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Abstract: In this paper, an experimental strategy is presented to characterize the rheological behavior
of filled, uncured rubber compounds. Oscillatory shear experiments on a regular plate-plate rheome-
ter are combined with a phenomenological thixotropy model to obtain model parameters that can be
used to describe the steady shear behavior. We compare rate- and stress-controlled kinetic equations
for a structure parameter that determines the deformation history-dependent spectrum and, thus,
the dynamic thixotropic behavior of the material. We keep the models as simple as possible and the
characterization straightforward to maximize applicability. The model can be implemented in a finite
element framework as a tool to simulate realistic rubber processing. This will be the topic of another
work, currently under preparation. In shaping processes, such as rubber- and polymer extrusion,
with realistic processing conditions, the range of shear rates is far outside the range obtained during
rheological characterization. Based on some motivated choices, we will present an approach to
extend this range.

Keywords: fillers; rubber compounds; viscoelasticity; thixotropy; structure

1. Introduction

Rubber extrusion is widely used in the automotive industry to produce, for example,
rectangular rubber strips, which can be stripwinded into the carcass of a car tire, and
weather strips that seal a car door and prevent rainwater and dust from coming in. Rubber-
like materials are typically viscoelastic and show nonlinear and time-dependent rheological
behavior under stress. The dimensions and quality of the rubber extrusion products highly
depend on the rheological properties of the compound. Rubber compounds are complex
materials in the sense that they contain many additives, such as plasticizers, curing agents,
and they contain about 30% by weight of reinforcing fillers [1].

Carbon black and silica are the two most popular types of fillers in the automotive
industry to improve the mechanical behavior of rubber products. They are both active
fillers, which means they interact with the polymer matrix. The reinforcing effect of the
fillers is therefore based on polymer–filler, as well as filler–filler interactions. Since carbon-
black suspensions are used in numerous industrial applications, ranging from tire rubbers
to ink and electrochemical energy storage devices [2–4], they are considered as highly
relevant thixotropic colloidal suspensions. Therefore, this paper will focus on carbon-black
reinforced rubber compounds.

The dispersion of the fillers in the polymer matrix is critical; the better the dispersion,
the better the performance properties of the compound [5,6]. Furthermore, the addition
of carbon-black increases the viscosity which leads to a change in the flow characteristics
of the compound. The primary carbon-black particles form aggregates and the size and
shape of these aggregates are deformation-independent. These aggregates can cluster
together to form agglomerates, which can form a network that is held together by weak
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van der Waals-type forces. These networks are very sensitive to even small changes in
strain and continue to separate as the strain increases [7]. These different types of carbon-
black structures are schematically depicted in Figure 1. The fragile bonds between the
agglomerates can break under stress but will reform again once the stress is removed. This
leads to a reversible decrease in the viscosity. This thixotropic behavior is also known as
the Payne effect, and makes rheological characterization of the compounds challenging [8].
When shear is applied to carbon-black suspensions, shear-thinning behavior is observed
which is consistent with structural break-down of these agglomerates [9–11].

Deformation dependent Deformation independent

Agglomerate
∼ 1− 10 µm

Primary aggregate
∼ 100 nm

Primary particle
∼ 10 nm

Figure 1. Schematic representation of carbon-black aggregates and the flocculation into agglomerates.

The Payne effect has been attributed to several mechanisms, such as the agglomeration/de-
agglomeration of filler aggregates, breakup/reformation of the filler–filler and polymer–filler
network [12,13], chain desorption from the fillers [14], yielding of the glassy layer between the
fillers [15] and disentanglement of the absorbed chains [16].

Considerable research has been performed to characterize the dynamic mechanical
properties of filled rubber compounds [17–24]. Addition of fillers leads to two contributions
to the dynamic modulus of the material; a strain-dependent contribution and a strain-
independent one. The modulus decreases with increasing strain due to a partial reversible
breakdown of the filler–filler network, whereas filler–rubber interactions contribute to the
strain-independent part [25]. The reversible networks created by the filler particles also
result in additional elastic behavior of the compound.

The concept of thixotropy was introduced by Péterfi [26]. Since then, the modeling of
thixotropy has been studied extensively and is considered as one of the most challenging
problems in colloid rheology. The underlying changes in microstructure are often complex
and still poorly understood. In the review of Larson and Wei [27], a summary is given of
the most used models to describe thixotropic behavior. In their review, they restrict the
term thixotropy to nearly inelastic behavior so that it cannot be confused with non-linear
viscoelasticity. Mewis and Wagner described a definition of thixotropy that is based on
viscosity [9]. This definition implies a time-dependent decrease of viscosity induced by
flow that is reversible when the flow is decreased or arrested.

Most simplistic thixotropy models are based on a kinetic equation that describes the
evolution of a structure parameter to express the state of the structure in the material. A
distinction is made between rate- and stress-controlled models. The basic form of a rate-
controlled kinetic equation for a structure parameter was initially proposed by Goodeve
and Whitfield [28]. Here, the structure parameter is controlled by the shear rate and used
to adjust the viscosity of the material. De Souza Mendes and Thompson [29] find it more
reasonable that structure evolution is controlled by the stress, since stress is needed to
break bonds in the microstructure.
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Another continuum approach to describe highly filled polymer liquids was described
by Leonov [30]. This constitutive model also uses a kinetic approach for structure break-
down and reformation. The rheological behavior is assumed to be dominated by filler–filler
interaction. Simhambhatla and Leonov [31] extended this model to describe the rheological
behavior of filled polymers with dominant filler–matrix interaction. They make use of
a rate-controlled kinetic equation for a structure parameter and divide the stress into a
contribution of the ‘free chains’ and one for the ‘trapped chains’. This model was validated
with various rheological experiments by Joshi and Leonov [32].

