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Abstract: Polycaprolactone/nano-hydroxylapatite (PCL/nHA) nanocomposites have found use
in tissue engineering and drug delivery owing to their good biocompatibility with these types of
applications in addition to their mechanical characteristics. Three-dimensional (3D) printing of
PCL/nHA nanocomposites persists as a defiance mostly because of the lack of commercial filaments
for the conventional fused deposition modeling (FDM) method. In addition, as the composites are
prepared using FDM for the purpose of delivering pharmaceuticals, thermal energy can destroy the
embedded drugs and biomolecules. In this report, we investigated 3D printing of PCL/nHA using
a lab-developed solution-extrusion printer, which consists of an extrusion feeder, a syringe with a
dispensing nozzle, a collection table, and a command port. The effects of distinct printing variables
on the mechanical properties of nanocomposites were investigated. Drug-eluting nanocomposite
screws were also prepared using solution-extrusion 3D printing. The empirical outcomes suggest that
the tensile properties of the 3D-printed PCL/nHA nanocomposites increased with the PCL/nHA-to-
dichloromethane (DCM) ratio, fill density, and print orientation but decreased with an increase in the
moving speed of the dispensing tip. Furthermore, printed drug-eluting PCL/nHA screws eluted
high levels of antimicrobial vancomycin and ceftazidime over a 14-day period. Solution-extrusion
3D printing demonstrated excellent capabilities for fabricating drug-loaded implants for various
medical applications.

Keywords: polycaprolactone; nano-hydroxylapatite; 3D printing; solution extrusion; process
optimization; drug release

1. Introduction

Degenerative pathologies, injuries, and trauma can harm bone tissues and lead to
the requirement for therapies that facilitate their repair, replacement, or regeneration of
the tissue. Scaffolds made of distinct biomaterials have been used as a substitute for bone
regeneration. Bioceramic such as nano-hydroxyapatite (nHA) is known to promote cell
proliferation and osteoconduction, and has been widely used as a bone graft substitute
due to its good biocompatible and osteoconductive properties [1–3]. However, nHA
possesses low mechanical properties because of its brittleness. Polycaprolactone (PCL), on
the other hand, is a degradable polymer widely researched for use in long-term implants
and controlled drug release applications [4]. nHA-filled PCL nanocomposites can be a
good candidate as a synthetic alternative for bone tissue engineering and drug delivery,
mainly owing to their excellent biocompatible and mechanical properties [5].
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The 3D printing technique [6,7] is a novel technique for making unusual or complex
component geometries that might be difficult to fabricate via other processes. The 3D
printing process enables and facilitates the manufacture of moderate to mass numbers of
parts that can be specifically customized. The technologies provide new opportunities
with regard to the manufacturing paradigm and fabrication possibilities with substantially
reduced times. New designs require only a short time to market, and customer demands
can be fulfilled more rapidly.

Among various 3D printing methods, FDM is the most extensively used technique [8].
The procedure extrudes hot polymer melts from a nozzle and paves them on a collection
table for product development. The extruding nozzle shifts in a horizontal position to
form a single layer at a time after which the extruding nozzle moves consecutively in a
vertical position so as to make a fresh layer. A computer is generally used to command the
migration of the extrusion nozzle until a 3D-printed part is acquired.

The 3D printing of virgin PCL and composites [9,10] continues to be a defiance, largely
because the filaments for FDM are generally limited [11,12]. Guerra and Ciurana [13]
proposed a fused filament fabrication (FFF) printing device to print 3D stents out of PCL.
Jhao et al. [14] explored hydroxyapatite/PCL scaffold printing using a lab-exploited melt-
differential FDM printing facility. Hollander et al. [15] used FDM-printed PCL grafts to
transport micronized indomethacin. Visscher et al. [16] integrated FDM and a salt leaching
process for manufacturing a PCL scaffold of micro-/macro-porosity. In spite of these efforts,
all developments rely on the FDM scheme that extrudes hot melted polymer during the
printing process. The use of polymer melt extrusion, however, leads to some restrictions,
specifically as the manufactured product is used for the intent of pharmaceutical delivery.
Compounding or mixing drugs and hot polymer melt in the 3D extrusion printing process
can damage or degenerate the pharmaceuticals [17].

