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Abstract: The extrusion of highly filled elastomers is widely used in the automotive industry. In this
paper, we numerically study the effect of thixotropy on 2D planar extrudate swell for constant and
fluctuating flow rates, as well as the effect of thixotropy on the swell behavior of a 3D rectangular
extrudate for a constant flowrate. To this end, we used the Finite Element Method. The state of the
network structure in the material is described using a kinetic equation for a structure parameter.
Rate and stress-controlled models for this kinetic equation are compared. The effect of thixotropy on
extrudate swell is studied by varying the damage and recovery parameters in these models. It was
found that thixotropy in general decreases extrudate swell. The stress-controlled approach always
predicts a larger swell ratio compared to the rate-controlled approach for the Weissenberg numbers
studied in this work. When the damage parameter in the models is increased, a less viscous fluid
layer appears near the die wall, which decreases the swell ratio to a value lower than the Newtonian
swell ratio. Upon further increasing the damage parameter, the high viscosity core layer becomes very
small, leading to an increase in the swell ratio compared to smaller damage parameters, approaching
the Newtonian value. The existence of a low-viscosity outer layer and a high-viscosity core in the die
have a pronounced effect on the swell ratio for thixotropic fluids.

Keywords: viscoelasticity; thixotropy; extrudate swell; FEM

1. Introduction

In the automotive industry, rectangular rubber strips are extruded that are used to
make the carcass of car tires. The dimensions and quality of the rubber extrusion products
highly depend on the rheological properties of the rubber compound [1]. These compounds
are complex materials in the sense that they contain many additives such as plasticizers,
curing agents and about 30% by weight of reinforcing fillers to enhance the mechanical
properties of the final product [2].

The addition of fillers increases the viscosity of the compound due to the existence of
filler–filler and polymer–filler interactions and is essential to the successful use of rubber
in the extrusion process [3,4]. When using carbon black fillers, the primary filler particles
form aggregates, and the size and shape of these aggregates are deformation-independent.
These aggregates, however, can cluster together to form agglomerates, which can form a
filler–filler network that is held together by weak van der Waals-type forces. Because of the
fragility of the bonds between the agglomerates, they can break under stress, but when the
stress is removed, these bonds will reform again [5]. This leads to a reversible decrease in
the viscosity, or so-called thixotropic behavior. For rubber compounds, this is also known
as the Payne effect [6].

The Payne effect has also been attributed to several other mechanisms, such as the
agglomeration/deagglomeration of filler aggregates, breakup/reformation of the filler–
filler and polymer–filler network [7,8], chain desorption from the fillers [9], yielding of the
glassy layer between the fillers [10] and disentanglement of the absorbed chains [11]. The
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paper by Rueda et al. reviews the current knowledge about the rheology and applications
of highly filled polymers [12].

Dangtungee et al. [13,14] experimentally studied the extrudate swell of polypropylene
filled with different weight percentages of CaCO3 and TiO2 nano-particles. They found
that swell was reduced by increasing particle concentration. This was explained by the
limited mobility of the polymers due to the fillers, hindering the elastic recovery at the die
exit. For an LDPE filled with different weight percentages of salt of different sizes, it was
also found that the rigid particles lead to a decreased mobility of the polymer chains. No
effect of the particle size was found [15].

In highly-filled rubber compounds, a decrease in extrudate swell can be observed
with increasing filler content [16–18]. This reduction also occurs if the reinforcing character
of the carbon-black is increased or the particle size is decreased and was attributed to a
higher volume fraction of “occluded rubber”. Here, the fillers reduce the mobility of the
polymer chains, prohibiting the elastic recoil of the polymer chains. For highly reinforcing
carbon-blacks, extrudate swell is restrained by a more complex mechanism due to the
complex compound morphology.

Since thixotropy has a pronounced effect on the viscosity of the material, bands of
different viscosities can coexist in the die during the extrusion process. Due to the high
shear rate at the die wall, a low viscous layer will be present there. The inelastic theory of
extrudate swell presented by Tanner [19] showed that a less viscous outer layer results in a
decreasing swell ratio that can even go below one. This was also found by Mitsoulis [20] in
extrudate swell studies for double-layer flows.

The aim of this work is to qualitatively study the effect of thixotropy on the extru-
date swell behavior of viscoelastic materials using the Finite Element Method. This is a
relevant problem since the extrusion of filled rubber compounds is widely used in the
automotive industry and the thixotropic behavior due to the incorporation of these fillers
has a pronounced effect on the shape of the final extrusion product. Therefore, we assume
that the undamaged material resembles a highly filled polymer filled with agglomerates of
an elastic filler–filler/filler–polymer network. The weak physical bonds linking adjacent
filler agglomerates can break up when the material is deformed, leading to a material with
the properties of a highly filled polymer with less structure compared to the undamaged
material. The disappearance of this structure effectively reduces the elasticity in the mate-
rial. This thixotropic effect due to the added fillers is modeled using a structure parameter
that indicates the degree of local structure in the material. The evolution of this structure
parameter is modeled using a rate and stress-controlled kinetic equation. The difference
between both approaches is discussed. In many industrial processes, the flow rate is not
constant but fluctuates in time. Therefore, the effect of structure damage and recovery on
extrudate swell is studied for a constant and fluctuating flow rate.

The paper is structured as follows: first, the problem definition and a description of the
modeling is given in Section 2. This is followed by a detailed explanation of the numerical
method used in this work in Section 3. A convergence study and the results for the constant
flow rate and fluctuating flow rate are presented in Section 4. Here, the difference in the
results for a stress and a rate-controlled kinetic equation for the structure parameter are
discussed, as well as the influence of different damage and recovery parameters on the
swell ratio of the extrudate.

2. Problem Description

Two problems are treated in this paper: a 2D planar swell problem and the swell of a
3D rectangular extrudate, both for a thixotropic fluid.

2.1. 2D Planar Problem

For the 2D planar problem, a schematic representation of the fluid domain Ω is shown
in Figure 1. In the first part of the domain, the fluid is contained in a planar die with
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half-height H0 and length Ldie = 2H0. At the inlet of the die, a flow rate Q is applied with
a fully developed flow profile. The extrudate has length Lextr = 5H0.

y
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Ldie Lextr

H0

h

Γdie

Γsym

Γfree

Γout

Γin

Q

Ω

Figure 1. Schematic representation of the 2D planar extrudate swell problem. The free surface of the
extrudate is indicated in gray.

2.2. Three-Dimensional Problem

For the 3D rectangular extrudate, a schematic representation of the fluid domain Ω is
shown in Figure 2.
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Figure 2. Schematic representation of the 3D problem of an extrudate emerging from a rectangular
die. The corner line used in the corner-line method is depicted in red.