Many phenomenological models that are based on the evolution of a structure param-
eter describe experimental data well. However, they provide no clear information about
the microstructure of the material. Population Balance Models (PBMs) take into account
the flow-induced changes of the microstructure and describe how these changes influence
the bulk rheology of the material. In the last years, there has been a growing interest in
developing thixotropic constitutive models from PBMs [33,34].

Recent work of Narayan and Palade compared a natural configuration approach and
a structural parameter approach to model the thixotropic behavior in filled elastomers [35].
Although both approaches capture the rheological behavior reasonably well, they found
there were still some aspects of the Payne effect that were inadequately described. Rendek
and Lion [36] performed experiments to study the influence of strain-induced transient
behavior of the Payne effect for filler-reinforced elastomers and also proposed a constitutive
model. This model was later extended to investigate the influence of strain-amplitude and
temperature [37]. Modeling the effects of strain-amplitude and frequency on the thixotropic
behavior of carbon-black reinforced elastomers was done amongst others in [38,39].

In this paper, we will propose a straightforward experimental strategy to characterize
the thixotropic behavior of reinforced rubber compounds. To this end, oscillatory mea-
surements on a standard plate-plate rheometer are performed. Inspired by the Leonov
modeling, the thixotropic behavior is modeled with a kinetic evolution equation for a
structure parameter. Model predictions obtained with a rate- and stress-controlled kinetic
equation are compared in order to investigate the typical features of these two approaches.
The focus of this work is on this comparison and not the best quantitative description of
experimental results, i.e., the modeling is more qualitative. The oscillatory shear measure-
ments provide model parameters that can be used to predict steady shear results. What
distinguishes our approach from previous work is the relatively straightforward coupling
between the nonlinear viscoelastic behavior described by the constitutive model and the
thixotropic behavior described by the structure parameter. To be able to predict properties
of extrusion products of rubber compounds, numerical simulations can be a powerful
tool [40–43]. For these simulations, the material behavior, including the rheological behav-
ior, needs to be described. Although the presented model is a first-order model, only able
to qualitatively predict the thixotropic behavior, the straightforward coupling between the
nonlinear viscoelastic and thixotropic behavior maximizes its applicability and can help to
give insight in the behavior under realistic processing conditions.

The paper is build up as follows: first the material and experimental strategy are intro-
duced in Section 2. Section 3 introduces the rate- and stress-controlled thixotropic model.
It is explained how the model parameters in both approaches are obtained. The results of
the model predictions using both the rate- and stress-controlled equation are presented
in Section 4, for oscillatory- and steady-shear. Finally, the results of both approaches are
discussed in Section 5.

2. Materials and Methods
2.1. Materials
2.1.1. Filled, Uncured Rubber Compound

Oscillatory-shear experiments are performed on a carbon-black filled styrene buta-
diene uncured rubber compound provided by Evonik Industries. The ingredients of the
rubber compound are shown in Table 1 in parts per hundred rubber (phr).
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Table 1. Ingredients of the rubber compound in phr.

Ingredient [phr]

Stage 1 BUNA VSL 4526-2 96.25
CB1220 30
N339 72

ZnO RS 2.00
Stearic acid 1.00
Vivatec 500 8.75

Vulkanox HS/LG 1.50
Vulkanox 4020/LG 2.00

Protektor G 3108 2.00
Stage 2 Vulkacit CZ/EG C 1.60

Sulfur 1.40

2.1.2. Sample Preparation

Plates are molded from the rubber compound by compressing the rubber with a
hot press of Fontijne Holland (Type: TP 400) for three minutes, while keeping a constant
normal force of 100 kN applied to the rubber at 100 °C. This is followed by compressing
the rubber for three minutes at the same constant normal force at T = 25 °C. Teflon sheets
are used to prevent the rubber from adhesing to the press plates. Circular samples with
a diameter of 25 mm and a thickness of 2 mm are obtained by die-cutting them from the
pressed plates. To reduce the torque needed to perform oscillatory-shear measurements at
large strain amplitudes, also circular samples with a diameter of 8 mm and a thickness of
2 mm are used.

2.2. Methods

Rheological measurements on rubber compounds, i.e., thixotropic materials, are
limited in terms of frequency in case of dynamic measurements, shear rate and temperature
range. The latter due crosslinking at higher temperatures. Moreover, the performance
and interpretation of dynamic measurements are more complicated for compounds than
for regular polymers because of thixotropic behavior; properties can change during the
measurements. The thixotropic behavior is caused by filler particles that create a reversible
network, resulting in additional elastic behavior. This network can be (partly) destroyed
by flow gradients and recovers after the flow has stopped. When the filler-network is
completely destroyed one should observe the rheological characteristics of a filled polymer
that is still a highly nonlinear viscoelastic material, i.e., very high zero-shear rate viscosity,
clear shear thinning, normal stresses, glassy behavior at high frequencies. In this paper, we
apply dynamic oscillatory shear measurements to characterize this behavior.

2.2.1. Dynamic Oscillatory Shear Measurements

We will first focus on the results of dynamic measurements, i.e., oscillatory shear
experiments, performed with a strain-controlled rheometer (TA-instruments, RDAIII),
using a plate-plate geometry, from which a limited rheological spectrum is obtained. To
determine the strain amplitude range for which the filler networks remain undamaged,
a strain sweep is performed where the storage modulus G′ is measured with increasing
strain amplitude (T = 75 °C). To show that the decrease in G′ is not caused by nonlinear
viscoelasticity only, the measurement is immediately followed by a strain sweep with
decreasing strain amplitude. The result is shown in Figure 2. This figure shows the effect of
thixotropy, since the curve measured with decreasing strain amplitude shows lower values
for G′ as the curve measured with increasing strain amplitude. The measurements in this
figure are repeated three times to show reproducibility.
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10-3 10-2 10-1 100 101 102
105

106

Increasing strain
Decreasing strain

Figure 2. Strain sweep measurements of G′ for increasing strain (black dots), followed by strain
sweep measurements for decreasing strain (black crosses).