One solution for coping with this concern is the use of the solution-extrusion 3D print-
ing technique [18], which integrates a fluid-delivery unit and an automatized three-axis
migration device for extrusion printing. To print a part, PCL, fillers, and solvent are pri-
marily compounded and extruded from a feeding system consisting of a syringe equipped
with a delivery nozzle. The nozzle is controlled and shifted by a computer/microprocessor.
Once the solvent becomes volatile, the solution that is expelled from the delivery nozzle
solidifies and forms successive layers to create 3D products of needed shapes.

This study exploited drug-eluting nHA-filled PCL nanocomposites using the solution-
extrusion 3D printing technique so as to avoid the deactivation of embedded pharmaceuti-
cals. An empirical study was completed to assess the effect of distinct printing variables
on the tensile properties of 3D-printed PCL/nHA nanomaterials. The tensile strength of
post-printed PCL/nHA specimens was estimated using a tensile test machine, and the
morphological structure was examined via a field emission scanning electron microscope
(FESEM) and a projector microscope. In addition, vancomycin- and ceftazidime-loaded
PCL/nHA screws were also prepared using solution-extrusion 3D printing. Printed screws
were assessed by differential scanning calorimeter (DSC) and Fourier-transform infrared
(FTIR) spectroscopy. The elution characteristics of incorporated drugs were also evaluated
via a high-performance liquid chromatography (HPLC).

2. Materials and Methods
2.1. Materials

PCL (Mn: 80,000 Da), nHA (<200 nm, Mw: 502.31 g/mol), and DCM were used
for 3D printing, and vancomycin hydrochloride and ceftazidime hydrate were used as
pharmaceuticals. All of them were acquired from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Experimental Methods

The 3D printing experiments were completed on a lab-made device (Figure 1A), which
consists of an extrusion feeder, steering step motors, a syringe with a delivering nozzle



Polymers 2021, 13, 318 3 of 13

(inner diameter: 180 µm), a collection table, and a control port connected to a computer.
An open control Cura code was used to monitor the entire printing course.
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Figure 1. (A) Image of the solution-extrusion three-dimensional (3D) printer and (B) the solution
printing of polycaprolactone/nano-hydroxylapatite (PCL/nHA) composites with desired orientation.

To print nanocomposite parts, PCL (2.5 g) and nHA (0.133 g) were fixed with DCM
based on distinct weight-to-volume ratios and stirred for 3 h. The mixed solution was
then added to the extruding feeder for printing (Figure 1B). In the 3D printing process, the
delivery nozzle was actuated by a computer-commanded step motor, thus extruding and
layering the PCL/nHA solution on the collection table. As soon as the solvent evaporated,
strips of PCL/nHA (about 0.2 mm in thickness) were laid on the table in successive layers.

2.3. Processing Variables

The effect of distinct processing variables on the tensile strengths of printed PCL/nHA
specimens was investigated. Four variables were chosen: (1) PCL/nHA-to-DCM ratio,
(2) fill density, (3) orientation of the extruded strips (Figure 1B), and (4) moving speed
of the delivering nozzle. A few test trials were first completed to identify the ranges of
processing values able to successfully print the nanocomposite specimens. The ratios of
PCL/nHA to DCM were 2.5 g/0.133 g:5.8 mL, 2.5 g/0.133 g:6.0 mL, 2.5 g/0.133 g:6.2 mL,
and 2.5 g/0.133 g:6.4 mL (w/v). Meanwhile, the fill densities were 50%, 55%, 60%, and 65%.
The shifting speeds of the delivering nozzle spanned from 30 to 60 mm/s. The orientations
of extruded strips were 45◦, 60◦, 75◦, and 90◦. The variables and variable values used for
the experiment are listed in Table 1. After printing, the specimens were placed in an oven
at room temperature for 72 h to completely vaporize the solvents.