The first part of the domain is the fluid contained in a rectangular die of height H0
and width W0. A constant flow rate Q is applied at the inlet Γin of the die. After length
Ldie = 2H0, the fluid exits the die. The extrudate is modeled for a length Lextr = 5H0 after
the die exit. The corner line of the extrudate, used in the corner-line method as presented
by Spanjaards et al. [21], is indicated in red. Only a quarter of the domain is modeled to
save computational costs. The rectangular die has an aspect ratio of 2:1 with W0 = 2H0.

2.3. Balance Equations

It is assumed that the fluid is incompressible, inertia can be neglected and that there
are no external body forces acting on the fluid. This leaves the following equations for the
mass and momentum balance in the fluid domain Ω:

−∇ · σ = 0 in Ω, (1)

∇ · u = 0 in Ω, (2)

where u is the fluid velocity and σ is the Cauchy stress tensor:

σ = −pI + 2ηsD + τ. (3)

Here, p is the pressure, I the unit tensor and 2ηsD is the Newtonian (or viscous) stress
tensor with solvent viscosity ηs and rate-of-deformation tensor D = (∇u +∇uT)/2. The
viscoelastic stress tensor is represented by τ.
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2.4. Constitutive Equations

The viscoelastic stress tensor is expressed in terms of the conformation tensors ck:

τ =
m

∑
k=1

Gk(ck − I), (4)

where m is the number of modes and Gk is the polymer modulus of mode k.
The evolution of the conformation tensors ck is given by

Dck
Dt
− (∇u)T · ck − ck · ∇u + f (ck) = 0, (5)

where D()/Dt = ∂()/∂t + u · ∇() denotes the material derivative, and f (ck) depends on
the constitutive model used. In this paper, the Giesekus model is used [22]:

f (ck) =
1

λk

[
ck − I + αk(ck − I)2

]
, (6)

where αk is the mobility parameter of mode k that influences shear-thinning. Other consti-
tutive equations can be used due to the generality of our method.

2.5. Thixotropy Model

In thixotropic materials, it is known that the added fillers can form two types of
networks: filler–filler networks and polymer–filler networks. These networks improve the
strength of the material. These networks are held together by weak physical bonds. When
the material is deformed, these bonds can break, but after flow cessation, these bonds can
reform again. To model this thixotropic behavior, a structure parameter ξ is defined which
indicates the degree of structure in the material, as discussed in Spanjaards et al. [23]. If
ξ = 1, the material is undamaged and the filler–filler/polymer–filler networks are intact.
For ξ = ξinf, no network structures are left:

ξ =

{
1, Undamaged; structures intact
ξinf, Maximum damage.

For the minimum value for ξinf = 0, no structure is left. Inspired by the Leonov
modeling [24], the effect of structure damage is modeled by adjusting the relaxation times
of the undamaged spectrum λ0,k (ξ = 1) with the current structure parameter:

λk = ξλ0,k. (7)

The polymer modulus Gk is assumed to be independent of the structure change in the
material. Notice that, using this approach, the polymer viscosity ηp,k(ξ) and the relaxation
time λk(ξ) of mode k depend on the structure according to ηp,k(ξ) = Gkλk(ξ). The ratio
between the solvent viscosity and the zero-shear viscosity for the undamaged material is
defined as β0 = ηs/η0. Here, η0 = ηs + ηp0 is the zero-shear viscosity, with ηp0 = ∑m

k=1 ηp0,k
being the total polymer viscosity of the undamaged material.

The evolution of the structure parameter can be described with a rate or stress-
controlled kinetic equation. The rate-controlled equation is as follows [24]:

Dξ

Dt
=

1− ξ

λθ
− Eγ∗(ξ − ξinf), (8)

where λθ is a characteristic time scale for the recovery of the material structure, E =
√

2trD2 is
a measure of the deformation rate based on the rate of deformation tensor D, corresponding
to the shear rate in shear flows. Furthermore, γ∗ is a dimensionless fitting parameter that
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indicates how much of the applied deformation leads to the damage of the structure. We
modified Equation (8) to obtain the following stress-controlled equation:

Dξ

Dt
=

1− ξ

λθ
− τc(τ)

ηp0
τ∗(ξ − ξinf), (9)

where τc(τ) is a characteristic stress in the material that is a function of the viscoelastic
stress tensor, and τ∗ is a dimensionless fitting parameter that describes how much of the
present stress contributes to the damage of the elastic network. Here, the equivalent von
Mises shear stress is used as characteristic stress τc(τ) [25]:

τc(τ) =

√
1
2

τ̂ : τ̂, (10)

with τ̂ = τ − 1
3 (tr τ)I, the deviatoric part of the total viscoelastic stress tensor.

2.6. Arbitrary Lagrangian–Eulerian Formulation

For both the 2D planar and 3D swell problem, a body-fitted approach is used to take
into account the movement of the free surfaces. To this end, the domain is described with a
mesh that is moving in time in such a way that it follows the movement of the free surfaces,
but not necessarily the movement of the fluid. Therefore, the governing equations are
rewritten in the Arbitrary Lagrangian–Eulerian (ALE) formulation [26]. The convective
terms in equations that contain material derivatives have to be corrected for the mesh
movement:

D()

Dt
=

∂()

∂t

∣∣∣
xg
+ (u− um) · ∇(). (11)

where ∂()/∂t
∣∣
xg

denotes the time derivative at a fixed grid point xg and um is the mesh
velocity.

2.7. Free Surface Description
2.7.1. Two-Dimensional Planar Problem

For the 2D planar problem, the evolution of the free surface is described using a 1D
height function [27]:

∂h
∂t

+ ux
∂h
∂x

= uy, (12)

where h is the height of the free surface in every node on Γfree and the subscript y indicates
the swell direction of the free surface.

2.7.2. Three-Dimensional Problem

For the 3D problem, the corner-line method as described in [21] is used to obtain
the positions of the free surfaces. Here, the corner lines of the extrudate are described as
material lines. The following kinematic equation is solved to obtain the y and z-positions
of these lines:

∂d
∂t

+ ux
∂d
∂x

= u2D, (13)

where d is the position vector containing the positions f in y and z-directions d = ( fy, fz),
and u2D is the velocity vector containing the velocities in y and z-directions u2D = (uy, uz).

