenesulfonate (SDBS); methoxylated sunflower oil polyol (DHA); maleopimaric acid-based polyester polyol (MPP); hydrophilically modified polyisocyanate (Bayhydur®

3100 polyisoc); phosphorylated polyol (Phospol); 1,6-hexanediol (HDO); 3-aminopropyl-triethoxysilane (APTES); polypropylene oxide (PPO); 2,2-dimethylolbutanoic acid (DMBA); sodium dodecyl sulfate (SDS);
1,6-hexamethylene diisocyanate (HDI); L-lysine (LYS); maleated cottonseed oil-based polyol (MAHCSO); aliphatic dihydrazides (DHZ); pyromellitic dianhydride (PMDA); 3,3′,4,4′-benzophenone-tetracarboxylic
dianhydride (BPOTCDA); 4,4′-hexafluoroisopropylidine-diphtalic anhydride (HFIPDA); poly(ε-caprolactone) (PCL 2000 g/mol); N,N-bis(2-hydroxyethyl)-2-amino ethane sulfonic acid sodium salt (BES);
cardanol epoxy polyol (CE); ethylene diamine (EDA); polyester diol (Oxymer M112); synthesized diester diol (antimicrobial agent) (SynDD); 1,6-hexamethylene diamine (HMD); castor oil (CO); linssed oil
based fatty acid polyol (FA); L-lysine derivative diamine of gemini quaternary ammonium salt (GQAS); ethylene glycol diglycidyl ether (EGDE); N-methyldiethanolamine (MDEA); hydroxylated tung oil
(HTO); polyether polyol (Poly-G 2056); dimer acid-based polyester polyol (Priplast 3192); polyester diol polyol (Diexter G 4400-57); palm oil based polyol from oleic acid (DHSA); polycarbonate diol T5652
(PCDL) (2000 g mol−1); 2-amino-2-(hydroxymethyl)-1,3-propanediol (THAM); glycerol-based polyols (GLY-polyols); polyether polyol (Voranol 4701); polycarbonate of 1,6-hexanediol (PCD); polyether diols
ionic/nonionic sulfonated salt (DPSA); ionic sulfonate salt diols (BDSA); sodium 2-[(2-amino ethyl) amino] ethane sulfonate (SAAS); polyethylene terephthalate (PET); trymethylol propane monooleate (TMPM);
3-(2-aminoethyl)aminopropyl)trimethoxysilane (AEAPTMS).
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The development of WBPU and WBPUU dispersions containing both types of internal
emulsifiers, i.e., nonionic and ionic types simultaneously, has gained attention to obtain
films with improved and balanced properties by combining the beneficial advantages
provided by each emulsifier. For example, Yen and co-workers [23] synthesized cationic-
nonionic WBPU by incorporating poly(ethylene oxide) (PEO) as side-chains acting as
the nonionic moiety, and MDEA as the cationic one. Considering that the addition of
PEO into the polymeric chains could improve specific parameters such as the hydrophilic
character, the conductivity, and phase-mixing of soft and hard segments, these materials
were tested for fabric coating applications. Therefore, cationic-nonionic polyurethanes
with PEO side-chains of different lengths were prepared. The application to coat nylon-
based fabrics was investigated in terms of waterproof capacity, antiyellowing effect, and
water vapor permeability properties, a strategy that revealed promising results. Li and
co-workers [84] developed another cationic-nonionic WBPU product using a synthesized
nonionic segment (polyoxyethylene alkyl amine, PAE) containing poly(ethylene glycol)
(PEG) and MDEA (cationic emulsifier), following a specifically designed reaction sequence
to locate the cationic groups in the SS phase, and have analyzed the effect of chain terminal
ions in the WBPU final properties. They found that the used strategy can tailor the
particle size of the dispersions, promoting their efficient packing, which was a decisive
parameter in achieving high solid content products while holding low viscosity values.
In another work, Lijie et al. [85] have developed anionic-nonionic WBPU dispersions
based on the principle that the critical micelle concentration, and the surface tension,
can be reduced by using ionic and nonionic surfactants, whose combination improves
their efficiency [86]. This assumption was the basis for the synthesis of stable WBPU,
characterized by high solids content and water resistance but requiring low hydrophilic
monomers concentrations. In this work, nonionic PEG of different molecular weights and
anionic DMPA were combined through different synthesis schemes to prepare several
WBPUs, being observed that the suitable combination of both emulsifier components, even
at low contents, resulted in stable dispersions. Anionic groups promote the formation
of the electrical double layers contributing to the electrostatic repulsion effect among
particles [87], whereas nonionic hydrophilic segments could reduce the interfacial tension
and thus facilitate the dispersion formation.