Table 1. Variables utilized for the three-dimensional (3D) printing of PCL/nHA parts.

Variable A: PCL/nHA to DCM
Ratio (w/v)

B: Fill Density
(%)

C: Print Speed
(mm/s)

D: Print
Orientation

Level 1 2.5 g/0.133g:5.8 mL 50 30 45◦

Level 2 2.5 g/0.133g:6.0 mL 55 40 60◦

Level 3 2.5 g/0.133g:6.2 mL 60 50 75◦

Level 4 2.5 g/0.133g:6.4 mL 65 60 90◦
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A dumbbell geometry (Figure 2A) was used to 3D print the test parts. The code
used to control the migration of the dispensing nozzle was established using commercial
software from Solidworks (Waltham, MA, USA). Post-printing, the tensile strengths of
prepared PLC/nHA nanocomposites were assessed with a Lloyd test machine (Ameteck,
Berwyn, PA, USA). The stretching rate for the specimens was 50 mm/min. The tensile
strengths were calculated with the equation.

Strength (MPa) = Maximum load (N)/Part cross − sectional area (mm2) (1)

As shown in Table 1, one variable was varied every time while keeping the oth-
ers constant (bold ones). The influence of every variable on the tensile strengths of the
printed samples could be assessed. The experiment was repeated three times (N = 3) for
every specimen.
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2.4. Microscopic Examinations

The morphological structure of the 3D-printed samples was examined by a JEOL Model
JSM-7500F FESEM (Tokyo, Japan) and an APEX-2010 profile projector (Taipei, Taiwan).

2.5. Printing of Drug-Eluting Screws

To demonstrate the capability of solution-extrusion 3D printing in fabricating drug-
loaded implants, the optimum processing conditions obtained in previous sections were
used to print the drug-eluting PCL/nHA screws. PCL (2500 mg), nHA (132 mg), and
vancomycin and ceftazidime (312.5 mg each) were mixed with 6 mL of DCM. The solution
was then used to print the screws.

2.6. Fourier-Transform Infrared Assay

The spectra of virgin PCL, nHA, PCL/nHA, and drug-loaded PCL/nHA were as-
sessed employing a Nicolet iS5 Fourier-transform infrared (FTIR) spectrometer assay
(Thermo Fisher, Waltham, MA, USA). The samples were first compressed as KBr discs for
the assay, which was conducted at a resolution of 4 cm−1 and 32 scans. The spectra of the
assay ranged from 400 to 4000 cm−1.
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2.7. Differential Scanning Calorimeter Assay

The thermal properties of virgin PCL, PCL/nHA, and drug-loaded PCL/nHA were
estimated by a TA-DSC25 differential scanning calorimeter (New Castle, DE, USA). The
scanning temperature ranged from 30 to 350 ◦C while the specimens were heated at
10 ◦C/min.

2.8. In Vitro Release of PLC/nHA Screws

The elution patterns of vancomycin/ceftazidime from the drug-loaded PLC/nHA
screws were assessed using an in vitro elution method [19]. Screws were put in glass
tubes (one screw in each tube, N = 3) and filled with 1 mL of phosphate buffer solution
(0.15 mol/L, pH 7.4). The tubes were kept in an isothermal oven at 37 ◦C for 24 h until the
eluent was gathered and assayed. New phosphate buffer solution (1 mL) was added to the
tubes for the next 24 h time interval. The process was duplicated for 14 days. The drug
levels in the gathered eluents were characterized with Hitachi L-2200R multi-solvent
high-performance liquid chromatography (HPLC) (Tokyo, Japan).