To study the effect of deformation on the material properties of the compound, a
relaxation spectrum of the undamaged material is needed to use as starting point. To this
end, frequency sweeps are performed with a low strain amplitude of γ0 = 0.1% at different
temperatures. Time Temperature Superposition (TTS) is used to construct mastercurves
for the storage- and loss-moduli (G′ and G′′), and the phase-angle δ, respectively. The
horizontal shift-factors used in the TTS are shown in Figure 3. A vertical shift was not
required. The WLF equation is used to fit the horizontal shift-factors aT [44]:

log10(aT) =
−C1(T − Tref)

C2 + (T − Tref)
, (1)

where C1 and C2 are empirical constants obtained via a least-squares fit and their values
can be found in Table 2 and Tref = 75 °C is the reference temperature of the mastercurves.

Table 2. WLF parameters.

C1 [-] C2 [K]

4.54 154.64

290 300 310 320 330 340 350 360 370 380
-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 3. Horizontal aT shift-factors used in the time temperature superposition to construct master-
curves of G′, G′′ and δ and the obtained WLF-fit to the horizontal shift factors aT .
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The constructed mastercurves for the storage- and loss-moduli and the phase-angle
are shown in Figure 4. For the compound used in this paper, 7-modes seemed to be
sufficient to obtain a good fit. For other compounds, the number of modes can be different.
The relaxation spectrum for the undamaged material is obtained by performing a 7-mode
least-squares fit on the mastercurves of G′ and G′′ and δ, using the Maxwell model [45]:

G′(ω) =
m

∑
k=1

Gkλ2
kω2

1 + (λkω)2 , G′′(ω) =
m

∑
k=1

Gkλkω

1 + (λkω)2 , δ(ω) = arctan(G′′(ω)/G′(ω)), (2)

where m is the number of modes. The resulting fit is also shown in Figure 4. The values
for the relaxation times λ0,k and moduli G0,k are shown in Table 3. Here, the subscript ()0
indicates the spectrum used to characterize the undamaged material.

Table 3. Relaxation spectrum of a 7-mode Maxwell fit of G′ and G′′ of the undamaged material.

Mode G0,k [Pa] λ0,k [s]

1 1.25× 105 75.93
2 1.45× 105 6.16
3 2.27× 105 0.91
4 3.16× 105 0.14
5 4.05× 105 0.022
6 5.30× 105 0.0032
7 6.80× 105 0.0003

10-2 10-1 100 101 102 103
104

105

106

107

(a)

10-2 10-1 100 101 102 103 104
0

10

20

30

40

50

60

70

80

90

(b)

Figure 4. Mastercurves of the storage- and loss modulus measured with a strain amplitude of γ0 = 0.1% at T = 75 °C
(a) and the corresponding mastercurve of the phase-angle δ (b). Solid and dashed lines correspond to the 7-mode Maxwell
fit of Table 3 to the data. The kinks in the fit of δ can be attributed to the contribution of the different modes, i.e., it is not a
continuous spectrum. A smoother curve can be obtained by adding more modes in the suitable frequency range (λ = 1/ω).
However, this makes the modeling also more computationally expensive.

To predict nonlinear viscoelastic behavior of the compounds, a Giesekus model is
used to calculate the viscoelastic stress [46]:

λk

(Dτk
Dt
− L · τk − τk · LT

)
+ τk +

λkαk
η

τ2
k = 2ηkD, τ =

m

∑
k=1

τk (3)

where D()/Dt denotes the material derivative, τ is the total viscoelastic stress tensor, L is
the velocity gradient, D = (∇u +∇uT)/2 is the rate-of-deformation tensor, ηk = Gkλk is
the shear viscosity of mode k and αk is the mobility parameter of mode k that influences
shear-thinning. Note that it is not possible to perform steady shear measurements on
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the compounds without measuring the effect of thixotropy. To get an estimate of the
mobility parameter αk of the Giesekus model for every mode k, the model is fitted to the
experimental data of the complex viscosity for the undamaged material. The result is
shown in Figure 5. The nonlinear parameters obtained are given in Table 4.

10-2 100 102 104 106
101

102

103

104

105

106

107

Figure 5. Fit of the Giesekus model to experimental data of the complex viscosity measured with
oscillatory shear experiments.

Table 4. Nonlinear parameter αk used in the Giesekus model for nonlinear viscoelastic stress calculations.

Mode αk [-]

1 0.4
2 0.4
3 0.4
4 0.4
5 0.4
6 0.4
7 0.25

Next, mastercurves are constructed for different degrees of structural damage. A
horizontal shift between mastercurves of the moduli of different degrees of structural
damage could be observed for a large frequency range. Together with the assumption that
structural damage leads to a ‘reduced’ time scale due to destruction of the elastic network
in the material, this led to the choice to focus on the mastercurves of the phase-angle δ in
this work. To erase any structural memory and make sure the starting properties of every
sample are approximately the same, a pre-shear is applied. The measuring protocol of
every point on the mastercurves with different degrees of structural damage in the material
is shown in Figure 6 and is defined as follows:

1. For every sample, first a pre-shear (indicated in black) is applied by performing
oscillatory shear measurements of t = 120 s, ω = 1 rad/s and a strain amplitude of
γ0 = 20% during which the structure will break down;

2. This is followed by a pre-shear during which the structure can (partially) recover
again, by performing oscillatory shear measurements of t = 120 s, ω = 1 rad/s and a
strain amplitude of γ0 = 0.6%;
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3. These pre-shear measurements are followed by an oscillatory shear measurement of
again t = 120 s, but for different frequencies ω and strain amplitudes γ0 (indicated
in red);

4. The storage and loss moduli at time t = 350 s are used to calculate the phase-angle δ
and this gives one single point on the mastercurve with strain amplitude γ0.

0 50 100 150 200 250 300 350 400
104

105

106

Figure 6. Measuring protocol to construct mastercurves of δ for different degrees of structural damage.