The importance of using biobased reactants in green synthesis routes of WBPU and
WBPUU dispersions has also driven the attention to the field of emulsifier agents. For
example, Bahadur and co-workers [68] developed a biodegradable elastomeric WPUU dis-
persion using lysine holding a double function, i.e., as the internal emulsifier and the chain
extender, avoiding the use of petrochemical-derived internal emulsifier reactants. With
the same purpose, but following an alternative approach, Kumar and Palanisamy [69,70]
developed a vegetable oil-based polyol characterized by presenting hydroxyl and carboxyl
groups in the triglyceride backbone for further use in the preparation of anionic WBPU
and polyurethane-imide dispersions, conforming a DMPA-free synthesis strategy. For
this purpose, a synthetic esterification route was designed by modifying the hydroxylated
groups of cottonseed oil with maleic anhydride. Additionally, Omran and co-workers [64]
synthesized an alternative carboxyl containing polyol prepared by the methoxylation and
saponification of sunflower oil, which was later used to synthesize WBPU dispersions. Aim-
ing to summarize the diverse type of structures that can be designed in the development
of WBPU and WBPUU particles, Figure 5 includes a scheme of the most representative
architectures based on the described approaches.
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5. WBPU and WBPUU Added with Renewable Additives

Despite the great variety of specifications offered by WBPU and WBPUU based
products, e.g., composites, the enhancement of some specific properties is an important
strategy having in view certain applications. Based on this fact, the incorporation of
renewable additives, like water-dispersible nanoentities, which contribute to reinforce the
environmentally-friendly character of WBPU and WBPUU dispersions, is presented as a
suitable opportunity to face this challenge. Therefore, a brief overview of different examples
will be performed in the next sections, focusing on the available nanoreinforcements,
incorporation routes, and processing methods. Moreover, the capability to modulate the
final properties of the materials through these strategies will be highlighted.

5.1. WBPU and WBPUU Added with Nanocellulose

WBPU and WBPUU dispersions’ hydrophilic character facilitates the addition of water-
dispersible nanoentities, promoting their incorporation through simple routes. Among
others, nanocelluloses, in the form of nanofibers (CNF), and nanocrystals (CNC), also
known as nanowhiskers (CNW), constitute attractive reinforcements bringing to the ma-
terials where they have been incorporated biodegradability, recyclability, renewability,
and biocompatibility [88]. Their high specific modulus (modulus/density) makes them
attractive to provide enhanced mechanical properties to the reinforced composites [89].
Nanocelluloses are formed by cellulose, a renewable polymer composed of D-glucose
units linked by β-(1,4) glycosidic bonds, as shown in Figure 6 assembled in hierarchical
structures by hydrogen bonding interactions.

Nanocellulose, both CNF and CNC, was used in several works, including the incorpo-
ration into WBPU and WBPUU, generally resulting in the enhancement of the mechanical
behavior in terms of modulus and stress values. Namely, the effective CNF addition to a
WBPU (10 wt.% of CNF) favored the increase of the tensile strength up to 61% compared to
the neat WBPU [90]. In the case of CNC incorporation into a WBPU matrix, an amount of
just 1 wt.% of this nanoreinforcement was able to improve the tensile strength value up to
125%, doubling the modulus value of the matrix [91].
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Different strategies can be employed regarding the nanoreinforcement incorporation
route to achieve an effective dispersion of the nanocellulose into the WBPU or WBPUU.
For example, Santamaria-Echart et al. [92] analyzed two strategies for the addition of
cellulose nanocrystals (CNC) to a WBPU. These include the addition and homogenization
by sonication after WBPU synthesis, and in situ routes where the CNC were incorporated
during the synthesis process dispersed in the water phase used in the dispersion step. The
morphological analysis showed that the CNC assumed different dispositions in the matrix,
being partially embedded in the WBPU nanoparticles in the case of in situ strategy, thus
leading to different thermal, mechanical, and hydrophilic behavior. de Oliveira Patricio
et al. [93] also analyzed different incorporation routes of CNC to a WBPU, namely during
the dispersion step after prepolymer synthesis, or mixed in the polyol in the prepolymer
synthesis step. They concluded that the hydrogen bonding ability between the CNC
and the WBPU was influenced according to the step where they were incorporated. The
established levels of interactions can control the morphology and the interfacial adhesion
that define the mechanical properties.

In terms of processability, Li et al. [94] prepared mats using an alternative process to
film casting. The process comprised filtering a bleached eucalyptus Kraft pulp slurry into a
cupreous mesh followed by immersion into a WBPU dispersion, and then by drying. Final
composites with improved thermomechanical properties were obtained.

Guo-Min et al. [95] prepared thermoset nanocomposites based on a two-component
waterborne polyurethane (2K-WBPU) and CNC. The addition of CNC promoted their
interaction with the 2K-WBPU matrix, forming a rigid nano-phase acting as crosslinking
points in the polymer matrix, enhancing mechanical properties and thermomechanical
stability of the nanocomposites. Zhao et al. [96] showed that adding just 1 wt.% of CNC to
a WBPU could improve the tensile strength up to 15%. Furthermore, the nanocomposites’
anti-felting effect in wool samples showed an area-shrinking reduction from 5.24 to 0.70%,
values determined using a machine-washable technical standard, thus corroborating their
great potential in the field of textile applications. Therefore, nanocellulose becomes an
attractive renewable nanoreinforcement for the preparation of WBPU composites.

