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Abstract: Construction of liquid crystal (LC) alignment by introducing polyimide (PI) to indium
tin oxide (ITO) electrodes is one of the main methods to realize high-resolution images in liquid
crystal displays (LCD). However, the loss of transmittance caused by the difference in refractive
index between ITO and PI leads to direct degradation of LCD performance. Thus, we herein
fabricated a functional hybrid PI alignment layer that reduces the difference in refractive index and
greatly increases the transmittance of the device by introducing inorganic titanium dioxide (TiO2)
nanoparticles (NP) to the organic PI. The highly refractive TiO2 NPs were surface-treated with stearic
acid comprising long alkyl chains to improve their dispersibility and uniformly dispersed in the PI
matrix by simply stirring the mixture. The hybrid PI mixture was spin-coated on the ITO substrate,
and the resulting LC cell exhibited excellent electro-optical properties. In addition, the reliability
of the LC cells was enhanced by the inclusion of the TiO2 NPs, which was confirmed through the
evaluation of voltage holding ratio, residual direct current, and LC cell reliability. Overall, functional
hybrid PI can be used in advanced display technology for next-generation LC devices that require
high transmittance and reliability.

Keywords: hybrid polyimide; liquid crystal display; reliability; TiO2 nanoparticle; transmittance

1. Introduction

Currently, the liquid crystal display (LCD) is widely used in various applications
such as smartphones, monitors, cameras, and other devices [1–3]. In order to drive the
device, the liquid crystal (LC) molecules must be controlled by the applied voltage [4,5].
In addition, a vertically aligned LC device with good display performance can only be
implemented when the initial orientation of the LCs is uniformly aligned. One of the most
important electro-optical properties of a LC-based display device is transmittance. For
this reason, indium tin oxide (ITO), a transparent electrode, is used as the electrode of the
display. The ITO electrode is used not only in LCDs but also in many displays such as
organic light emitting diodes (OLED) and quantum dot light emitting diodes (QLED) [6–9].
In addition, the alignment layer that determines the initial orientation of the LC is also
important, and the most commonly used material for this layer is polyimide (PI) [10–16].
The LC can be uniformly aligned along a desired direction through the interactions of
the LC molecules at the molecular level. However, the commonly used PI lowers the
optical transmittance of the device due to a mismatch in its refractive index with that of the
ITO substrate. In addition to the problem of the lowered transmittance, the electro-optical
properties of the device may be lowered due to the free ions generated by impurities during
the synthesis of the LC [17,18]. These free ions move between the electrodes and induce a
screening effect, thereby degrading the performance of the device [19].

Therefore, we herein propose a facile and effective method to capture the free ions in
LCs to suppress the screening effect while simultaneously increasing the transmittance of
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the device. Introducing stearic acid-treated TiO2 nanoparticles (NPs) into the PI polymer
can solve the problems presented above (Figure 1). The long hydrophobic alkyl chains
in the stearic acid improve the vertical alignment capability of the LC, which in turn
improves the controllability of the LC by the applied voltage. In addition, TiO2 has a high
refractive index of 2.6, and thus the optical transmittance of the device can be increased
by the closely matched refractive index of the PI layer (1.6) with that of the ITO substrate
(1.8). Moreover, the screening effect can be prevented because of the ability of the TiO2
NPs to trap the free ions of the LC [20–22]. The effects of the TiO2 NPs introduced into
PI were evaluated by using two sizes of NPs (15 and 300 nm) and different NP contents.
The functional hybrid PI layer was found to improve not only the optical performance
but also the reliability of the manufactured LC device. As mentioned earlier, LC-based
devices used in televisions and monitors must achieve the same performance even under
long-term operation. A problem of existing LCDs is the phenomenon of an image sticking
from long-term operation [23–27]. In addition to suppressing the screening effect and
preventing the generation of a residual direct current (DC) voltage, the introduced TiO2
NPs also maintained the vertical alignment ability of hybrid PI layer due to the effects of
the long hydrophobic alkyl chains of stearic acid. Improved electro-optical properties of
the device can be obtained by a simple mixing process, and thus the proposed method can
be implemented easily to produce a competitive alignment layer in displays requiring high
transmittance and reliability.
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2. Materials and Methods
2.1. Preparation of Functional Hybrid Polyimide Layer