The free surfaces, connected by a corner line, are described using 2D height func-
tions [27]. The domain of the height function is not constant in time but changes due to the
movement of the corner lines. This change has to be taken into account, and this is done
using the ALE method. This leads to the following equation to obtain the heights h of the
free surfaces:

∂h
∂t

∣∣∣
xg
+ ux

∂h
∂x

+ (uz − um,z)
∂h
∂z

= uy, (14)
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where ∂()/∂t
∣∣
xg

denotes the time derivative in a fixed grid point of the 2D grid of the
expanding domain, the subscript z indicates the direction of the expanding 2D (x,z) domain,
and um,z is the corresponding mesh velocity. The subscript y indicates the swell direction
of the upper free surface (see Figure 2). For the free surfaces at the sides of the die, y and
z in Equation (14) are interchanged due to the rotation of the surface with respect to the
upper free surfaces.

2.8. Boundary- and Initial Conditions

Schematic representations of the 2D and 3D domains are shown in Figure 1 and
in Figure 2, respectively. Fully developed inflow conditions are prescribed at the inlet
boundary Γin by first solving a subproblem of a periodic channel. A flow rate Q is enforced
to this channel as a constraint using a Lagrange multiplier. The periodic velocity, structure
parameter and conformation tensor solution of this channel are prescribed as an essential
boundary condition to the inlet boundary (Γin) of the problem. Note, that the periodic
solution is a function of time t. At the walls of the die (Γdie), a no-slip boundary condition
is applied, whereas the tractions are zero at the free surfaces (Γfree). At the outlet (Γout), a
free outflow is described, which means that there is no velocity in y and z-directions and
the traction in x-direction is zero. The boundary conditions are given by

uin = uchan on Γin,

ck,in = ck,chan on Γin,

ξin = ξchan on Γin,

u = 0 on Γdie, (15)

uy = 0 on Γout,

tx = 0 on Γout,

t = 0 on Γfree,

where uchan, ξchan and ck,chan are obtained from the separate periodic channel problem. The
traction vector on the surface with an outwardly directed normal n is denoted by t = σ · n.
An essential boundary condition on the height function of every free surface is applied
such that the free surface stays attached to the die.

The initial conditions for the height functions are given by

d(t = 0) = d0,

h(t = 0) = H0, (16)

where d0 and H0 are equivalent to the coordinates of the corner points of the die and
the height of the die, respectively. The initial condition for the conformation tensor ck in
Equation (5) is given by

ck(t = 0) = I, (17)

The fluid is initially assumed to be undamaged, which leads to the following initial
condition for the structure parameter ξ:

ξ(t = 0) = 1 (18)

The initial conditions presented in Equations (17) and (18) are applied to both the
periodic inlet channel and Ω.

3. Numerical Method

The finite element method is used to solve the governing equations. The log-conformation
representation [28], SUPG [29] and DEVSS-G [30] are used for stability in solving the
constitutive equation. SUPG is also used for stability in the height function equations of
the free surfaces and the corner lines.



Polymers 2021, 13, 4383 7 of 24

3.1. Weak Formulations

The weak formulation of the balance equations can be derived by multiplying the
equations with test functions and integrating over the domain using partial integration
and the Gauss theorem.

The weak form of the mass and momentum balance and the constitutive equation can
now be formulated as follows: find u, p, G and sk such that(

(∇v)T , ν(∇u−GT)
)
+ (Dv, 2ηsD + τ)− (∇ · v, p) = 0, (19)

(q,∇ · u) = 0, (20)

(H,−∇u + GT) = 0, (21)(
ζ + τ1(u− um) · ∇ζ,

∂sk
∂t

∣∣∣
xg
+ (u− um) · ∇sk − g(G, sk)

)
= 0, (22)

for all admissible test functions v, q, H, ζ. Furthermore, Dv = (∇v + (∇v)T)/2, (·, ·)
denotes the inner product on domain Ω, and ν and τ1 are parameters due to DEVSS-G
and SUPG stabilization, respectively. Furthermore, sk = log ck. More information on
log-conformation stabilization and the function g can be found in [28], whereas more
information on the DEVSS-G method and the projected velocity gradient G can be found
in [30].

The weak form of the evolution equations for the rate and stress-controlled structure
parameter can be formulated as follows: find ξ such that(

χ + τ2u · ∇χ,
∂ξ

∂t

∣∣∣
xg
+ (u− um) · ∇ξ − 1− ξ

λθ
+ f (ξ − ξinf)

)
= 0 (23)

for admissible test functions χ. Here, f = Eγ∗ for the rate-controlled model,
f = (τcτ∗)/ηp0 for the stress-controlled model, and τ2 is again a parameter due to SUPG
stabilization. For the 2D problem, the weak formulation for the height function is the same
as formulated by Choi and Hulsen [31], whereas for the 3D problem, the weak formulations
of the height functions of the corner lines and the free surfaces can be found in [21].

3.2. Spatial Discretization

For the 2D planar isoparametric problem, triangular P2P1 (Taylor–Hood) elements
are used for the velocity and pressure. For the conformation, triangular P1 elements are
used. For the 1D height function, quadratic line elements are used, whereas for the kinetic
equations of the structure parameter, triangular P1 elements are used. A structured mesh is
generated using Gmsh [32]. For the 3D isoparametric problem, tetrahedral P2P1 (Taylor–
Hood) elements are used for the velocity and pressure, whereas for the conformation,
tetrahedral P1 elements are used. For the 1D height functions of the corner lines, quadratic
line elements are used, whereas for the 2D height functions of the free surfaces, quadratic
triangular elements are used. For the kinetic equations of the structure parameter, tetrahe-
dral P1 elements are used. Equations (22) and (23) are solved using SUPG for stability. The
SUPG parameters are obtained as follows:

τ = βSUPG
helem
2|u| . (24)

where βSUPG = 1, τ is calculated in every integration point and helem is the element size
and is defined using the method of Hughes et al. [33]. SUPG stabilization is also used for
the height function of the free surface. More information on the SUPG parameter for the
weak form of the height function for the 2D planar problem can be found in [31], whereas
for the 3D problem, this can be found in [21].
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3.3. Time Discretization

A predictor–corrector scheme is used to obtain the positions of the free surface. To
start, a Newtonian time step is performed with an initially homogeneous undamaged
structure parameter field ξ = 1 to obtain the initial velocities and pressures. The numerical
procedure of every time step is now as follows:

Step 1 Predict and update the position of the free surface, xfree, in the bulk mesh. For the
first time step, the prediction of the position equals the initial position: xfree,pred =
xfree,0. For subsequent time steps, a second-order prediction of the free surface
position is used:

xfree,pred = 2xn
free − xn−1

free . (25)

Step 2 Construct the ALE mesh. This is done by solving a Laplace equation to obtain the
mesh displacement, as explained in [21]. The new coordinates of the nodes are
calculated using this obtained mesh displacement.