5.2. WBPU and WBPUU Added with Starch

Starch (St), a natural hydrophilic polymer composed of amylose and amylopectin
(Figure 7), is an alternative to cellulose. Starch results in an appealing option in terms of
renewability, versatility, availability, and low cost, mainly due to its biodegradability [97],
which is of high interest for applications that need to fulfill biodegradation requirements.
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In this context, starch was used to provide, or enhance, those particular properties in
the WBPU and WBPUU, configuring an attractive eco-friendly alternative. For example, Lee
and Kim [98] synthesized a WBPU incorporating vinyltrimethoxysilane (VTMS) modified
starch covalently bonded to the polyurethane chains. They observed that the miscibility
of both components and the biodegradability of the material, which was compared with
a just blended WBPU-starch system, was improved. With this purpose, after obtaining
the WBPU dispersion, the VTMS modified starch was incorporated, and the mixture
homogenized for the future addition of a photoinitiator. The resultant mixture was cast
and cured by UV radiation, resulting in a multifunctional crosslink network structure. The
effect of St in the biodegradability process was extensively analyzed using an amylase
solution (enzyme capable of catalyzing the breakdown of starch structure into sugars) in
a buffer solution. Results showed that when using the amylase medium, the samples’
weight loss was higher than the starch amount presented in the system, implying that
the formed network containing St induced the degradation of the polyurethane chains.
In the case of WBPU-starch blends, the weight loss was equivalent to the blended St,
indicating that it was degraded without promoting the WBPU matrix’s biodegradation.
Travinskaya et al. [99] also incorporated St into a WBPU dispersion during the synthesis
process (WBPU/starch). The prepolymer dissolved in acetone was dispersed in a water
phase containing starch, resulting in the combination of the chain extension and dispersion
stages. An alternative strategy was also designed by preparing mechanical mixtures
(WBPU + starch) for comparison purposes. In this case, the starch in the form of an
aqueous solution, was added to the already synthesized WBPU dispersion. It was observed
that the WBPU/starch method ensured the chemical and physical interaction between
the WBPU matrix and the starch, enhancing the stability to aggregations and the film-
forming ability, whereas, in the mechanical mixtures, the intermolecular interactions of
each component prevailed. Regarding the film’s biodegradability, the adhesion capacity
of microorganisms (Bacillus subtilis) to the film’s surface was evaluated. Results showed
that samples containing starch incorporated during the synthesis process presented higher
biodegradability than the matrix alone. This fact implied that these samples biodegraded
as an entire system, unlike the ones prepared by the mechanical mixture. Furthermore,
WBPU/starch samples resulted in systems more susceptible to alkaline and acid hydrolysis
than the base WBPU matrix. Thus, the work showed the possibility of synthesizing
degradable WBPU based on renewable starch polysaccharides.

Apart from biodegradability, starch-based systems can also enhance other properties
such as the mechanical behavior of films, as evidenced by Zou et al. [100] in a representative
work where, by acid hydrolysis, starch nanocrystals with a distinct platelet-like (similar to
exfoliated silicate) were isolated and incorporated into a WBPU. These specific nanocrystals
morphology allowed their addition up to 30 wt.% resulting in an enhancement of the
Young’s modulus around 67-fold compared with the WBPU matrix. When 10 wt.% of
starch nanocrystals were added, the most significant enhancement in the strength and
Young’s modulus, in comparison with the base matrix, was 1.8 and 35.7, respectively. This
effect was due to the enduring and effective stress transfer observed in the nanocomposites,
attributable to the strong starch nanocrystals-WBPU interactions.

5.3. WBPU and WBPUU Added with Chitosan

Chitosan (Cht), a chitin derivative, is a biopolymer characterized by presenting non-
toxicity, biocompatibility, biodegradability, and low cost [101]. To obtain chitosan, chitin, a
polysaccharide present mainly in the exoskeleton of crustaceans and other invertebrates,
is subjected to a deacetylation treatment (Figure 8). When a deacetylation degree (DD) of
around 50% is reached the product is considered as chitosan, a polymer that is soluble in
acidic media [102].
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Due to its characteristics, chitosan is widely employed in materials focusing on antimi-
crobial applications and in medicine. Thus, chitosan incorporation into WBPU and WBPUU
dispersions mainly focus their application in these research areas. El-Sayed et al. [103]
synthesized WBPU using chitosan of different molecular weights as chain extenders. With
this purpose, the chain extension step was carried out during the phase inversion step by
adding dropwise a chitosan solution prepared using 1% of acetic acid. Then, acrylic fabrics
were treated with the prepared dispersions and analyzed concerning their antimicrobial
properties envisaging their use as blankets or carpets in hospitals. Results showed the
effective antimicrobial activity of the fabrics, which remained unchanged after 15 washing
cycles. Bankoti et al. [104] prepared hydrogels by blending WBPU and chitosan to obtain
dried scaffolds, which were later crosslinked using a sodium tripolyphosphate solution.
The WBPU/Cht blend becomes self-organized in a macroporous structure after the dry-
ing stage, facilitating protein adsorption and improving scaffolds’ stability in aqueous
enzymatic environments, which make viable their use in biological media. The hydrogels
presented good cytocompatibility, hemocompatibility, and, in the case of some specific
compositions, pointed out for effective biocompatibility when tested as biomaterials for
wound healing applications.

Considering the significant variability of the entities used as reinforcements or ad-
ditives, their preparation method, and the incorporation route for their addition, several
factors can influence the generated materials’ final behavior. To get some insights into this
variability, Table 3 summarizes different approaches used in the preparation of the rein-
forcements, subsequent incorporation route in the WBPU and WBPUU, and their derived
composites and blends.
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Table 3. WBPU and WBPUU reinforced with renewable entities, their preparation method, and effect on final properties of the derived materials.