Various levels of surface-treated inorganic TiO2 NPs (Cosmax, Seongnam, Korea) were
added to the organic PI in N-methyl-2-pyrrolidone (AL607XX, JSR, Tokyo, Japan) and then
stirred for 24 h at 25 ◦C. The sizes of the surface-treated TiO2 NPs were 15 and 300 nm and
the mass ratios of NPs to PI solution were 0.01, 0.05, 0.1, and 0.5 wt%. The NPs were well
dispersed in the PI solution due to the organic alkyl chains of stearic acid. The prepared PI
mixtures of each ratio were coated on the ITO substrates and then thermally cured at 200 ◦C
for 1 h. Thus, the functional hybrid PI alignment layer with a thickness of approximately
100 nm was prepared [28,29].

2.2. Fabrication of the LC Cell Containing the Functional Hybrid Polyimide Alignment Layer

Prior to introducing the ITO substrate (0.02 kΩ/cm2, 0.7 mm, Fine Chemical Industry,
Seoul, Korea) as an electrode of the LC cell, the following cleaning process was performed.
The substrate was sequentially washed with acetone (97%, Junsei Chemicals, Tokyo, Japan),
isopropyl alcohol (98%, Daejung Chemicals, Siheung, Korea), and de-ionized (DI) water
for 10 min under ultrasonication and then dried for 15 min on a hot plate at 100 ◦C. The
cleaned substrates were used as the upper and lower electrodes of the cell. Then, the
mixtures containing 0.01, 0.05, or 0.1 wt% of TiO2 NPs were uniformly spin-coated onto
the ITO electrodes to act as the LC alignment layer. The homogeneous hybrid PI layer
was prebaked at 80 ◦C and then imidized at 200 ◦C for 1 h. To maintain the LC cell gap
at 5.25 µm, a spacer (SP-205XX, Sekisui Chemical, Tokyo, Japan) was used, and the upper
and lower substrates were sealed using UV curable sealant (SP-25XX, Sekisui Chemical,
Tokyo, Japan). The applied sealant was cured by UV irradiation at an energy of 3 J/cm2.
After the sealant curing process, the nematic LCs comprising fluorobiphenyl derivatives
(TNI = 75 ◦C, ∆n = 0.095, ∆ε = −3.1, Merck, Darmstadt, Germany) was injected into the LC
cell by capillary force and annealed at 100 ◦C for 1 h.

2.3. Characterization

Polarized optical microscopy (POM; BX51, Olympus, Tokyo, Japan) was performed
to investigate the alignment properties of the LCs. Contact angle measurements (Phoenix
MT-A, SEO, Suwon, Korea) were carried out to examine the effect of the surface-treated
TiO2 NPs on the hydrophobic properties of hybrid PI layer. Atomic force microscopy
(AFM) was conducted in contact mode with silicon tips using a PSIA XE-100 (Park systems,
Suwon, Korea). To examine the optical transmittance of the LC cell, ultraviolet-visible
spectroscopy (UV–vis; Mega-900, Scinco, Seoul, Korea) was performed. To confirm the
electro-optical performance of the manufactured LC cells, the voltage-transmittance (V-T)
curves and response times were recorded using an electro-optical measurement system
comprising a laser light source (1135P, JDSU, Milpitas, CA, USA), a photodetector (ET-2000,
EOT, Edinburgh, UK), a function generator (33210A, Agilent, Santa Clara, CA, USA), and
an oscilloscope (TBS1062, Tektronix, Beaverton, OR, USA). The test LC cell was aligned
between the laser light source and the photodetector with crossed polarizers, and then
the electro-optical measurement was carried out using a function generator (LC cell) and
an oscilloscope (photodetector) (Figure 2). The voltage holding ratio (VHR) and residual
direct current (RDC) of the LC cell were evaluated using an LC characteristic measurement
system (Model 6254, Toyo, Tokyo, Japan).
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3. Results and Discussion