The result for the mastercurves with different strain amplitudes, and therefore different
degrees of structural damage, are shown in Figure 7. Here, every point is a separate
experiment performed using the protocol as shown in Figure 6. It is important to note
that the mastercurve for γ0 = 0.05% is used to characterize the recovery behavior of the
material. For this curve, only a pre-shear of t = 120 s, ω = 1 rad/s and a strain amplitude
of γ0 = 20% is applied, meaning that step 2 in the measuring protocol is skipped. This
is followed by an oscillatory shear measurement of again t = 120 s, but for different
frequencies ω and a strain amplitude of γ0 = 0.05% during which the material can recover.

10-2 100 102 104 106
10

15

20

25

30

35

40

Figure 7. Mastercurves (T = 75 °C) of the phase-angle δ for different degrees of structural damage
by applying different strain amplitudes γ0.
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2.2.2. Steady Shear Measurements

Steady shear measurements are provided by VMI Holland B.V. and measurements
were performed on an in-house made device. The compound is extruded in a closed,
pressurized chamber containing a double-cone plate geometry. The pressure-method [47]
is used to determine the shear viscosity η and the first normal stress difference coeffi-
cient Ψ1 from the measurements. Measurements are performed for a temperature range
T = 70–90 ◦C to construct mastercurves for T = 75 °C. Results are presented in Section 4.3.

3. Thixotropy Model

In this section, the assumptions and observations that lead to the model approach
are presented. This is followed by the mathematical description of the rate- and stress-
controlled thixotropy model used throughout this paper.

3.1. Model Definition

From Figure 7, the following assumptions/observations can be made:

• It is assumed that structural damage leads to a ‘reduced’ time scale due to destruction
of the elastic network. Combined with the observation that structural damage causes
the phase-angle δ to shift horizontally for a large range of frequencies, this leads to
the assumption that the influence of structural damage on the phase-angle can be
described with a horizontal shift factor aξ for increasing the strain amplitude γ0.

• For higher angular frequencies ω, there is an upswing in the phase-angle and the
effect of damage can no longer be described by a pure horizontal shift.

• This upswing is more pronounced for higher levels of structural damage and starts at
lower frequencies.

The undamaged mastercurve of δ shows a linear dependency on log10 ω. Therefore, a
linear line can be fitted through this mastercurve. For small ω, a horizontal shift factor aξ

is applied to this linear fit, to obtain linear lines that fit the mastercurves for the different
strain amplitudes γ0. This is schematically depicted in Figure 8. This horizontal shift plays
a crucial role in the model definition in this paper and the shift-factors aξ for the different
strain amplitudes can be found in Table 5.

Table 5. Horizontal shift aξ for the different strain amplitudes in Figure 7.

γ0 [%] aξ [-] 1/aξ [-]

0.05 1.81 0.55
10 6.67 0.15
25 13.33 0.075
35 100 0.01

Using a horizontal shift aξ on the mastercurves of the phase-angle suggests that the
effect of damage of the filler networks can be modeled by adjusting the relaxation times of
the undamaged material. To show that this hypothesis is valid, the horizontal shift between
the linear fits through the mastercurves are obtained and the relaxation times are adjusted
accordingly:

λk = λ0,k ·
1
aξ

. (4)

For high frequencies, an upswing in the phase-angle is observed that becomes more
pronounced for higher strain amplitudes. Structural damage is assumed to be dominant
for the modes with the largest relaxation times, i.e., the relaxation times that are thought
to be mostly related to the elastic filler network. Therefore, it is assumed that small
relaxation times (corresponding to high frequencies) do not contribute to the elastic network.
Following this reasoning, the horizontal shift of these modes should be limited. The
measured upswing at high frequencies can now be used to determine this limited horizontal
shift. Numerical experiments showed that the factor 1/aξ in Equation (4) for the two modes
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with the smallest relaxation times should be limited to describe the measured upswing at
high frequencies. It was found that the experimental data were described best when the
smallest relaxation time was not adjusted (1/aξ = 1) and, for mode six, 1/aξ was limited
to min(1/aξ) = 0.1. The result is shown in Figure 9.

10-2 100 102 104 106
0

5

10

15

20

25

30

35

40

Figure 8. Mastercurves of different degrees of structural damage show a horizontal shift aξ with
respect to the undamaged mastercurve.
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10
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20
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Figure 9. Results for the mastercurves of the phase-angle by adjusting the undamaged relaxation
times with the horizontal shift-factors aξ .

Even though upswings in δ have been measured in the past for elastic materials [48]
and the upswing in the experimental data is captured well by limiting the damage of the
smallest relaxation times, it has to be noted that the experimental results obtained at high
frequencies are prone to experimental errors. Therefore, the measurements at high ω have
to be considered less accurate than the measurements at small ω.
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Extended Spectrum

So far, we have focused on the results of dynamic measurements, i.e., oscillatory shear
experiments, from which a limited (7-mode) rheological spectrum is obtained. Based on
a combination of arguments and some observations, this spectrum can be extended such
that the shear rate range becomes applicable to realistic processing conditions.

For a compound with network structures that are finite, i.e., without a network
structure that spans the whole sample, the phase-angle has limits: (δ(ω → 0) = 90°),
(δ(ω → ∞) = 0°). The relaxation spectrum can now be extended to lower and higher
frequencies than the measurement range, such that the slope of the undamaged mastercurve
is preserved over a large range, keeping the phase-angle limits in mind. The result is shown
in Figure 10a. Notice that with this choice the material shows a Newtonian plateau for
(very) small ω. When an ‘infinite network’ would exist in the sample, the phase-angle
would show a limiting phase-angle close to zero for small ω, indicating that the material
has a yield-stress. When choosing the right parameters, one can also model this behavior.
However, we do not consider this possibility of yielding, since we have no experimental
evidence for such behavior for the compound considered. The relaxation times λ0,k and
moduli G0,k of the extended spectrum are given in Table 6.

Table 6. Extended 15-mode relaxation spectrum for the undamaged material.