3. Results
3.1. Effects of Processing Parameters on Mechanical Strengths

PCL/nHA specimens were satisfactorily printed using solution-extrusion 3D printing.
Figure 2B displays the fractured PCL/nHA nanocomposites post-tensile test. All specimens
exhibited good ductile properties.

Figure 3 displays the tensile characteristics of 3D-printed PCL and PCL/nHA spec-
imens. As expected, nHA-filled PCL parts showed superior tensile strengths to virgin
PCL parts [18]. The results in Figure 3 also suggest that the maximum tensile strengths
of PLC/nHA specimens improved as the concentration of DCM increased. Composite
samples printed using a PCL/nHA:DCM ratio of 2.5 g/0.133g:6.4 mL showed the most su-
perior mechanical strength, whereas printed specimens with a ratio of 2.5 g/0.133g:5.8 mL
displayed the most inferior mechanical properties. Figure 4a,b shows the surface images of
printed nanocomposite parts from the profile projector and SEM. The abundant solvent
during the printing process helped promote healing at the extruded strip interfaces not
only in the same layer, but also across layers. The tensile strengths increased accordingly.
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Figure 4. Profile projector (top) and scanning electron microscopy (SEM) (bottom) micro-photos of
nanocomposite specimens printed with PCL/DCM ratios of (A) 2.5 g/6.4 mL and (B) 2.5 g/5.8 mL.

Figure 5 shows the measured strengths of PCL/nHA specimens printed with different
fill densities. The estimated ultimate tensile raised with the fill density. Figure 6 shows the
micro-images of specimen surfaces printed with 65% and 50% fill densities. Imperfectly
healed pores were observed on the surfaces of the printed specimens. Superior healing
can be noted in Figure 6A (65% fill density) compared to Figure 6B (50% fill density).
Since the specimens made with 65% fill density possessed the smallest pore sizes, they
showed superior mechanical strengths. Meanwhile, nanocomposites printed with a lower
fill density exhibited pores of greater sizes, resulting in stress concentrations in the tensile
test process. Composite parts therefore possessed inferior mechanical properties.
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Figure 6. Profile projector (top) and SEM (bottom) micro-photos of nanocomposite specimens printed
with fill densities of (A) 65% and (B) 50%.

Figure 7 displays the influence of print speed on the ultimate strength of the printed
nanocomposites. The ultimate strength decreased in general as the tip speed increased.
Nanocomposite parts printed at a speed of 30 mm/s showed the highest strengths, and sam-
ples printed at a print speed of 60 mm/s displayed the most inferior strengths. Figure 8A,B
shows the images of part surfaces printed using 30 and 60 mm/s, respectively. PCL/nHA
nanocomposite parts printed at a speed of 60 mm/s possessed bigger pores than those
printed with 30 mm/s. Small orifices were observed on the surface of 60 mm/s printed
parts, which mainly resulted from incomplete healing. Manufactured 60 mm/s parts thus
illustrated inferior mechanical strengths.
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Figure 8. Profile projector (top) and SEM (bottom) micro-photos of nanocomposite specimens printed
with nozzle speeds of (A) 30 mm/s and (B) 60 mm/s.

Figure 9 indicates the maximum tensile strength of these samples printed using
different orientations of 45◦, 60◦, 75◦, and 90◦, suggesting that the nanocomposite specimen
printed at a 90◦ orientation showed the most superior tensile strength, and those at 45◦ led
to the least mechanical strengths. Figure 10A,B shows the images of part surfaces printed
with orientations of 90◦ and 45◦. Clearly, 45◦ printing led to less healing and larger pores
on the parts’ surfaces. As these specimens are exposed to foreign loads, stress can happen
and result in ruptures. Printed part strengths thus diminish under these loads.
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Figure 10. Profile projector (top) and SEM (bottom) micro-photos of nanocomposite specimens
printed with orientations of (A) 90◦ and (B) 45◦.