To determine the effect of the surface-treated TiO2 nanoparticles on the hydrophobicity
of functional hybrid PI layer, contact angle measurements were performed. Figure 3a shows
the water contact angles for each content of TiO2 NPs of 15 and 300 nm in size. The contact
angles of the functional hybrid PI layer were 71.4, 72.6, 76.6, and 83.2◦ at 0.01, 0.05, 0.1, and
0.5 wt%, respectively, for 15-nm-TiO2. Additionally, the contact angles of the hybrid PI
layer containing 0.05 and 0.1 wt% 300-nm-TiO2 were 73.5 and 76.2◦, respectively. Notably,
the water contact angles of the hybrid PI layers were higher than that of pure PI layer (70◦).
From these results, it was confirmed that the water contact angle of the hybrid PI layer
increased as the TiO2 NP content increased. These results are attributed to the influence
of the long hydrophobic alkyl chains of stearic acid on the TiO2 surface. As the content of
surface-pretreated TiO2 increases, the hybrid PI layer coated on the ITO substrate becomes
more hydrophobic and the contact angle of DI water, which is the test sample, increases.
As a result, it was confirmed that the surface of TiO2 was treated with stearic acid, and the
change in the surface energy of each substrate was confirmed. In addition, Figure 3a shows
the trend of the contact angle due to the two sizes of TiO2 NPs, where the influence of
stearic acid was once again confirmed. As mentioned above, as the TiO2 content increased,
the contact angle also increased, and this trend was the same for both TiO2 dimensions
(15 and 300 nm). Furthermore, when the TiO2 content was the same, the contact angles
were similar even if the size of the TiO2 NPs was different, confirming that the alkyl chains
of stearic acid, not the size of the TiO2 particles, dominantly affected the change in the
surface energy. Importantly, the long alkyl chains of stearic acid attached to the NP surface
interacted with the LC molecules to induce vertical alignment of the LC molecules.