Renewable Entities Preparation Method Properties of WBPU and WBPUU Derived Materials Reference

Eucalyptus CNC (0–5 wt.%) Acid hydrolysis (65 wt.% H2SO4)
Low Eucalyptus CNC contents considerably increase film’s tensile strength and Young

modulus values. The incorporation of Eucalyptus CNC favor the HS-SS
microphase separation.

[91]

CNC from microcrystalline cellulose (MCC)
(0–100 wt.% of CNC) Acid hydrolysis (64 wt.% H2SO4, 45 ◦C; 45 min)

Chiral nematic structured CNC/WBPU films were prepared with iridescent coloration
that varied with composite composition. Films presented rewritable and tunable photonic

properties with a fast responsive ability (solvent polarity and humidity).
[105]

Regenerated cellulose nanoparticles (RCN) from
MCC (0–5 wt.%)

MCC dissolved in NaOH 7% and urea 12% solution.
Addition of deionised water and centrifugation for

separating the RCN and ultrasonicated

The addition of RCN increases the storage modulus and improves mechanical and
thermal properties, being greater the effect at higher contents. The degradation of the

nanocomposite films via enzymatic hydrolysis was improved with RCN addition.
[106]

Cotton cellulose nanofibrils (CNF) (0–20 wt.%) CNF acid hydrolysis (64% H2SO4; 45 ◦C; 90 min),
centrifugation and dialysis

Addition of CNF up to 10 wt.% considerably improve nanocomposite film’s tensile
strength. The relative humidity of the systems can modify the mechanical properties

CNF interact with the SS of the matrix, increasing the Tg and decreasing the crystallinity
of the SS.

[90]

CNC from sisal fibres (0–10 wt.%)

Fibres mixture with ethanol/toluene solvents
mixture for removing extractives. Alkali treatment

(7.5 wt.% NaOH; 90 min) for removing
hemicellulose and lignin. Acetylation treatment
(HNO3 + acetic acid; 30 min). Acid hydrolysis

(H2SO4 64 wt.%, 45 ◦C, 45 min)

CNC act as nucleating agent of polyurethane SS, and enhance the mechanical properties
(Young modulus) of the nanocomposite films, maintaining high elongation values. [107]

CNC (0–1 wt.%) MCC acid hydrolysis (64 wt.%; 45 ◦C; 2 h),
centrifugation, dialysis

CNC showed strong interfacial interactions with the WBPU matrix. The nanocomposites
were employed as finishing agents in wool fabrics, resulting in greater tensile strength

and decreasing area-shrinkage rate (potential in the textile field).
[96]

CNC from Eucalyptus kraft wood pulp (0–1 wt.%) Acid hydrolysis (64 wt.%; 50 ◦C; 50 min),
centrifugation, dialysis

CNC incorporation route controlled the WBPU-CNC interaction degree, conditioning the
phase separation of the segments, morphology, interfacial adhesion, and mechanical

properties of the final composite films.
[93]

CNC from MCC (0–3 wt.%) Acid hydrolysis (64 wt.% H2SO4; 45 ◦C; 30 min),
centrifugation, dialysis

The different incorporation routes of CNC to the WBPU, lead to different dispositions in
the matrix, tailoring thermal, mechanical, and hydrophilic behavior, providing a suitable

stress transfer in the nanocomposite films.
[92]

Starch nanocrystals (StNC) from Pea starch
(35/65 amylose/amylopectin) (0–30 wt.%)

St acid hydrolysis (3.16 M H2SO4; 40 ◦C; 10 days),
centrifugation, washed with distilled water

The incorporation of StNC to WBPU led to an increase in the mechanical strength and
Young modulus (E) (optimum composition 10 wt.%) due to the effective interface for the

stress transfer in the nanocomposite films. At higher StNC contents E value was
enhanced although lower strength values were observed due to self-aggregation of StNC.

[100]

StNC from waxy maise St
Cellulose whiskers (CW) from cotton linter pulp

St acid hydrolysis (3.16 M H2SO4; 40 ◦C; 5 days),
centrifugation and freeze-dried

Cellulose acid hydrolysis (30 % (v/v) H2SO4; 60 ◦C;
6 h) centrifugation, dialysis and freeze-dried

The combined incorporation of StN and CW to the WBPU originated a synergistic effect
in the nanocomposite films. The nanofillers’ different morphology and the strong

hydrogen bonding interactions, among them and with the matrix, were reflected in strong
networks with enhanced mechanical and thermal properties, compared with the matrix.

[108]

Vinyltrimethoxysilane (VTMS) modified St Modification of St (HCl at pH 2; 60 ◦C) hydrolysis of
VTMS and condensation between VTMS and St

VTMS modified St was incorporated covalently to the WBPU, enhancing the mechanical
behavior and biodegradability of nanocomposite hybrid films in α-amylase solution even

comparing with VTMS modified St/WBPU blending systems, due to the effective
anchoring of the reinforcement and being those effects more notable in WBPU covalently

attached systems.

[98]
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Table 3. Cont.