3.2. Drug Release from Printed Implants

Drug-eluting screws were prepared using the optimum processing conditions obtained
in Section 3.1, namely a PCL/DCM ratio of 2.5 g/0.133 g:6.4 mL, a fill density of 65%,
a nozzle shifting speed of 30 mm/s, and a 90◦ printing orientation. The ultimate strength
and elastic modulus thus obtained were 15.67 ± 1.22 and 37.49 ± 1.36 MPa, respectively.

Figure 11 displays the Fourier-transform infrared (FTIR) spectra of pure PCL, PCL/nHA,
and drug-loaded PCL/nHA screws. The vibration peak of PO4

3− near 1040 cm−1 for nHA
diminished after the material was incorporated into the PCL matrix [20]. The peaks at
1724 and 1635 cm−1 may be attributed to the C=O and C=C bonds, respectively, of the
incorporated drugs. The vibration peak at 2942 cm−1, corresponding to a CH2 bond, was
promoted due to the addition of vancomycin. Additionally, the vibration at 3340 cm−1

resulted from the N–H bond of the anti-microbial agents [21,22].
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The thermal properties of virgin PCL, PCL/nHA, and drug-loaded PCL/nHA screws
were assessed, and the results are displayed in Figure 12. Although the incorporation of
nHA caused a slight increase in the melting point of pure PCL from 62.78 to 65.02 ◦C,
the addition of drugs tended to reduce the melting temperature of 3D-printed PCL/nHA
screws to 57.75 ◦C.
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Figure 12. Differential calorimetry scanning (DSC) curves of virgin PCL, PCL/nHA, and drug-loaded
PCL/nHA composites.

The release of antibiotics from the 3D-printed screws was characterized. Figure 13
displays the daily and cumulative releases of vancomycin and ceftazidime. A burst release
was noticed for the anti-microbial agents at day 1, after which a steady and diminishing
elution of pharmaceuticals was observed. The drug-loaded PCL/nHA screws could
elute high levels of vancomycin and ceftazidime (higher than the minimum inhibitory
concentrations) for more than 14 days. Antibiotic levels were maintained at a high level
after the 3D solution-extrusion printing procedure, demonstrating that the 3D printing did
not inactivate the antimicrobial agents during the fabrication process.
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4. Discussion

This study explored the effect of distinct printing variables on mechanical strengths
of printed PCL/nHA materials. PCL pertains to a biodegradable polymer material that
resorbs gradually through hydrolysis [23], whereas HA is a primary component for hard
tissues, including bone and teeth, and has been widely used for bone repair, bone augmen-
tation, and implant coatings [24]. The mechanical properties of a material represent its
response to an externally applied load, and are one of the most important basic characteris-
tics of a good design. Two factors might have influenced the mechanical strengths of our
3D-printed nanocomposites and helped decide the success of the composites for a specific
application. The primary factor pertained to the healing/sealing of extruded materials,
and the next factor was the morphological structure of printed products.

The first factor that affected the final product property was the healing and chain
entanglement at the inter-boundaries of polymeric strips. In 3D printing, solvent vaporiza-
tion and molecular chain diffusion occur at the solidification stage of polymer materials.
Promotion of molecular entanglement at the interface of extruded strips is required and ac-
counts for the eventual tensile characteristics of 3D-printed samples [25,26]. The optimum
status tends to be a semi-dilute and moderately entangled mode that arises at the critical
entanglement concentration [27]. The period is a crossover point between a semi-diluted
unentangled mode and a semi-diluted moderately entangled mode. Promoted entangle-
ment and the associated strips sealing at the interfaces are thus expected. With regard to
the second factor, a solution-extrusion 3D-printed part may possess irregular morphology
owing to imperfectly healed pores or flaws that result in stress concentrations as exposed
to foreign loads. This process may in turn cause deterioration of the tensile strengths of
printed nanocomposites.