Mode G0,k [Pa] λ0,k [s]

1 0.02× 105 1× 105

2 0.04× 105 2× 104

3 0.1× 105 3× 103

4 0.3× 105 4× 102

5 0.7× 105 50.00
6 1.3× 105 5.80
7 2.1× 105 0.91
8 3.0× 105 0.14
9 4.0× 105 0.022

10 5.0× 105 0.0032
11 6.80× 105 0.0003
12 7.00× 105 50× 10−6

13 7.00× 105 40× 10−7

14 8.00× 105 30× 10−8

15 8.00× 105 20× 10−9

Following the same reasoning as for the 7-mode spectrum, the horizontal shift for
modes with small relaxation times, corresponding to high frequencies, is again limited.
Using numerical experiments, the maximum adjustment factor for mode 10 was found to
be min(1/aξ) = 0.1. Modes 11–15 were not adjusted (1/aξ = 1). The extended spectrum
can now be used to fit the experimental mastercurves for the different degrees of structural
damage. The result is shown in Figure 10b. Both the horizontal shift and the upswing are
captured quite well. For practical reasons, we will not take into account the plateau limits
in the phase-angle for the model predictions. Therefore, the 7-mode spectrum will be used
in the remainder of this paper.
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Figure 10. Phase-angle of the undamaged material as a function of frequency fitted with a 15-mode extended relaxation
spectrum (a) and phase-angle as a function of frequency for different degrees of structural damage fitted with a 15-mode
extended relaxation spectrum (b).

3.2. Mathematical Description

Results in the previous section show that adjusting the relaxation times of the un-
damaged spectrum with the horizontal shift aξ between the different mastercurves of
the phase-angle δ leads to a successful prediction of the measured behavior. Therefore,
a structure parameter ξ is defined based on this horizontal shift-factor aξ as ξ = 1/aξ . If
ξ = 1, then the material is undamaged and the filler networks are intact, whereas ξ = ξinf
indicates a completely damaged material where no network structures due to the fillers
are left:

ξ =

{
1, Undamaged; structures intact
ξinf, Maximum damage,

here, the minimum value for ξinf that can be used is ξinf = 0. The value for ξinf is related to
the limited horizontal shift for small relaxation times introduced in the previous section to
capture the upswing in δ for high frequencies. This means that for the 7-mode spectrum
ξinf can be defined as follows:

ξinf = [0, 0, 0, 0, 0, 0.1, 1]. (5)

To model the thixotropic behavior, we compare a rate- and stress-controlled phenomeno-
logical structure parameter ξ to adjust the relaxation times of the undamaged spectrum, to
obtain the relaxation spectrum of the damaged material. First, the mathematical description
of both models is given, followed by the approach to obtain the different model parameters.
The following kinetic equations are based on the work of Leonov et al. [30–32].

3.2.1. Rate-Controlled Model

Dξ

Dt
=

1− ξ

λθ
− Eγ∗(ξ − ξinf), (6)

where D()/Dt = ∂()/∂t + u · ∇() is the material derivative, λθ is a characteristic time scale
for the recovery of the material structure, E =

√
2trD2 is a measure of the deformation rate

based on the rate of deformation tensor D, corresponding to an effective shear rate in shear
flows. Furthermore, γ∗ is a fitting parameter that indicates how much of the applied defor-
mation leads to damage of the structure in the material and ξinf is a fitting parameter that
limits the degree of damage that can be done to the material. This parameter is introduced,
since the rheological characteristics of an unfilled polymer that is still a highly nonlinear
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viscoelastic material should be observed when the filler-network is completely destroyed.

For the oscillatory shear measurements, E is defined as follows:

E(t) = |γ0ω cos(ωt)|, (7)

which can be simplified to:

〈E〉 = 2γ0ω

π
, (8)

to take E as the average over the period of oscillation [32].

3.2.2. Stress-Controlled Model

Dξ

Dt
=

1− ξ

λθ
− τc(ξ)

η0
τ∗(ξ − ξinf), (9)

where τc(τ) is a characteristic stress in the material that is a function of the viscoelastic
stress tensor τ, η0 is the zero shear viscosity of the undamaged material and τ∗ is a fitting
parameter that describes how much of the present stress contributes to damage of the
elastic network. Here, the equivalent von Mises shear stress is used as characteristic stress
τc [49]:

τc =

√
1
2

τ̂ : τ̂, (10)

with τ̂ = τ − 1
3 (tr τ)I, the deviatoric part of the total viscoelastic stress tensor.

Since ξ is related to the horizontal shift between the mastercurves of δ, the relaxation
times of the undamaged material λ0,k are now adjusted using the structure parameter ξ to
obtain the relaxation times λk of the damaged material:

λk = λ0,k · ξ, (11)

where λ0,k are the initial relaxation times obtained form fitting the mastercurves of the
undamaged material of Figure 4. Here, in contrast to the Leonov model, the coupling
between the nonlinear viscoelastic behavior described by the constitutive equation and the
structure parameter is very straightforward through the relaxation times.

3.3. Model Parameters

We use one single structure parameter for all seven modes in the relaxation spectrum
shown in Table 3 and therefore assume that ξ describes the overall structure in the material.
The structure parameter for the different mastercurves in Figure 7 is obtained from the
horizontal shift of the linear fits for the different strain amplitudes ξ = 1/aξ (see Table 5).
This structure parameter is plotted as a function of the applied strain amplitude in Figure 11.
Note that ξ for γ0 = 0.05% is smaller than one, because this point indicates the horizontal
shift of the recovery curve after the applied pre-shear of step 1 in the measuring protocol.
Since this is the only ‘recovery’ curve, this point is indicated with a star. Since the horizontal
shift is the same for a wide range of frequencies, the model parameters should be chosen
such that the structure parameter ξ is approximately the same as this horizontal shift for
different frequencies. Using the deformation history as shown in Figure 6, the evolution of
the structure parameter ξ can be calculated using an explicit Euler method. It was found
that for the rate-controlled model, the effect of ω was too pronounced if E was calculated
using Equation (7). It can be argued that for high frequencies, a high strain-amplitude leads
to a lower degree of damage than for low frequencies, because the structure acts more like
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an elastic solid at high ω. In order to capture this behavior, the effective shear rate E is
given a power law-like dependence on the frequency ω:

〈E〉 = 2γ0ωp

(ω∗)p−1π
. (12)

To avoid problems with the unit of γ∗, a characteristic ω∗ is introduced. Here, ω∗ = 1
rad/s since the horizontal shift aξ is based on the shift at this frequency.