Renewable Entities Preparation Method Properties of WBPU and WBPUU Derived Materials Reference

High amylose content (80/20
amylose/amylopectin) Corn St (Gelose 80)

St/WBPU blends: 90/10; 80/20; 70/30;
60/40; 50/50

Gelatinisation of St by mixing with glycerol (St/gly
80/20 wt.%) in a microwave reactor (140 ◦C, 15 min,

pressure 700–800 kPa)

WBPU and the glycerol plasticized high amylose starch (HAGS) were compatible and
influenced by the physical entanglement and hydrogen bonding interactions in the
prepared films. The increase of WBPU ratio led to higher flexible and hydrophobic

materials. Some compositions presented water repellency, transparency, and mechanical
properties similar to LDPE systems, offering great potential as biodegradable

packaging materials.

[109]

Corn St (0–30 wt.%) (different incorporation routes) St gellification (90 ◦C, 20 min)

The preparation method of WBPU/St dispersions led to chemical and physical
interactions, differing from conventional blends and enhancing the films’ degradation
ability. Furthermore, the adhesion of microorganisms (B. subtilis) to the surface of the

films was enhanced, as well as the susceptibility to alkaline and acid hydrolysis compared
with the matrix.

[99]

Cht from crab shell (degree of deacetylation ≥ 75%) Synthesis of the WBPU chain extended with Cht (in
water/acetic acid solution)

WBPU-Cht dispersions were applied in acrylic fabrics by the pad-cure method using the
Cht as finishing agents. The fabrics showed improved antibacterial behavior with the

incorporation of Cht, being the effect more significant with the increase of Cht molecular
weight. The treated acrylic fabrics are suitable for the manufacture of blankets and

carpets for hospitals.

[103]

Cht (50,000 g mol−1)
Synthesis of the WBPU chain extended with Cht

(dissolved in DMSO and BD)

WBPU-Cht dispersions were applied in acrylic fabrics by the pad-dry-cure method.
Chitosan-based dispersions improved the tensile strength and crease recovery of the

fabrics, also presenting contact-active. The dispersions are presented as multifunctional
finishing textile coatings with antibacterial properties

[110]

Cht WBPU chain extended with Cht (dissolved in 1% of
acetic acid)

WBPU-Cht dispersions were applied in cotton/polyester fabrics by the pad-cure method
providing remarkable improvement in the antibacterial activity, being presented as

antimicrobial finishing coating agents with potential application in polyester/cotton
textiles.

[111]

Cht (deacetylation degree > 90%) Cht and WBPU blends

WBPU-Cht blends were employed for the preparation of hydrogels by macroporous
structure on drying. The hydrogels presented improved stability in the aqueous and

enzymatic environment, favoring their resistance to biological environments. They also
supported adhesion and proliferation of primary dermal rat fibroblast cells and

biocompatibility on subcutaneous implantation, being promising materials as wound
healing dressings.

[104]

Chitosan from shrimp shells (deacetylation
degree ≥ 75%)

Cht hydrophobically modified by
isocyanate-terminated polyurethane prepolymers

copolymerising them through grafting over the
chitosan chain

Preparation of hydrogels and lyophilised hydrogels; both presenting sustained drug
release behavior and better biocompatible nature with 3T3 fibroblast cells compared to
pure chitosan. The hydrogels exhibited promising potential in drug delivery and tissue

engineering applications.

[112]
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6. Processing Methods and Applications of WBPU and WBPUU

It is well recognized the easy film-forming ability of WBPU and WBPUU dispersions
by the conventional casting method. Nevertheless, their versatility provides the oppor-
tunity to use alternative processing techniques, namely electrospinning or 3-D printing,
conferring to dispersions the potential to be employed in advanced applications aside
from the common uses as adhesives paintings or coatings. Among others, the possibil-
ity of processing 3-D interconnected porous scaffolds by freeze-drying is an attractive
strategy to prepare materials with adapted properties. Tailoring the porous diameters
can provide a way to modulate the adhesion and proliferation of human cells focused on
tissue-engineering applications [113]. The freeze-drying method can also be employed
to prepare hydrogels, as showed by Wang et al. [114]. After synthesizing the WBPU
dispersion, mixtures with poly(vinyl alcohol) (PVA) were prepared and freeze-dried to
obtain WBPU/PVA composite hydrogels, which were extensively analyzed, outlining their
applicability in the field of wound dressings in medical devices.

The use of PVA, or other similar polymers such as PEO, facilitates the spinnability of
WBPU dispersions by electrospinning technique allowing the preparation of mats. These
polymers act as polymer templates enabling nanofibers’ formation with subsequent PEO
extraction if needed, resulting in WBPU mats [115]. Yang et al. [116] prepared WBPU/PVA
mats observing that the polymer concentration and weight ratios influenced the electro-
spinnability and morphology of the electrospun mats, which presented, in general, high
water-uptake values, having potential for wound dressing applications. Other electrospun
WBPU/PVA mats were prepared by Wu et al. [117]. In this case, modulation of nanofiber
diameters by changing the WBPU/PVA ratio was attempted, giving rise to interconnected
porous structures, similar to those found in natural extracellular matrices. Biodegradability,
non-toxicity, and biocompatibility of the electrospun mats were also improved, facilitating
the attachment and proliferation of cells, making them attractive biomaterials for natural
tissue repair applications. It is worth noting that this processing method also allows the
incorporation of nanoentities, and thus of nanocomposites preparation. For example, in
previous works developed by Santamaria-Echart et al. [118], mats with incorporated cellu-
lose nanocrystals were prepared by electrospinning, being observed that their content and
incorporation route could tailor the morphology of the fibers and surface properties of the
mats. To put in evidence the wide range of processing methods (after their synthesis) that
can be applied with WBPU and WBPUU, and application fields, a set of examples have
been summarized in Table 4.
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Table 4. Processing technique of WBPU and WBPUU systems and their applicability.