The empirical outcomes in Figure 3 indicate that the measured tensile strengths
of 3D-printed nanocomposites increased with the volume fraction of the solvent. The
nanocomposites prepared with the PCL/nHA-to-DCM ratio of 2.5 g/0.133g:6.4 mL exhib-
ited the greatest tensile strengths. When a small amount of DCM was used, the solvent
may have evaporated too fast, resulting in lack of time for chain entanglement at the
interfaces of extruded strips. An abundant concentration of DCM kept the polymers within
a semi-diluted status for a longer period of time and promoted strip healing/sealing at the
inter-boundaries, either within the current layer or across distinct layers (Figure 4). Printed
materials therefore illustrate superior strengths.

Figure 5 shows that the estimated tensile strengths of nanocomposites increased as the
fill density was increased. Fill density represents the quantity of polymer nanocomposites
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used in manufacturing a specimen. A greater fill density represents potent polymeric
materials inside printed specimens, thereby leading to a more superior part. Additionally,
fulfilling the specimens with extra materials also resulted in pores of smaller sizes (Figure 6).
Printed product quality increased accordingly.

Figure 7 implies that mechanical strength declined when print speed decreased. Fol-
lowing the solution extrusion from the delivering nozzle, the solvent started to vaporize.
When the print speed was excessively high, not enough time was allowed for molecular
entanglement of the polymers across the strip interfaces (Figure 8). Additionally, the
solvent may not have had sufficient time to vaporize and may then have diffused and
disintegrated the surrounding strips. Chain entanglement and the relevant part strengths
diminished accordingly.

Nanocomposite specimens printed with a 45◦ orientation demonstrated the most
inferior part strength, and 90◦ printed parts showed the highest strengths (Figure 9). This
finding might be due to the fact that the 90◦ oriented strips restricted the quantity of solvent
that vaporized quickly. Abundant time was allowed for the polymer solution to achieve
chain entanglement across strip boundaries (Figure 10A). The tensile properties of 3D-
printed samples thereby increased. Additionally, the printed 45◦ orientated nanocomposite
parts presented a greater number of pores (Figure 10B). When stretched by the external
tensile forces, these large-size pores possessed greater chances of undergoing damage from
stress. Printed parts therefore displayed the most inferior tensile properties.

Finally, this study successfully developed antimicrobial agent-loaded PCL/nHA
screws using the solution of extrusion 3D printing technology. After 3D printing, some
drugs may have remained at the surface of the screws, thus leading to a burst release
when the screws were submerged in a PBS solution. After the burst release, the release
mechanism was mainly controlled by channel diffusion. When the loading of antibiotics
was low, the pharmaceuticals would have been separated in the polymer matrix. The
drugs may not have been capable of penetrating the matrix at an effective rate. When
the pharmaceutical loading was further increased, the drugs may have bonded together
to create channels transmitting to the surface of the 3D-printed parts [18]. A steady and
slow release of the drugs was thus observed after the burst release. The experimental
results demonstrate that the drug-loaded PCL/nHA screws can offer extended elution
of high concentrations of vancomycin/ceftazidime (superior to the minimum inhibitory
concentrations) for more than 14 days. All of these findings demonstrate the great potential
of solution-extrusion 3D printing for the manufacture of drug-loaded implants.

5. Conclusions

This study explored the solution-extrusion 3D printing of vancomycin- and ceftazidime-
loaded PCL/nHA materials utilizing a lab-made printer. The influence of distinct parame-
ters on the printed part quality was examined. The empirical outcomes illustrate that the
tensile property of printed nanocomposites increases with the fill density yet diminishes
with a decrease in the ratio of PCL/nHA to DCM and print speed. Nanocomposite parts
printed with a 90◦ orientation demonstrated the most superior mechanical properties. In ad-
dition, the drug-loaded PCL/nHA screws can provide extended elution of high levels of
vancomycin/ceftazidime over a 14-day period. Eventually solution-extrusion 3D printing
technology may be used to print drug-loaded implants for various medical applications.
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