For the stress-controlled method, the characteristic stress is calculated as
τc(τ) = |G∗|γ0, where G∗ is the complex modulus G∗ =

√
(G′2 + G′′2) calculated with

the damaged spectrum, obtained from the previous time step. It is important to note that
this stress only equals the von Mises shear stress if linear rheological behavior is assumed.
Results of fitting the structure parameter as a function of strain amplitude for frequencies
in the range ω = [0.1, 1, 10] rad/s for the two different models are shown in Figure 11.
Here, it is tried to get the difference in the structure parameters for the different frequencies
as small as possible, to obtain the same horizontal shift for a wide frequency range, while
still using realistic values for the fitting parameters.

The obtained fitting parameters for both models are given in Table 7.

Table 7. Fit parameters used to fit ξ as a function of the strain amplitude γ0.

λθ [s] γ∗ [-] p [-] τ∗ [-]

170 0.6 0.3 17.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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(a)
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(b)

Figure 11. Structure parameter ξ obtained from the horizontal shift aξ between the mastercurves of the phase-angle with
different strain amplitudes fitted by the rate-controlled model (a) and the stress-controlled model (b) for different frequencies
ω. The horizontal shift of the recovery curve γ0 = 0.05 % is indicated with a star.

The values for ξinf were obtained in Section 3.1 from capturing the upswing while
adjusting the relaxation times with the horizontal shift factor λ0 = λ · 1/aξ .

4. Results

This section will show results of model predictions in oscillatory shear and steady
shear for the rate- and stress-controlled model. First, dynamic oscillatory model predictions
of the mastercurves of the phase angle are shown for both methods. This is followed by
dynamic model predictions of oscillatory shear measurements of the damage recovery
behavior for a fixed frequency of ω = 1 rad/s and different strain amplitudes. Here, a
distinction is made between predictions with a homogeneous flow assumption and more
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realistic non-homogeneous flow conditions where nonlinear viscoelasticity is taken into
account. Finally, model predictions are shown for steady shear data for both approaches.

4.1. Mastercurve Model Predictions in Oscillatory Shear

The 7-mode spectrum is used to calculate the model predictions in oscillatory shear.
The structure parameter ξ is calculated for every point on the mastercurves of Figure 7,
using an Explicit Euler method and taking the applied pre-shear into account. For the
rate-controlled method, E is calculated using the power law-like dependence on ω as
described in Equation (12). For the stress-controlled method, the characteristic stress is
again calculated as τc(τ) = |G∗|γ0, where G∗ is the complex modulus G∗ =

√
(G′2 + G′′2)

calculated with the damaged spectrum, obtained from the previous time step and, thus,
linear rheological behavior is assumed. The results for the rate- and stress-controlled
method are shown in Figure 12.
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(b)

Figure 12. Model predictions of oscillatory shear measurements for the rate-controlled model, using a power law-like
dependence on the frequency (a) and for the stress-controlled model assuming linear rheological behavior (b).

Results show that both models give a qualitative prediction of the measured
mastercurves.

The approximation of the characteristic stress τc(τ) = |G∗|γ0 can only be used for
small Weissenberg numbers. For large strain amplitudes and frequencies, normal stresses

will start to play a role such that |G∗|γ0 <

√
1
2

τ̂ : τ̂. Figure 13 shows a comparison between

the model predictions using τc(τ) = |G∗|γ0 and the von Mises shear stress calculated
using a Giesekus model.

This figure shows that for high strain amplitudes, but especially for high frequencies,
assuming linear viscoelastic behavior is no longer allowed since model predictions using
the von Mises shear stress are highly different from model predictions using τc(τ) = |G∗|γ0.
The von Mises stress is much higher than the shear stress for high frequencies, because
normal stresses can no longer be neglected. Results show that, similar to the rate-controlled
model, the frequency dependence is over-predicted compared to the experimental data.
At these high frequencies, the measurements are also prone to experimental errors. The
oscillatory shear measurements are therefore mainly used to obtain model parameters to
do qualitative predictions for small ω and in steady shear. It should also be noted that
in the fitting procedure linear viscoelastic behavior is assumed: τc(τ) = |G∗|γ0. A more
consistent fitting procedure, using the von Mises shear stress, might give better results for
the oscillatory shear behavior. However, with the current model, this will most likely lead
to an over-prediction of the rheological properties in steady shear.
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Figure 13. Model predictions of oscillatory shear measurements for the stress-controlled model,

using τc(τ) = |G∗|γ0 (solid lines) and τc =

√
1
2

τ̂ : τ̂ (dashed lines).

4.2. Damage Recovery Behavior Model Prediction in Oscillatory Shear

The 7-mode relaxation spectrum in combination with the rate- and stress-controlled
thixotropic models is used to model the dynamic behavior of the compound. The fitting
parameters as found in Table 7 are used. Here, a distinction is made between a homo-
geneous flow assumption and a more realistic non-homogeneous flow as present in a
plate-plate rheometer.