WBPU or WBPUU System Reinforcement Processing Technique Application Reference

PUU
(PCDL/IPDI/MDEA) containing

N,N-dihydroxyethyl azobenzene chromophore
- Coating onto cotton fabric (coating technique)

Dual-responsive cotton fabric coating (acid
condition and UV radiation) for

professional garments
[119]

PU
(PEG/PPG/TDI/DMPA/EG) - Films by casting Adhesives on PVC and leather substrates [120]

PU or PUU
(PCL/IPDI/DMPA/MDEA/EDA) - Nanoparticles powder and films by casting

Potential therapeutic application in
anti-inflammation and macrophage disorders,

and as implanted materials
[121]

PUU
(PCL/PEG/IPDI/BD/LYS) 3-Dimensional porous scaffolds (freeze-drying) Soft tissue engineering [113]

PU
(PCL/IPDI/DMPA/DB)

CNC (1, 3 wt.%) and PEO (10 wt.%) as
polymer template (then is removed) Mats by electrospinning Membranes [118]

PU
(PBA/IPDI/DMPA/BD)

PEO (15–50 wt.%) as polymer template
(then is removed) Mats by electrospinning Membranes [115]

PUU
(PCL/PEG/LDI/PD/LYS) PVA (blends 0–100 wt.%) Mats by electrospinning Biomaterial for tissue engineering [117]

Commercial PU
(Lubrizol Advanced Materials) Chitosan (85% DA) (5–15 wt/%) Mats by electrospinning Nanofiber filters for air pollution (i.e., air filters

and face masks) [122]

PUU
(PVA/PBA/TMXDI/DMPA/EDA) PVA (blends 0–100 wt.%) Mats by electrospinning Potential application in wound dressing [116]

PU
(PTMG/HMDI) Chitosan (DA ≥ 75%) Lyophilised chitosan-based hydrogels modified

with PU (10 and 15% of grafting) Drug delivery and tissue engineering [112]

Commercial PU
(Sigma-Aldrich) Chitosan (DA > 90%) (0–100 wt.%)

Hydrogels scaffolds formed by self-organised in
a macroporous structure drying at

room temperature
Wound regeneration and healing [104]

PUU
(Polyether polyols/MDI/DMPA/EDA) PVA (blend 0–100 wt.%) Hydrogels by freeze-drying Potential application in wound dressing in

medical devices [114]

PU Cellulose paper sheet, CdTe nanocrystals
quantum dots, carbon dots

Cellulose-based papers (films prepared by
dip-coating and casting)

Self-healing luminescent composites for
light-emitting materials [123]

PU
(PEG/IPDI/DMPA)

Chitosan as chain extender (Mn 1,000,000
or 150,000 g·mol−1)

Immersion of the acrylic fabrics in the
PU dispersion

Finishing agent (with antibacterial properties) for
acrylic fabrics [103]

CO/HMDI/Cellulose acetate Cellulose acetate (Mn 29,000 g·mol−1;
40% acetyl groups)

Modification of cellulose with HMDI and
posterior reaction with CO (1:1 wt ratio).
Samples were prepared by spreading the

adhesive over the substrates

Adhesives for wood, stainless steel, polyethylene,
and polyester fabric substrates [124]

PUU (PCL/PDLLA/IPDI/DMPA/EDA)
Forkhead box 3D (Fox3D) (transcription
factor and neural crest stem-like cells),

and cells

PU hydrogel extruded trough syringe needle
3D bioprinting

Tissue engineering (neuroregeneration or further
developed as mini-brain for research and drug

screening)
[125]

PU
PEDL218/IPDI/DMPA/BD/MDEA - Films by casting Fibre-reinforced bulletproof composites for

ballistic protection applications [126]
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Table 4. Cont.

WBPU or WBPUU System Reinforcement Processing Technique Application Reference

PU
PEG/HDI/DMPA/DEG 10–25 wt.% LiTFSI Films preparation by casting All-solid-state lithium-ion batteries [127]

PU/Chitosan
(deacetylation degree 85%) AgNPs (0–0.034%) Membranes by electrospinning Dental barrier membranes [128]

PUU
(PCL/IPDI/DMPA/EDA) - Films by casting Paper sizing applications [129]

Commercial PU
(Leasys 5530) PU/CNC blends (0–100%) Films by casting or spread onto a glass slide Rewritable photonic paper/ink promising in

sensors, displays and photonic circuits [105]

PU
(PTMG/HO-PDMS/IPDI/DMPA/BD/HEA/ APS)

Polydimethylsiloxane (HO-PDMS)
(3, 6, 8 and 10 wt.%) Films by casting Waterproof coatings [130]

PU
(PEG/IPDI/DMPA/BD) Chitosan as a chain extender Dispersions applied to dyed and printed

poly-cotton fabrics by the pad-dry-cure method
Antibacterial textile finishing agent for

poly-cotton fabrics [110]