Step 3 The mesh velocities can now be obtained by numerically differentiating the mesh
displacement. In the first time step, the mesh velocities are zero, since the height
function is equal to the initial height H0. For subsequent time steps, a second-order
backward differencing scheme is used, using the updated mesh nodes:

un+1
m =

3
2 xn+1

m − 2xn
m + 1

2 xn−1
m

∆t
, (26)

where ∆t is the time step used.
Step 4 A prediction is done for the velocity and the conformation fields. In the first time

step, a first-order prediction is used: û = un, ĉ = cn. For subsequent time steps, a
second-order prediction of the velocity and conformation field is used:

û = 2un − un−1, (27)

ĉ = 2cn − cn−1. (28)

The velocity prediction is used to calculate En+1 in the rate-controlled kinetic equa-
tion for ξ, whereas the conformation prediction is used to calculate the von Mises
equivalent shear stress τc(τ̂), as given by Equation (10), in the stress-controlled
equation for ξ. Equation (23) can now be solved to obtain the structure parameter
ξn+1 in every node of the mesh. For the first time step, first-order time integration
is used:

∂ξ

∂t

∣∣∣∣∣
xg

=
ξn+1 − ξn

∆t
, (29)

whereas for subsequent time steps, second-order time integration is used:

∂ξ

∂t

∣∣∣∣∣
xg

=
3
2 ξn+1 − 2ξn + 1

2 ξn−1

∆t
. (30)

The relaxation times are now updated using ξn+1.
Step 5 Using the method of D’Avino and Hulsen [34] for decoupling the momentum

balance from the constitutive equation, the velocities un+1 and pressures pn+1 are
computed. Using this implicit stress formulation, the balance equations are solved
using a prediction for the viscoelastic stress tensor to find un+1 and pn+1 at every
time step.

Step 6 After solving for the new velocities and pressures, the actual conformation tensor
cn+1 is found using a second-order, semi-implicit extrapolated backward differenc-
ing scheme with conformation prediction for Equation (22).
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Step 7 Update the position of the free surface by solving the evolution equation of the
height function (12). For the first time step, first-order time integration is used,
whereas for subsequent time steps, second-order time integration is used, as ex-
plained in [31].

For the 3D problem, the time integration scheme as presented in [21] is used. The
structure parameter ξ is calculated in the same way as presented in the time integration
scheme in this section.

4. Results

First, the results for mesh and time convergence are shown, followed by results for the
extrudate swell of thixotropic fluids. The relevant parameters used throughout this work
are given in Table 1. From now on, we refer to γ∗ and τ∗ as the “damage parameters”.

Table 1. Material parameters used in this study. Additionally, the parameters β = 0.1 and ξinf = 0.1
are used throughout this paper.

Mode λ0,k/λavg G0,kλavg/ηp0 α

1 10 0.0048 0.3
2 1 0.48 0.3
3 0.1 4.8 0.3

where λavg =
(

∑m
k=1 G0,kλ2

0,k
)
/
(

∑m
k=1 ηp0,k

)
is the viscosity averaged relaxation time of

the undamaged material, with m the number of modes. The Weissenberg number of the
problem is defined as follows:

Wi =
Uavgλavg

H0
(31)

This spectrum is chosen because it represents an elastic material with strong shear-
thinning behavior, as is characteristic for rubber compounds [35].

4.1. Convergence

To verify if the rate and stress-controlled thixotropy models are correctly implemented,
a convergence study is performed. A convergence study of the 2D and 3D swell code was
performed by Spanjaards et al. in [21,36]. Therefore, we now focus on the implementation
of the thixotropy models. In this convergence study, the thixotropy model is decoupled
from the flow, which means that the relaxation times are not adjusted with the structure
parameter ξ. A channel flow with length L = 100H0 of a single-mode Upper Convected
Maxwell (UCM) fluid (with relaxation time λ0 and ηs = 0) is modeled. A flow rate Q
is applied at the channel inlet, and the analytical solution of a fully developed flow is
prescribed to the velocity and the viscoelastic stress tensor. The Weissenberg number of the
problem equals Wi = 1. For a fully developed channel flow of an UCM fluid, the velocity,
shear rate and viscoelastic stresses can be found to be

ux(y) =
3Q
2H0

(1− y2

H2
0
) (32)

γ̇ =
3Q
H3

0
y, (33)

σxx = 2η0γ̇2, σyy = 0, σxy = η0γ̇, (34)

where H0 is the half height of the channel, η0 is the zero-shear viscosity of the fluid, Q is
the flow rate applied at the inlet of the channel, and y is the y-coordinate of the height of
the channel. Analytical solutions of Equations (8) and (9) can be defined as follows:

ξan = Ae−(
1

λθ
+ f )t

+ ξeq, (35)
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with
A = 1− 1 + f λθξinf

1 + f λθ
. (36)

where f and ξeq can be expressed as follows for the rate and stress-controlled equation,
respectively:

f = γ̇γ∗ (rate), f =
τc(τ)

η0
τ∗ (stress), (37)

ξeq =
1 + f λθξinf

1 + f λθ
. (38)

To avoid a singular point at the die wall, a linear profile for the structure parameter ξ
is applied as an essential boundary condition at the inlet. At the die wall, the analytical
solution for ξ is prescribed while linearly decreasing to zero with the y-coordinate at the
symmetry axis of the channel. A schematic representation of the 2D channel problem is
shown in Figure 3.

y

x

L = 100H0

H0

Γdie

Γsym

ΓoutΓin
Q

Ω
ξ

ξan

1

u = uan

c = can

Figure 3. Schematic representation of the 2D channel problem used in the convergence study.

4.1.1. Mesh Convergence

The solution of ξan for meshes with different element sizes is compared to the com-
puted ξ at the outlet of the channel Γout for the rate and stress-controlled implementation.
More information on the meshes used can be found in Table 2. Here, helem is the element
size over the height with respect to the channel height H0. The relative error at a time
t = 10λ0 is defined as

ε(y) =

( ∫
Γout

(ξ − ξan)2
)1/2

( ∫
Γout

ξ2
an

)1/2

∣∣∣∣∣∣∣
t=10λ0

, (39)

where ξ is the structure parameter on the outlet of the channel, ξan is the analytical solution,
ε(y) is the relative error in ξ for different heights y on the outlet, and Γε is Γout.

Table 2. Meshes used in the mesh convergence study on a 2D channel flow problem.