AFM and solubility measurements were performed to confirm the dispersibility of the
TiO2 NPs in the PI layer. From the photographic images of the hybrid PI solutions, it is
confirmed that the TiO2 NPs are well dispersed in the PI solution without precipitation of
particles, as shown in Figure 3b. Moreover, the three-dimensional view images of AFM
show that 15-nm-TiO2, which is smaller than PI layer, has a uniform surface morphology
without particle aggregations, and the surface roughness increases as the TiO2 content
increases, indicating the uniform dispersion of the TiO2 in the PI layer. In case of 300-nm-
TiO2, since the size of TiO2 is larger than thickness of PI layer (100 nm), the protrusions of
TiO2 NPs were found, but their sizes were similar to that of TiO2 particle. Furthermore, as
the content increased, the number of protrusions increased in a uniform manner. These
results suggest that the surface-pretreated TiO2 NPs can afford high dispersibility in the PI
layer.
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POM images of the LC cells with pure PI and hybrid PI alignment layers were obtained
to confirm the vertical alignment ability of the LCs due to the introduction of the improved
alignment layer. Pure PI, which is conventionally used as the LCD alignment layer, shows
a clear image with parallel and cross polarizers. In other words, the pure PI alignment
layer vertically aligned the initial direction of the LCs. As shown in Figure 4a, the LC
cells containing the hybrid PI layer (prepared using the 15-nm-TiO2 NPs) also provided
clear images. The clarity of the hybrid PI-LC cells under polarization is comparable
to that of pure PI-LC cell. From this result, it was confirmed that the new hybrid PI
alignment layer does not adversely affect the vertical alignment of the LCs. In addition,
as mentioned above, the long alkyl chains of stearic acid on the surface of the TiO2 NPs
facilitate vertical alignment through their interactions with the LCs. Figure 4b shows the
voltage-transmittance (V-T) curves measured to confirm the electro-optical characteristics
of the manufactured LC cells. To compare with pure PI, hybrid PI-LC cells were also tested
under the same conditions. The threshold voltage value of the pure PI-LC cell was 2.22 V,
and those of the hybrid PI-LC cells were 2.24, 2.27, 2.38, and 2.42 V for TiO2 contents of 0.01,
0.05, 0.1, and 0.5 wt%, respectively. Here, the threshold voltage is defined as the voltage
at 10% transmittance of the LC cell [30,31]. Evidently, the threshold voltage values of the
hybrid PI-LC cells were higher than that of the pure PI-LC cell. The reason for the increase
in the threshold voltage from that of the pure PI-LC cell is that the alkyl chains of stearic
acid contained in the hybrid PI layer interact with the LCs to further increase the vertical
alignment of the LCs. The decay time of each cell was measured to determine the response
speed, as shown in Figure 4c. The gray-to-gray method, which is most commonly used,
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was used to measure the response speed. Here, the gray range was designated as dark
gray and light gray for a transmittance of 10 and 90%, respectively [32–34]. Therefore, the
decay time is the time taken to drop from 90 to 10% of the transmittance. The decay time
of the pure PI-LC cell was 15 ms, and those of the hybrid PI-LC cells were 15, 11, 10, and
7 ms for TiO2 contents of 0.01, 0.05, 0.1, and 0.5 wt%, respectively. It can be seen that the
decay time in the hybrid PI-LC cells were faster than that of the pure PI-LC cell, and the
higher the TiO2 content, the faster the decay time. As a result, it was once again confirmed
that the vertical alignment ability of the LC was improved by hybrid PI layer with the
surface-treated TiO2 NPs.
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To determine the electro-optical characteristics of the cells according to the size of
the TiO2 NPs, measurements were performed using the same abovementioned method.
The size of the TiO2 particles increased from 15 nm to 300 nm, and the surface of the TiO2
NPs was treated with stearic acid in the same way as the 15-nm-TiO2. In addition, two
hybrid PIs with TiO2 contents of 0.05 and 0.1 wt% were prepared. As shown in Figure 5a,
the POM image of the hybrid PI-LC cell with the 300-nm-TiO2 is comparable to that of
the pure PI-LC cell; clear images were obtained under parallel and crossed polarizations
without light leakage. Similar to the results for 15-nm-TiO2, 300-nm-TiO2 induced a stable
vertical alignment of the LCs, and both cells with different TiO2 contents showed similar
performances. Figure 5b shows the V-T curves of a hybrid PI-LC cell containing 300-nm-
TiO2. The threshold voltage values of 2.25 and 2.28 V were obtained at TiO2 contents of 0.05
and 0.1 wt%, respectively; these values were similar to that of the pure PI-LC cell, but they
were slightly lower than those of the hybrid PI-LC cells containing 15-nm-TiO2. Specifically,
when comparing the threshold voltage values of the two types of cells containing 0.1 wt%
of 15-nm-TiO2 and 300-nm-TiO2, the hybrid PI-LC cell containing 15-nm-TiO2 showed a
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higher value (+ 0.1 V). Although this difference is insignificant, it can be seen as an effect
of the particle size because different voltages were obtained at the same TiO2 content.
Because the size of the particles increases by 20 times (from 15-nm-TiO2 to 300-nm-TiO2),
the amount of 300-nm-TiO2 doped in PI is lower compared with the 15-nm-TiO2 doped PI,
leading to the decrease in vertical alignment ability of the hybrid PI layer. This particle size
effect can be seen in detail in the response speed results shown in Figure 5c. The response
speed of the prepared cells was 12 and 19 ms at 0.05 and 0.1 wt%, respectively. The decay
time of the cell with 0.1 wt% TiO2 NPs was approximately two times higher than that
of 15-nm-TiO2 at 0.1 wt%. This difference, as mentioned above, can be considered due
to the particle size effect in which the applied amount of TiO2 particles decreases as the
size increases. As a result, the particle size effect (15 and 300 nm) was confirmed, and the
electro-optical properties of the LC cells containing 300-nm-TiO2 were also confirmed to be
similar to that of the pure PI-LC cell.
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Figure 5. (a) Polarized optical microscopy (POM) images of the fabricated cells with pure polyimide and hybrid polyimide
layers containing TiO2 of 300 nm in size. (b) Voltage-transmittance curves and (c) response time curves of the hybrid
polyimides and pure polyimide LC cells.