PUU
(PCL/PEG/LDI//PD/LYS) - Light-crosslinking films by casting Soft tissue engineering scaffolds for tissue repair

and wound healing [2]

PU
(PPG/IPDI/BD) - Films by casting Water-based ink binders [131]

PU
(PEG/IPDI/DMPA) Chitosan as a chain extender Immersion of polyester/cotton fabrics in WBPU

and squeezed between two stainless steel rollers
Antibacterial textile finishing agents for

polyester/cotton fabrics [111]

PU
(PCL/H12MDI/DMBA)

Acrylate (diacrylate or triacrylate) as
photo-curable initiator 3D-digital light processing (DLP) printing flexible 3D architectures for electronic or soft

robots flexible devices [132]

Polycarbonate diol (PCDL); isophorone diisocyanate (IPDI); n-methyldiethanolamine (MDEA); polyethylene glycol (PEG); polypropylene glycol (PPG); toluene diisocyanate (TDI); dimethylol propionic acid
(DMPA); ethylene glycol (EG); poly(caprolactone) glycol (PCL); ethylene diamine (EDA); 1,4-butanediol (BD); L-lysine (LYS); poly(1,4-butylene adipate) diol (PBA); L-lysine ethyl ester diisocyanate (LDI);
1,3-propanediol (PD); poly(vinyl alcohol) (PVA); tetramethylxylene diisocyanate (TMXDI); poly(tetramehylene) glycol (PTMG); 1,6-hexamethylene diisocyanate (HMDI); 4,4′-diphenylmethane diisocyanate
(MDI); castor oil (CO); poly (D,L-lactide) diol (PDLLA); polyester diol (PEDL218); hexamethylene diisocyanate (HDI); diethyleneglycol (DEG); polydimethylsiloxane (HO-PDMS); 2-hydroxyethyl acrylate (HEA);
ammonium persulfate (APS); poly(caprolactone) glycol (PCL); 4,4′-dicyclohexylmethane diisocyanate (H12MDI); 2,2-dimethylolbutanoic acid (DMBA).
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7. Current Regulation of WBPU and WBPUU Dispersions

In the last twenty years, the European Union has made significant efforts to promote
the use of safe and sustainable chemicals, increasing the protection of human health and the
environment against hazardous chemicals. Thus, the European Commission has adopted a
chemical strategy for sustainability as a starting point towards a toxic-free environment.
This strategy arises from the carried out European policy of the last two decades, in what
concerns the chemicals regulation. Since 2004 several Regulations and Directives have
imposed restrictions on a wide array of conventional chemical products used in various
industrial processes and products, leading the industry and the scientific community to
search and develop new friendly alternatives. In this context, the WBPU and the WBPUU
materials appeared to be interesting and viable alternatives, once they can be produced by
green processes and contain low amounts, or even be exempt, of organic solvents, beyond
having custom-made properties, which make them one of the most versatile polymeric
materials [46]. Despite this, the used chemical systems and processes have also been
limited by the European Regulations. Firstly, the Registration, Evaluation, Authorization,
and Restriction of Chemicals (REACH) Regulation (EC) 1907/2006 [133], demanded the
registration of all chemical substances, products, and mixtures of the European Union,
European Regulation 1907/2006 [133]. After, based on the gathered information and
the criteria of article 57 of the REACH Regulation, a candidate list of substances of very
high concern (SVHCs) was elaborated, Commission Regulation 1272/2008, [134], which
was periodically updated, in the last years, by the European Chemicals Agency (EChA).
Among the listed substances, the ones classified as carcinogenic, mutagenic, and toxic for
reproduction (CMTR) are divided into two categories, 1A and 1B, depending on the level
of concern and the need for a special authorization from EChA to be imported, used or
commercialized. The maximum content allowed in mixtures and final products was also
established, following the intended final application.

Analyzing the components of the WBPU and WBPUU base chemical systems, several
restrictions and limitations are identified from the perspective of the legal impositions.
Components such as the diisocyanates, the di-substituted tin-based catalysts, some of
the diamines used as chain extenders, or the co-solvent N-methyl-2-pyrrolidone, NMP,
have been restricted due to their classification (Table 5). Presently, the diisocyanates are
strongly limited due to their respiratory and cutaneous highly sensitizer character, leading
to chronic diseases after prolonged exposition. Recently, from August 2023 onwards, it
was established that diisocyanates would be only allowed, in final products or mixture,
in its free form (unreacted) in contents lower or equal to 0.1% (w/w), according to the
Commission Regulation 1149/2020 [135]. Additionally, the industrial or professionals
must complete training on the safe handling of diisocyanates before their use. For the
diamines-based chain extenders, hydrazine was classified as carcinogenic in 2011 by
the Commission Regulation 1272/2008 [134], being its usage forbidden once there are
other friendly equivalent alternatives as 1,6-hexamethylene diamine or ethylenediamine.
However, ethylenediamine was also recently pre-registered on the SVHCs list due to its
respiratory sensitizing properties, EChA Report in 2018, [136] being expected to increase,
in a near future, the maximum allowed unreacted content.