Mesh # Nodes helem/H0

M1 7209 0.25
M2 27217 0.125
M3 105633 0.0625
M4 416065 0.03125

The result is shown in Figure 4. For both methods, convergence with order two is
obtained, which was expected based on the order of interpolation of the elements.
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Figure 4. Relative error in ξ at the outlet of the channel for 2D meshes with different element sizes.

Figure 5 shows a 2D planar swell mesh that is one uniform refinement step coarser
compared to the mesh used throughout the remainder of this paper. The coarsest element
size at the symmetry axis of the mesh used in this paper is hsym = 0.05H0. The mesh is
progressively refined with a factor of 5 towards the die wall hwall = 0.01H0, and with a
factor of 10 towards the die exit hdie−exit = 0.005H0.

Figure 5. Two-dimensional planar swell mesh one uniform refinement step coarser compared to the
mesh used throughout the remainder of this paper.

The 3D problem is much more computationally demanding than the 2D planar prob-
lem. Therefore, a coarser mesh is used. The 3D mesh is shown in Figure 6. Here, the
coarsest element size is hsym = 0.2H0. The mesh is refined with a factor 5 at the die exit.
Since this mesh is much coarser than the 2D planar mesh, the 3D results will only be used
to get a qualitative idea of the influence of thixotropy on the final extrudate shape. More
information about the 2D and 3D swell mesh used in this paper can be found in Table 3.

Figure 6. Three-dimensional mesh used in this study. Refinement factor at the die exit is 5.

Table 3. Two and three-dimensional meshes for the swell problems in this paper.

Mesh # Nodes # Elements hsym/H0 hwall/H0 hdie-exit/H0

2D 58401 28800 0.05 0.01 0.005
3D 50467 32444 0.2 0.2 0.04
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4.1.2. Time Convergence

Time convergence is tested on Mesh M4. The solution for different time step sizes
is compared to a reference solution for a reference time step that is two times smaller
compared to the smallest time step tested. The relative error at time t = λ0 is calculated
as follows:

ε(y) =

( ∫
Γout

(ξ − ξref)
2
)1/2

( ∫
Γout

ξ2
ref

)1/2

∣∣∣∣∣∣∣
t=λ0

, (40)

where ξref is the solution for the reference time step. The result is shown in Figure 7. For
both methods, convergence with order two is obtained, with was expected based on the
order of the time integration.

10-3 10-2 10-1
10-6

10-5

10-4

Figure 7. Relative error in ξ at the outlet of the channel at time t = λ0, for different time step sizes ∆t
for the rate and stress-controlled approach.

Throughout this paper, a time step size of ∆t = 1.25 · 10−3λavg is used.

4.2. Constant Flow Rate

At first, a constant flow rate is applied to the inlet of the die. The influence of the model
parameters in the rate and stress-controlled equations for the structure parameter (λθ , γ∗,
τ∗) is studied in this section, as well as the difference between the rate and stress-controlled
approach.

4.2.1. Rheology

In order to study the differences between the rate and stress-controlled approach,
the rheology of both methods has to be matched. To this end, we chose to match the
equilibrium value for the structure parameter ξeq in steady shear (see Equation (38)) for
both methods at a characteristic shear rate γ̇c = Uavg/H0. This characteristic shear rate is
used in the simulations throughout this paper when the two models are compared and
corresponds to a Weissenberg number of Wi = 5. The transient polymer viscosity for two
different recovery time scales λθ and different damage model parameters γ∗ and τ∗ is
shown in Figure 8. This figure shows that the steady state viscosity is indeed the same for
the rate and stress-controlled approach for the characteristic shear rate, but the transient
behaviors are not.
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Figure 8. Transient polymer viscosity for γ̇c, where γ∗ and τ∗ are chosen such that ξeq is matched for
the rate and stress-controlled approach to obtain the same steady-state rheology for both models.
(a) λθ = 10λavg. (b) λθ = 100λavg.

The stress-controlled approach predicts a smaller overshoot compared to the rate-
controlled approach for all damage parameters except the highest, for which a slightly
higher overshoot is predicted by the stress-controlled approach. Figure 9 shows the equilib-
rium value of ξ in steady state for different Weissenberg numbers for both approaches. The
vertical black dotted line indicates the Weissenberg number corresponding to the character-
istic shear rate for which both models match. This figure shows that ξeq is indeed matched
for the characteristic shear rate. It is however clear that for γ̇ < γ̇c, the stress-controlled
approach predicts a smaller value for ξeq (indicating more structural damage), whereas
for γ̇ > γ̇c, the stress-controlled approach predicts a larger value for ξeq (less structural
damage) compared to the rate-controlled approach.
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0.8

0.9
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(b)

Figure 9. Equilibrium structure parameter ξeq as a function of Weissenberg number. Here, γ∗ and
τ∗ are chosen such that ξeq is matched for the rate and stress-controlled approach at a characteristic
shear rate γ̇c. (a) λθ = 10λavg. (b) λθ = 100λavg.

The damage parameters used in this paper to compare the stress and rate-controlled
approach are given in Table 4.
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Table 4. Damage parameters used to match the rheology of the rate-controlled approach (γ∗) and
the stress-controlled approach (τ∗) at the characteristic shear rate γ̇c for two different recovery
time scales.

λθ = 10λavg λθ = 100λavg

γ∗ τ∗ γ∗ τ∗

0.01 0.019 0.01 0.04655
0.1 0.4655 0.1 0.92
1 9.2 1 10.5

10 105 10 105

4.2.2. Influence Model and Model Parameters on Swell Behavior

In this section, we study the influence of different recovery time scales λθ and damage
parameters γ∗, τ∗, on the 2D planar swell behavior of thixotropic fluids. A constant flow
rate Q is applied at the inlet such that Wi = 5. The differences between the rate and
stress-controlled approaches are presented. Results are compared for two Weissenberg
numbers (Wi = 1, Wi = 5) for the rate-controlled approach with λθ = 10λavg and different
damage parameters γ∗ to study the effect of elasticity.

Figure 10 shows the swell ratio of the point of the free surface on Γout in time for
different model parameters and both the rate and stress-controlled models for Wi = 5.
The swell ratio for the viscoelastic fluid without thixotropy is also added, as well as the
Newtonian swell ratio.
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1.4

1.5

1.6

(b)

Figure 10. Swell ratio as a function of dimensionless time of the point of the free surface on Γout for
different values of γ∗ for the rate-controlled approach and the corresponding value of τ∗ for the
stress-controlled approach. (a) λθ = 10λavg and (b) λθ = 100λavg. Solid lines are the rate-controlled
model predictions, dashed lines are the corresponding stress-controlled model predictions. The black
dashed line indicates the Newtonian swell ratio. (a) λθ = 10λavg. (b) λθ = 100λavg.