To confirm the improved optical transmittance due to TiO2 doping, UV–vis spectra
were acquired. As can be seen in Figure 6, the increase in transmittance from an LC cell
composed of pure PI to the LC cells composed of hybrid PI layers containing TiO2 was
confirmed. A saturation voltage was applied to the prepared cells to create a white state,
and after attaching a polarizing film to the upper and lower substrates of the cells, the
transmittance was measured based on air. The transmittance of the pure PI-LC cell at a
wavelength of 550 nm was 14.54%. In the same wavelength band, the transmittance values
of the hybrid PI-LC cells containing TiO2 contents of 0.05 and 0.1 wt% were, respectively,
15.50 and 15.29 for 15-nm-TiO2 and 16.87 and 17.61 for 300-nm-TiO2. The transmittance of
the LC cells containing the hybrid PI alignment layer was higher than that of the pure PI-LC
cell. In particular, in the case of the hybrid PI-LC cell containing 0.1 wt% of 300-nm-TiO2, an
increase from the reference value of the pure PI-LC cell by 20% was observed. The reason



Polymers 2021, 13, 376 8 of 12

for this result is that the hybrid PI alignment layer performs better than the pure PI layer in
LC control according to the applied voltage. The long hydrophobic alkyl chains of stearic
acid treated on the TiO2 NP surface interact with the LCs, and thus LC control is easier. As
mentioned earlier, the hybrid PI can suppress the screening effect due to the ion trapping
effect of TiO2. On the other hand, pure PI without TiO2 has a lower optical transmittance
than the hybrid PI because the LC receives a relatively lower voltage in the cell than the
applied voltage due to the screening effect. In addition, the high refractive index of TiO2
can be suggested as an additional reason for the increase in the optical transmittance of
the LC cell. Since the conventional pure PI layer has a lower refractive index than the
ITO substrate, a loss in light transmittance can be generated due to the total reflection,
but the refractive index between the two layers is closely matched due to doping with
TiO2, which has a high refractive index, thereby increasing the optical transmittance. For
these reasons, it was confirmed that the optical transmittance of LC cell was improved by
introducing TiO2 NPs into PI layer, and the transmittance increased as the size of the TiO2
NPs increased.
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The measurements for voltage holding ratio (VHR) and residual direct current (RDC)
were carried out to confirm the reliability performance of the LC cells for long-term
operation. The VHR is a function of an LCD device that maintains the applied voltage.
A low VHR leads to device performance drawbacks, such as image sticking. Figure 7a
shows the VHR curves of the LC cells fabricated with pure PI and hybrid PI layers. The
VHR values of the cells containing TiO2 contents of 0.05 and 0.1 wt% were, respectively,
97.04 and 94.06% for 15-nm-TiO2, and 96.01 and 95.32% for 300-nm-TiO2. Compared with
the VHR value of the pure PI-LC cell (93.65%), all the hybrid PI-LC cells exhibited higher
VHR values. It was confirmed that the VHR value increased by doping PI with TiO2 NPs,
which can improve the potential image sticking problem that may occur in the display
devices. Figure 7b shows the RDC curves of the LC cells containing the conventional PI
and the hybrid PI alignment layers. After 2000 s, the RDC value of the pure PI-LC cell was
297.3 mV and those of the hybrid PI-LC cells containing TiO2 contents of 0.05 and 0.1 wt%
were, respectively, 39.7 and 141.1 for 15-nm-TiO2, and 210.9 and 164 mV for 300-nm-TiO2.
The LC cell containing the hybrid PI alignment layer as a whole showed a lower RDC value
than the LC cell with the conventional alignment layer. This low RDC value is a result
of the ion trapping effect of TiO2 NPs embedded in the PI layer. The LC cell with pure
PI as an alignment layer exhibited a relatively high RDC value, which may cause image
sticking of the device due to the generation of residual DC voltage. However, the hybrid
PI-LC cells significantly lowered the probability of such a disadvantage. Through VHR
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and RDC measurements, it was confirmed that the introduction of a hybrid PI alignment
layer improved the device characteristics for long-term reliability.
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To evaluate the long-term reliability of the LC cells based on the above RDC and
VHR values, the difference between the threshold voltages of the LC cells in the black and
white states was measured. Reliability evaluation was conducted over a period of 504 h,
and the difference in threshold voltage was measured (Figure 8). It can be seen that the
performance of the LCD deteriorated as the difference in threshold voltage increased over
time. In the LC cell with pure PI alignment layer, it was confirmed that the delta value of
the threshold voltage increased with time. This is because the LC to which the voltage was
applied for a long period of time was unstably oriented, and thus the vertical alignment
ability was degraded. Therefore, since the voltage was lower than the initial threshold
voltage, the threshold voltage delta value increased. By contrast, the LC cell incorporating
the hybrid PI as the alignment layer exhibited a lower rate of increase in threshold voltage
delta value than the pure PI-LC cell. These results show the same trend as the values of
RDC and VHR. Thus, hybrid PI was able to maintain the vertical alignment ability of the
LCs, which can be deteriorated by a long-term applied voltage, and it was confirmed that
the long alkyl chains of the TiO2 NPs formed strong interactions with the LCs. In addition,
the screening effect that may occur due to the free ions in the LC was also prevented by the
ion trapping effect of TiO2, thereby improving the long-term electro-optical performance
of the device.
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4. Conclusions