Regarding the content of the co-solvent NMP, it is already limited to a maximum
value of 5% (w/w) in final products since 2015 onwards, according to the Commission
Regulation 1272/2008 [134], being recently lowered to 0.3% (w/w) due to the NMP high
toxicity referred to the Commission Regulation 588/2018, [137]. From an overall analysis
of the WBPU and WBPUU base chemical systems legal framework, an increase of the
raw-materials restrictions is foreseen for the next years, implying a constant need for
research and development of friendly alternatives or even synthesis processes adaptation.
Nevertheless, it is important to mention that these restrictions are relative to the pure
raw material components and their presence in mixtures, thus not valid for final products
where they are fully reacted, meaning that these compounds can be used as raw materials
after the proper REACH authorization.
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Analyzing the European legal impositions from the final application field perspective,
specific Regulations are applied. When considering the WBPU and WBPUU as coatings
and paints, their application is ruled by the Directive 2004/42/CE [138], which imposes
limits for volatile organic compounds emissions, which are established based on the
product type, e.g., paints (30–750 g/L), and coatings (140–840 g/L). For indirect food
contact, and according to the information summarized in Table 5, restrictions such as
specific migration limits for internal emulsifiers and chain extenders are imposed by the
Commission Regulation 10/2011 [139], which was updated by the recent Commission
Regulation (EU) 1245/2020 [140]. In the case of applications where direct human contact
is inherent, such as footwear, textile, or accessories, Regulation 1513/2018 [141] restricts
the presence of NMP in the final product to 0.3% (w/w). Concerning WBPU and WBPUU
materials in medical applications, more restrictive criteria are considered. Namely, this is
reflected by the Regulation 745/2017 [142] on Medical Devices, which imposes excluding
materials in medical applications based on the endocrine-disrupting chemicals and CMR,
if safer alternatives are available. Within this scope, these substances can only be present
in medical materials at contents equal or lower than 0.1% (w/w) if their use is justified
by fulfilling all the specific criteria defined in Annex I of the regulation, which includes
biocompatibility and cytotoxicity studies. It is worth to mention the actual struggle of the
medical materials area on the replacement of PVC-based products due to the presence of
additives classified as endocrine-disrupting chemicals. Within this context, the WBPU and
WBPUU based materials are considered feasible and attractive alternatives due to their
ecofriendly character associated with their higher performance technical properties.

Table 5. Examples of typical WBPU and WBPUU raw materials restrictions and levels according to the actual
European legislation.

Component Level of Restriction Regulation/Directive

Diisocyanate

4-4′-Dicyclohexylmethane
diisocyanate 1 mg/kg in final product expressed

as isocyanate moiety
Commission Regulation

1149/2020 [135]Isophorone diisocyanate
4,4′-Diphenylmethane diisocyanate

Polyol

Polycaprolactone

Without limitations -Polyethylene glycol
Polypropylene glycol

Polytetramethylene ether glycol

Catalyst Dibutyltin dilaurate 1 mg/kg in final product expressed
as dibutyl

Regulation (EC) No
1907/2006 [133]

Stannous 2-ethylhexanoate Without limitations -

Internal
Emulsifier

Dimethylol propionic acid SML 1 = 0.05 mg/kg
Commission Regulation

10/2011 [139] 2

N-Methyldiethanolamine SML = 0.05 mg/kg Commission Regulation
10/2011 [139] 2

Neutralizing Agent Triethylamine 3 -

Chain
Extenders

Hydrazine monohydrate Not allowed Commission Regulation
1272/2008 [134]

Diethylenetriamine SML = 5 mg/kg Commission Regulation
10/2011 [139] 2

Ethylenediamine SML = 12 mg/kg 3 Commission Regulation
10/2011 [139] 2

Co-Solvent
Acetone Without limitations -

N-Methyl-2- pyrrolidone 3 mg/Kg in final product Commission Regulation
588/2018 [137]

1 Specific Migration Limit defined according to food contact Regulation (EU) No 10/2011; 2 Regulation (EU) No 10/2011 after amended by
Commission Regulation (EU) 2020/1245 of 2 September 2020; 3 Pre-registered on SVHC List, under evaluation.
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8. Conclusions

This work presents a general overview of the WBPU and WBPUU dispersions cover-
ing from introductory chemistry concepts and synthesis methods to the current legislation
and trends towards more sustainable systems. The progressive restrictions of the ac-
tual legislation to promote green chemistry and synthesis strategies are being addressed
through diverse approaches, including totally solvent-free synthesis methods, and specific
combinations or alternative internal emulsifiers. In this context, this review provides a
global overview of the actual pathways. The possibility of adding renewable entities
(nanocellulose, starch, and chitosan) to the WBPU and WBPUU dispersions was analyzed,
highlighting the enhancement of the systems’ environmentally-friendly character while
improving or conferring functional properties to the final products. Finally, the increased
interest in WBPU and WBPUU dispersion processing techniques (electrospinning or 3-D
printing) was also analyzed, considering the opportunity to broaden these systems’ ap-
plicability to advanced new products apart from their conventional uses in fields such as
adhesives, paintings, or coatings. The versatility in composition, properties, processing
and applicability of WBPU and WBPUU makes them promising materials that may evolve
to new fields needing novel and specific requirements. To be highlighted, the evolution
towards green systems, namely by the use of natural and biobased raw materials, as well
as by the adoption of sustainable synthesis routes, including totally solvent-free processes.
These strategies respond to high-service quality requirements such as mats for biomedical
and tissue engineering applications, textile coatings or finishing agents, and membranes
for pollution and purification approaches.
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