From this figure, the following trends can be observed:

• Observation 1: A larger damage parameter does not necessarily lead to a smaller
swell ratio. Upon increasing the damage parameter, the results first show a swell
ratio smaller than the swell ratio of a Newtonian fluid. Further increasing the damage
parameter leads to a swell ratio approaching the value of a Newtonian fluid.

• Observation 2: The stress-controlled approach always results in a larger steady state
swell ratio compared to the rate-controlled approach.

• Observation 3: For large values of the damage parameter (γ∗ and τ∗), the swell ratio
is higher when λθ is larger, whereas for small values of the damage parameter, the
opposite effect is observed.
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• Observation 4: For γ∗ = 0.01–0.1, the swell ratio of the outer point of the free surface
shows a maximum. For γ∗ = 1, a maximum and a minimum in the swell ratio are
observed.

• Observation 5: Thixotropy seems to always decrease the swell ratio compared to the
case without thixotropy. This agrees with our expectations, since thixotropy decreases
the elasticity in the material by decreasing the relaxation times. The swell ratio for the
largest damage parameter tested approaches the swell ratio for a Newtonian fluid.

We will first focus on Observation 1. A smaller γ∗ leads to less damage and therefore
to larger relaxation times and more elasticity in the material compared to a larger γ∗.
Therefore, initially, a decrease in swell ratio is observed upon increasing the damage
parameter. However, when we continue to increase γ∗, the steady state swell ratio starts to
increase again. Since the relaxation times are adjusted with the local structure parameter
ξ (See Equation (7)) but the moduli are kept constant, the viscosity ηp = ∑m

k=1 Gk(ξλ0,k)
also changes locally with ξ. The total shear viscosity η = ηs + ηp divided by the zero-shear
viscosity in the whole domain is shown in Figure 11 for λθ = 10λavg for the rate-controlled
approach. This figure shows that upon increasing γ∗, first a low viscosity layer appears at
the die wall. Upon further increasing the damage parameter, the viscosity difference in
the die becomes smaller because the thickness of this low viscosity layer increases. The
region with the highest viscosity is always in the middle of the die (at the symmetry line in
Figure 11). The ratio of the total viscosity and the zero-shear viscosity is plotted over the
height of the inlet of the die in Figure 12a. This figure shows that for small values of the
damage parameter, there is a region of low viscosity fluid at to the die wall, but there is also
a high viscosity region near the symmetry axis. Upon increasing the damage parameter,
the thickness of this high viscosity core decreases until eventually there is only a small
region of high viscosity fluid left near the symmetry axis of the die, approaching the result
for a purely Newtonian fluid with a constant viscosity. The corresponding dimensionless
velocity magnitude for the rate-controlled approach plotted over the die height at the inlet
is shown in Figure 12b. This figure shows that the velocity profile is initially flattened with
increasing γ∗, decreasing the swell ratio because the flow starts to look more like a plug
flow. Upon further increasing γ∗, the thickness of the low viscosity layer increases, and the
velocity profile becomes more parabolic again, leading to an increased swell ratio.

According to the inelastic swell theory presented by Tanner [19], a less viscous outer
layer results in a decreasing swell ratio when the core region is large. This is also what
is initially observed in Figure 10. However, Observation 1 shows that when the high
viscosity core becomes very small, the swell ratio starts to increase again and approaches
the Newtonian swell ratio.

To explain Observation 2, we plotted the damage terms (Eγ∗, τcτ∗/ηp0) as a function
of the Weissenberg number in steady shear for both approaches in Figure 13 (left). This
figure shows that, due to the dependency of τc on the local structure in the material, the
damage term in the stress-controlled approach is not linearly dependent on the Weissenberg
number, whereas this is the case for the rate-controlled approach. Figure 9 shows that
this difference leads to a smaller structure parameter for small Weissenberg numbers
but a higher structure parameter for high Weissenberg numbers for the stress-controlled
approach. This is also shown in Figure 13 (right), where the contour lines for the structure
parameter ξ are plotted for both approaches (λθ = 10λavg, γ∗ = 1). Unless indicated
otherwise, all contour plots presented in this paper are made with equidistant contour
lines with an interval of 0.01. The stress-controlled approach predicts a smaller undamaged
core compared to the rate-controlled approach. Figure 12 shows that for small values of
the damage parameter, the viscosity close to the die wall is higher for the stress-controlled
approach compared to the rate-controlled approach but smaller close to the symmetry
axis. This leads to a flatter velocity profile for the rate-controlled approach and therefore
to a larger swell ratio for the stress-controlled approach. For larger damage parameters,
however, the high viscosity core even seems to be smaller for the stress-controlled approach
compared to the rate-controlled approach. This leads to a larger maximum velocity and a
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more parabolic velocity profile in the die. This also causes the stress-controlled approach
to predict a larger swell ratio.

λθ = 10λavg, γ∗ = 0.01 λθ = 10λavg, γ∗ = 0.1

λθ = 10λavg, γ∗ = 1 λθ = 10λavg, γ∗ = 10

Figure 11. Total shear viscosity divided by the zero-shear viscosity predicted by the rate-controlled
approach for λθ = 10λavg and different damage parameters γ∗.
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Figure 12. Ratio of the total viscosity and the zero-shear viscosity over the die height at Γin for
λθ = 10λavg and different damage parameters for the rate and stress-controlled approaches (a).
Dimensionless velocity magnitude over the die height at Γin for λθ = 10λavg and different damage
parameters for the rate-controlled approach (b). (a) λθ = 10λavg. (b) λθ = 10λavg.
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Figure 13. Damage terms of the rate and stress-controlled approaches as a function of Weissenberg
number in steady shear (left). Contour plots of the structure parameter ξ for λθ = 10λavg an
γ∗ = 1 for the rate-controlled approach and the corresponding values for the stress controlled
approach (right). Unless indicated otherwise, all contour plots presented in this paper are made with
equidistant contour lines with an interval of 0.01.
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To explain Observation 3, we refer to Equation (38). This equation shows that the
same equilibrium value of the structure parameter is found if the damage parameter times
the recovery time scale is equal. This means that γ∗ = 0.1, λθ = 10λavg gives the same
equilibrium structure as γ∗ = 0.01, λθ = 100λavg. Figure 10 also shows that the swell ratio
for the values that give the same ξeq are close but not equal. This can be explained by
the different transient behavior for different recovery time scales λθ . Figure 14 shows the
contour plots for the structure parameter for λθ = 10λavg (left) and λθ = 100λavg (right)
for different γ∗λθ combinations that give the same ξeq.