The introduction of a hybrid PI alignment layer containing inorganic TiO2 NPs was
successful in improving the optical transmittance and reliability of the LC devices. The
TiO2 nanoparticles of 15 and 300 nm in size were surface-treated with stearic acid, and the
PI mixture with TiO2 NPs was spin-coated on an ITO substrate and then imidized to form
a hybrid alignment layer. The interactions between the long hydrophobic alkyl chains of
stearic acid on the surface of the TiO2 NPs and the LC molecules was expected to improve
the vertical alignment ability of the LC molecules, thereby improving the electro-optical
properties of the device. It was confirmed that the contact angles of the hybrid PI layers
were higher than that of the pure PI layer and the contact angle increased as the TiO2
content increased, indicating that the stearic acids treated on the surface of TiO2 NPs
induced the hydrophobic surface of the hybrid PI layer. Similar trends were observed,
irrespective of the size of the TiO2 NPs (15 or 300 nm). In addition, the dark state observed
under cross-polarization indicated a complete vertical alignment of the LC device with
hybrid PI layers, and the relatively high threshold voltage and fast decay response time
of the device suggested the improved vertical alignment ability of the hybrid PI layer. In
addition, the optical transmittance of LC cell was enhanced by incorporating TiO2 NPs into
PI layer, and the transmittance increased as the size of the TiO2 NPs increased. The VHR
and RDC measurements revealed that the hybrid PI layers provided high VHR and low
RDC values due to the ion trap effect of TiO2 compared to those of pure PI layer. Moreover,
the long-term driving evaluation indicated that the functional hybrid PI layer with TiO2
NPs afforded the improved reliability of the device. From the perspective of the alignment
material, the proposed method using hybridization of organic PI and surface-treated TiO2
NPs is expected to have a significant impact on the display field because it can afford
simple preparation process, stable vertical orientation of LCs, high optical transmittance,
and long-term reliability of the device.
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