4.2.1. Homogeneous Flow Assumption

Oscillatory shear measurements are performed for different strain amplitudes and
ω = 1 rad/s to find the damage–recovery behavior of the compound. A frequency of
ω = 1 rad/s is chosen to avoid experimental problems at high shear rates and problems
with nonlinear rheological behavior. These measurements are again repeated three times
to test the reproducibility. The evolution of the structure parameter ξ is again modeled
using an explicit Euler scheme to solve Equations (6) and (9), using E as defined by
Equation (12) for the rate-controlled method, and the stress τc(τ) = |G∗|γ0 calculated with
ξ from the previous time step for the stress-controlled method. The flow is assumed to
be homogeneous (no radial dependence) and nonlinear viscoelasticity is neglected. The
undamaged relaxation times as listed in Table 3 are adjusted using Equation (11), and the
storage and loss moduli are calculated using Equation (2). The experimental results and the
model prediction for the storage- and loss moduli are shown in Figure 14 for both methods.
This figure shows that the damage–recovery behavior of the compound is captured quite
well for both approaches.

4.2.2. Non-Homogeneous Flow

In the previous section, the assumption of homogeneous flow was used. However, in
reality, the flow in a plate-plate rheometer is non-homogeneous and, thus, the shear rate
is linearly dependent on the radius r in the sample. This means the structure parameter
ξ and the material properties will also be r-dependent. Therefore, full computations are
performed where a sinusoidal strain is applied that depends on the radial position r in
the sample:

γ(r, t) =
r

Rplate
· γ0 sin(ωt), (13)

E(r, t) =
r

Rplate
· γ0ω cos(ωt), (14)
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where r is the radial position in the sample and Rplate is the radius of the plate of the
rheometer. Nonlinear viscoelastic behavior is taken into account by using a Giesekus
model to calculate the visoelastic stresses. An Explicit Euler scheme is used to calculate the
viscoelastic stress from Equation (3) as a function of time and radius. From this stress, the
torque can be calculated [50]:

M = 2π
∫ R

0
rτθz(r)rdr. (15)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
104

105

106

Figure 14. Dynamic experimental measurements of the damage–recovery behavior (ω = 1 rad/s) of the compound (dots)
and model predictions using a homogeneous flow assumption and the 7-mode relaxation spectrum (solid lines) for the
rate-controlled method (black) and the stress-controlled method (blue).

The rheometer software determines the stress τθz from this torque with the following
equation:

τθz =
2M
πR3 . (16)

For viscoelastic fluids, this equation is a linear approximation. From this stress, G′

and G′′ can be calculated. The viscoelastic stress is calculated using the Giesekus model
with αk parameters as can be found in Table 4.

The evolution of the structure parameter is also calculated using an explicit Euler
method, taking the radial dependence of the applied strain into account. The relaxation
times are adjusted using the calculated structure parameter and used in the calculations
of the viscoelastic stress tensor. For the stress-controlled method, ξ is calculated using
the von Mises shear stress as characteristic stress τc. To this end, the von Mises stress
calculated from τ in the previous time step is used. The torque measured during the
oscillatory shear measurements of the damage–recovery behavior of Figure 14 is now
calculated using Equation (15). Using this method, both the non-homogeneous flow and
nonlinear viscoelasticity are taken into account. The result is shown in Figure 15 for the
rate-controlled method and, in Figure 16, for the stress-controlled method. These figures
show that for ω = 1 rad/s and the strain amplitudes applied in the oscillatory shear
experiments, neglecting nonlinear viscoelastic behavior and radial dependence of the strain
still gives qualitative results.
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Figure 15. Dynamic experimental measurements of the torque during the damage–recovery behavior measurements of the
compound (dots), model predictions using a homogeneous flow assumption and the 7-mode relaxation spectrum (blue
dots) and model predictions taking r-dependence and Nonlinear Viscoelastic (NLVE) behavior into account (dotted line) for
the rate-controlled model.
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Figure 16. Dynamic experimental measurements of the torque during the damage–recovery behavior measurements of the
compound (dots), model predictions using a homogeneous flow assumption and the 7-mode relaxation spectrum (blue
dots) and model predictions taking r-dependence and nonlinear viscoelastic behavior into account (dotted line) for the
stress-controlled model.

4.3. Model Prediction in Steady Shear

Finally, model predictions using the rate- and stress-controlled method in steady shear
are presented. To this end, an equilibrium value of the structure parameter is used to
calculate the viscosity η and the first normal stress difference coefficient Ψ1 for different
shear rates. The equilibrium value of the structure parameter ξeq can be calculated by
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setting the time derivative in Equations (6) and (9) equal to zero. This gives the following
expression for ξeq, for the rate- and stress-controlled method, respectively:

ξeq =
1 + Eγ∗ξinfλθ

1 + Eγ∗λθ
, (17)

ξeq =

1 +
τc(τeq)

η0
τ∗ξinfλθ

1 +
τc(τeq)

η0
τ∗λθ

. (18)

For the stress-controlled equation, the von Mises stress τc(τ) is calculated using
a Giesekus model. Here, Newton–Raphson iteration is used to obtain the steady state
viscoelastic stress tensor for a specific shear rate. Picard iteration is performed to obtain
τc(τeq). By calculating the equilibrium value of the structure parameter for different shear
rates, the 7-mode relaxation spectrum of the undamaged material is adjusted and the
viscosity η and Ψ1 can be calculated using the analytical solutions of the Giesekus model:

η(γ̇) =
m

∑
k=1

ηk(1− fk)
2

1 + (1− 2αk) fk
, (19)

Ψ1(γ̇) =
m

∑
k=1

2ηkλk fk(1− αk fk)

αk(1− fk)(λkγ̇)2 , (20)

where fk is expressed as follows:

fk =
1− χk

1 + (1− 2αk)χk
, (21)

with,

χk =

(
[1 + 16αk(1− αk)(λkγ̇)2]1/2 − 1

8αk(1− αk)(λkγ̇)2

)1/2

. (22)

The result is shown in Figure 17. Here, the black lines indicate the result for the rate-
controlled model, whereas the blue lines present the result for the stress-controlled model.
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Figure 17. Steady shear predictions of the viscosity η and first normal stress difference coefficient Ψ1

for the rate-controlled (black) and stress-controlled (blue) method and experimental data provided
by VMI Holland B.V. (triangles and squares).
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This figure shows that both, the viscosity and the first normal stress difference coef-
ficient are predicted to be lower for small shear rates and higher for large shear rates for
the stress-controlled model compared to the rate-controlled model. Both models capture
the experimental trends reasonably well, but the prediction of Ψ1 is too high for larger
shear rates, for the stress-controlled approach. Figure 18 shows the damage terms of both
approaches as a function of shear rate. This figure shows that for the rate-controlled model,
the damage term is linearly dependent on shear rate, whereas for the stress-controlled
model, this dependency is no longer linear.
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Figure 18. Model predictions of the damage term Eγ∗ as a function of shear rate for the rate-controlled model (a) and
τc(τeq)/η0 · τ∗ for the stress-controlled model (b).