λθ = 10λavg, γ∗ = 0.1 λθ = 100λavg, γ∗ = 0.01

λθ = 10λavg, γ∗ = 1 λθ = 100λavg, γ∗ = 0.1

λθ = 10λavg, γ∗ = 10 λθ = 100λavg, γ∗ = 1

Figure 14. Contour plots of the structure parameter ξ predicted by the rate-controlled approach for
λθ = 10λavg (left) and λθ = 100λavg (right) for different damage parameter and recovery time scale
combinations that give the same ξeq.

From this figure, we can conclude that for large damage parameters, there is a large
area in the die where the material has structure parameter ξ = ξinf. This also shows that
the layers of fluid with a certain structure parameter ξ extend over a greater length close to
the free surface (contour lines are more horizontal) when λθ is larger. This can be attributed
to the difference in transient behavior, because the time for the fluid to recover is longer.
In the extrudate, the shear rates and the stresses are low, and therefore the structure can
recover here. This will take longer when λθ is larger, meaning that the viscosity in the
low viscosity layer away form the symmetry line will be lower for a longer time when
λθ = 100λavg. This leads to a larger velocity in the x-direction in the extrudate compared
to λθ = 10λavg but a lower velocity in the y-direction. This leads to more extended layers
of fluid with a certain structure parameter ξ.

To explain Observation 4, we have to look at the transient behavior of the structure
in the material. Initially, the fluid is undamaged (ξ = 1). Due to flow, a small layer of
damaged fluid starts to grow near the die wall. At this point, the fluid is still elastic and
will start to swell once it leaves the die, leading to the maximum in the swell ratio. While
the damaged layer of fluid starts to grow, a low viscosity and more viscous layer appears
near the die wall, leading to a decrease in the swell ratio. After a certain amount of time,
this layer spans almost the whole height of the die, leading to a small high viscosity core
layer, and the swell ratio starts to increase again, leading to the minimum for γ∗ = 1. This
is schematically shown in Figure 15 for λθ = 10λavg, γ∗ = 1. This figure also shows the
convection of the maximum and minimum swell height of the free surface.

To show the influence of the Weissenberg number, simulations are also performed for
Wi = 1. Figure 16a shows the swell ratio in time for λθ = 10λavg and different damage
parameters for the rate-controlled equation. The result shows the same qualitative trend
as Figure 10 for increasing γ∗. The overall swell ratio is higher for a higher Weissenberg
number due to the larger effect of elasticity in the material. For both values of Wi, it is
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observed that upon increasing the damage parameter, first, a swell ratio smaller than the
Newtonian value is obtained. Upon further increasing γ∗, the swell ratio approaches the
Newtonian value. γ∗ = 0.1 is the only damage parameter for which a lower final swell ratio
is predicted for Wi = 5 compared to Wi = 1. Figure 16b shows that the final swell ratio for
this damage parameter close to the die exit (x/H0 = 0) is higher for Wi = 5 compared to
Wi = 1, whereas near Γout (x/H0 = 5), the opposite is observed. Therefore, we suspect that
there is a complex interplay between higher swell due to a higher Weissenberg number
and a decrease in swell due to larger damage at higher Wi for γ∗ = 0.1 in the extrudate.
More research is needed to fully understand this phenomenon.

t/λθ = 0.01

t/λθ = 0.075

t/λθ = 5

Figure 15. Contour plots of the structure parameter ξ predicted by the rate-controlled approach for
λθ = 10λavg and γ∗ = 1 for different instances in time.
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Figure 16. Swell ratio as a function of dimensionless time for the point of the free surface on Γout (a)
and final swell ratio of the free surface as a function of the x-coordinate along the free surface (b).
Here, x/H0 = 0 corresponds to the x-coordinate at the die exit. Results are obtained for different
values of γ∗ for the rate-controlled approach using two different Weissenberg numbers. Solid lines
indicate the results for Wi = 5, whereas dashed lines indicate the results for Wi = 1.

4.2.3. Three-Dimensional Extrudate Swell

Three-dimensional simulations of a viscoelastic fluid emerging from a rectangular die
with an aspect ratio of 2:1 are performed to show the effect of a changing structure in the
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material in three-dimensional extrudates. The rate-controlled approach is used to model
the time-dependent evolution of the structure in the material. Figure 17 shows the contour
of the extrudate shape in steady state for λθ = 10λavg, different damage parameters and
Wi = 5. Here, a similar effect of thixotropy on extrudate swell as for the 2D planar problem
is observed.
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Figure 17. Contour of a 3D extrudate of a thixotropic viscoelastic fluid. Evolution of the structure in
the material is modeled using the rate-controlled approach with λθ = 10λavg and different damage
parameters for Wi = 5.

Initially, the swell decreases when thixotropy is introduced. For increasing γ∗, how-
ever, the swell ratio starts to increase again. This effect is more pronounced for the height of
the extrudate than the width of the extrudate. This can be attributed to the higher shear rate
in the height direction compared to the width direction. The swell ratios for a thixotropic
fluid are always smaller compared to the viscoelastic fluid without thixotropy.

4.3. Fluctuating Flow Rate

All previous results are obtained by applying a constant flow rate Q at the die inlet.
However, in many industrial processes, the flow rate is not constant but fluctuates in time.
In this section, the effect of a fluctuating flow rate on the structure in the material and the
swell ratio of the 2D planar extrudate is studied using the rate-controlled model for the
kinetic equation of the structure parameter ξ. A sinusoidal flow rate is applied to the inlet,
with different periods 2π/tp, where tp is the time it takes for the sine function to complete
one period:

Q = sin
(
2π

t
tp

)
+ UavgH0. (41)

First, the effect of a fluctuating flow rate is studied for the non-thixotropic fluid and
an average Weissenberg number of Wi = 1. Here, flow rates are applied with different
dimensionless times for the period of a sine t∗p = tp/λavg. The swell ratio of the outer point
on the free surface at Γout is shown as a function of dimensionless time in Figure 18. This
figure shows that, although the flow rate is sinusoidal, the corresponding periodicity in the
swell ratio is presented by a higher-order sine function, where two frequencies are visible.
An explanation for this is as follows: for high flow rates, more fluid is flowing through the
die at a certain time interval compared to lower flow rates. Therefore, it takes longer for
the effect of the decrease in flow rate to be noticed at the end of the extrudate compared to
the effect of the increase in flow rate, and the effect of two different time scales is observed.