Figure 19a shows ξeq as a function of shear rate for both approaches. This figure
shows a clear difference between the rate- and stress-controlled approach, leading to
the differences in steady-shear predictions. Figure 19b shows a zoomed-in version of
(a). Here, it is observed that for the stress-controlled approach, ξeq reaches a plateau at
ξeq 6= 0 for high shear rates, whereas it goes to zero for the rate-controlled approach.
This means that the stress-controlled approach always predicts a higher level of structure
present in the material at high shear rates, compared to the rate-controlled approach,
leading to larger relaxation times and, therefore, a higher viscosity and first normal stress
difference coefficient.
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Figure 19. Model predictions of ξeq as a function of shear rate for both approaches (a) and a zoom-in at high shear rates (b).
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Figure 20 shows the shear stress τ as a function of ξeq for both approaches. Compared
to the rate-controlled approach, the stress for the stress-controlled approach is always
lower, except for very low ξeq, where the plateau in ξeq is reached.
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Figure 20. Shear-stress τ as a function of ξeq for the rate- and stress-controlled approach.

Transient Shear Rheology

The transient viscosity can also be calculated for both models and different shear rates.
The result is shown in Figure 21.

10-3 10-2 10-1 100 101 102 103
103

104

105

106

107

Figure 21. Transient viscosity as a function of time for different shear rates for the rate-controlled
(solid lines) and stress-controlled model (dashed lines).

This figure also shows the effect of the damage-dependent characteristic stress in the
stress-controlled approach. For smaller shear rates, the stress-controlled method predicts
a smaller viscosity compared to the rate-controlled method. This agrees with the smaller
equilibrium structure parameter for small shear rates, as was shown in Figure 20. The
viscosity also reaches its equilibrium value faster for the stress-controlled method at small
shear rates. For high shear rates, however, an opposite effect is observed. This is most
likely caused by the damage-dependent characteristic stress in the evolution equation
for the structure parameter. At large shear rates, the degree of damage is more severe,
which reduces ξ and thus the relaxation times. This reduces the characteristic stress in the
material, which in turn reduces ξ.
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5. Discussion and Conclusions

In this paper, we presented an experimental strategy to characterize the rheological
behavior of filled, uncured rubber compounds. It is tried to keep the approach as simple as
possible to maximize applicability and keep the characterization straightforward. To this
end, oscillatory shear experiments on a regular plate-plate rheometer were performed.

Measurements were performed for different strain amplitudes, to create mastercurves
of the phase-angle for different degrees of structural damage in the material. It was found
that the network destruction causes a horizontal shift aξ in the mastercurves of δ. This shift
is approximately the same for a large range of frequencies and used to construct a structure
parameter ξ = 1/aξ . This structure parameter is used to define the evolution of the degree
of structural damage in the material and to adjust the relaxation times of the undamaged
material λ0 accordingly.

A rate- and stress-controlled kinetic equation for the evolution of the structure pa-
rameter is compared to qualitatively describe the thixotropic behavior in the material.
The evolution of the structure parameter can be modeled in time, using an explicit Euler
method. The model parameters are obtained by a least-square fitting approach based on
the oscillatory shear measurements. Results show that the frequency dependence is not
captured well by neither the rate- nor the stress-controlled model without additional model
modifications. At these high frequencies, the oscillatory shear measurements are also prone
to experimental errors. It therefore has to be concluded that, although the oscillatory shear
measurements are used to obtain the model parameters for the kinetic structure parameter
equations, we run into limitations of both, the measurements and the models, when normal
stresses become significantly large.

The experimental damage–recovery behavior measured in oscillatory shear can be
described reasonably well with both approaches for ω = 1 rad/s. For the strain amplitudes
used in the oscillatory shear measurements in this work and ω = 1 rad/s, it is shown
that it is allowed to neglect nonlinear viscoelasticity, and non-homogeneous flow in the
plate-plate rheometer to model the damage–recovery experiments. However, this can be
taken into account when larger strain amplitudes or frequencies are desired.

The model parameters obtained from the oscillatory shear measurements are used to
perform steady shear model predictions. The results show that, using the model parameters
obtained from the oscillatory measurements, the measured trends are qualitatively captured
by both models. It was found that the stress-controlled approach under-predicts the degree
of damage for large deformations. Perhaps, the approach to obtain the model parameters
can be adjusted to obtain a better fit in steady shear for the stress-controlled model. More
research is needed to find a more suitable approach.

Rubber compounds are complex materials containing many additives. To unravel
the thixotropic behavior and do quantitative predictions, a more detailed model should
be developed and the influence of these additives needs to be studied systematically. The
frequency and temperature dependency of the filler-filler or filler-polymer networks has to
be studied in future work. We believe that the thixotropy model and experimental strategy
presented in this paper can be a starting point for characterizing the thixotropic behavior of
such compounds. The trends measured in steady shear, using model parameters obtained
from oscillatory shear measurements, are captured reasonably well for both models. As
such, a qualitative prediction of the rheological behavior under relevant processing condi-
tions can be done. However, more research is needed to systematically obtain the fitting
parameters and give more quantitative results in both oscillatory and steady shear.
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