The frequencies chosen to study the influence of thixotropy on extrudate swell for a
fluctuating flow rate correspond to the following dimensionless times for one period of
the sine: t∗p = tp/λθ = 1, t∗p = tp/λθ = 5, as shown in Figure 19. Results are obtained for
λθ = 10λavg, different damage parameters and an average Weissenberg number of Wi = 1.
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Figure 18. Swell ratio as a function of dimensionless time for the point of the free surface on Γout, for
a sinusoidal flow rate with dimensionless frequency f ∗ = 1/t∗p, with t∗p = tp/λavg.
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Figure 19. Sinusoidal flow rate with dimensionless period t∗p = tp/λθ = 1 (solid line), and t∗p =

tp/λθ = 5 (dashed line) and the constant flow rate applied in previous results (dotted line).

Figure 20 shows the swell ratio of the point of the free surface on Γout as a function
of dimensionless time for a fluctuating flow rate with both dimensionless periods t∗p. The
swell ratio is plotted for different values of γ∗.
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Figure 20. Swell ratio as a function of dimensionless time for the point of the free surface on Γout,
for different values of γ∗ and a sinusoidal flow rate with dimensionless frequency f ∗ = 1/t∗p, with
t∗p = tp/λθ = 5 (a), and t∗p = tp/λθ = 1 (b). The red dotted line represents the applied flow rate.
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This figure shows that for a fluctuating flow rate, the fluctuation is also visible in the
swell ratio of the end point of the free surface. For small values of γ∗ and non-thixotropic
materials, the swell ratio increases with Q, due to an increase in the Weissenberg number,
and decreases when the flow rate decreases. Since the material starts to swell more when
the flow rate increases, and it takes time for this material to reach the end of the extrudate,
there is a delay between the maximum in the flow rate and the corresponding maximum in
the swell ratio for small values of γ∗ and the non-thixotropic fluid. For the high frequency
case, the fluctuations in the swell ratio are much more pronounced compared to the small
frequency case. The fluctuations seem to weaken when the damage parameter increases. It
can also be observed that, for the high frequency case, the maxima in the swell ratio for
γ∗ = 1 and γ∗ = 10 occur at the same dimensionless time as the minima for γ∗ = 0.01 and
the non-thixotropic fluid. For higher values of γ∗, the structure parameter will be smaller
when Q is large due to an increasing shear rate, meaning that the structure in the material
is more damaged and the fluid becomes less elastic. This decreases the swell ratio. When
Q decreases again, the structure in the material increases, hence increasing the elasticity
and thus the swell ratio. The complex coupling of the competing effect of decreasing Wi
due to damaging the structure at high flow rates, while simultaneously increasing the
shear rate at higher flow rates and therefore increasing Wi, leads to the complex transient
behavior for a fluctuating flow rate. To show the change in structure in the material, the
contour of the structure parameter ξ is shown in Figure 21 for γ∗ = 0.1 and γ∗ = 10 at a
time interval where the flow rate is at its maximum (1), the flow rate equals the constant
applied flow rate (2) and where the flow rate is at its minimum (3), as indicated in Figure 19.
Figure 21 clearly shows the change in structure at the different moments in time, due to
the fluctuating flow rate. When the flow rate is at its maximum (1), there is a large area of
damaged material (small structure parameter ξ) in areas where the shear rate is high. This
is much more severe when the damage parameter is large. When the flow rate decreases
again, the material has time to recover, and the structure parameter will increase again.

γ∗ = 0.1, (1) γ∗ = 10, (1)

γ∗ = 0.1, (2) γ∗ = 10, (2)

γ∗ = 0.1, (3) γ∗ = 10, (3)

Figure 21. Contour plots of the structure parameter ξ predicted by the rate-controlled approach for
λθ = 10λavg and γ∗ = 0.1 (left) and γ∗ = 10 (right) for different instances in time as indicated by
the red numbers in Figure 19 for a fluctuating flowrate Q. The contour plots in this figure are made
with equidistant contour lines with an interval of 0.025 for clarity.

5. Conclusions

In this paper, we studied the effect of thixotropy on extrudate swell. To this end,
we used a rate and stress-controlled equation for a structure parameter that indicates the
degree of structure in the material. The relaxation times are adjusted with this structure
parameter, which effectively means that the fluid becomes less elastic when the structure
is damaged.
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Rate and stress-controlled approaches are compared by matching the damage param-
eters in the evolution equation for the structure parameter in such a way that the steady
state structure parameter and the steady state viscosity are matched at a characteristic shear
rate. Furthermore, the effects of the recovery time scale and the damage parameter in the
kinetic equation for the structure parameter are studied. It was found that thixotropy in
general decreases the swell ratio. When the damage parameter in the models is increased,
an outer layer with lower viscosity appears near the die wall, which decreases the swell
ratio to a value below the Newtonian swell ratio. Upon further increasing the damage pa-
rameter, the high viscosity core becomes very small, leading to an increase in the swell ratio
approaching the Newtonian value. Furthermore, it was found that the stress-controlled
approach always predicts a larger swell ratio compared to the rate-controlled approach for
the Weissenberg number range studied in this paper.

Results for varying the recovery time scale of the structure in the material show that
even though the damage and recovery parameters predict the same equilibrium value for
ξ, a different transient behavior of the structure is observed. This leads to different, but
comparable, swell ratios for the same equilibrium structure parameter.

The effect of thixotropy on the swell ratio is studied for two different Weissenberg
numbers (Wi = 1, Wi = 5). Results show an overall higher swell ratio for the higher
Weissenberg number. However, a complex interplay between higher swell due to a higher
Weissenberg number and a decrease in swell due to larger damage at higher Wi is observed
for small damage parameters. This interplay is an interesting topic for future research.

A proof of concept of the thixotropy model is given in 3D by performing simulations
for Wi = 5 using the rate-controlled approach and different damage parameters. Contours
of the final extrudate shape show a similar effect of thixotropy on extrudate swell compared
to the 2D planar problem.

Finally, the effect of a fluctuating flow rate is studied for the rate-controlled approach.
To this end, a sinusoidal flow rate is applied with different frequencies. Results show that
the fluctuation in the swell ratio decreases with increasing damage parameter. There also
seems to be a complex coupling between the decrease of Wi when the structure is damaged
at high flow rates and the increase in Wi due to an increasing shear rate at increasing flow
rates. This leads to complex transient behavior.

In conclusion, this paper shows that thixotropy in general decreases extrudate swell,
but complex transient behavior occurs when the fluid is thixotropic. Results show that
the emergence of fluid layers with different viscosities in the die due to thixotropy highly
influences the swell ratio.
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