
polymers

Article

Development of Long Wavelength Light-Absorptive
Homopolymers Based on Pentaazaphenalene by Regioselective
Oxidative Polymerization

Hiroyuki Watanabe, Kazuo Tanaka * and Yoshiki Chujo

����������
�������

Citation: Watanabe, H.; Tanaka, K.;

Chujo, Y. Development of Long

Wavelength Light-Absorptive

Homopolymers Based on

Pentaazaphenalene by Regioselective

Oxidative Polymerization. Polymers

2021, 13, 4021. https://doi.org/

10.3390/polym13224021

Academic Editors: Shin-ichi Yusa and

Naozumi Teramoto

Received: 30 October 2021

Accepted: 19 November 2021

Published: 20 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku,
Kyoto 615-8510, Japan; hiroyuki.watanabe4@konicaminolta.com (H.W.); chujo@poly.synchem.kyoto-u.ac.jp (Y.C.)
* Correspondence: tanaka@poly.synchem.kyoto-u.ac.jp; Tel.:+81-75-383-2604; Fax: +81-75-383-2605

Abstract: We report the synthesis and absorption properties of homopolymers consisting of 1,3,4,6,9b-
pentaazaphenalene (5AP). Oxidative polymerization in the Scholl reaction was accomplished, and
various lengths of homopolymers can be isolated. It should be noted that we scarcely observed the
generation of structural isomers at the connecting points, which is often observed in this type of
reaction. Therefore, we were able to evaluate electronic structures of the synthesized homopoly-
mers. In addition, it was observed that absorption bands were obtained in the longer wavelength
region than the monomer. The computer calculation suggests that the highest occupied molecular
orbital (HOMO) energy levels could be lowered by electronic interaction through spatially-separated
HOMOs of 5AP. Moreover, we can evaluate the extension of the conjugated system through the
meta-substituted skeleton and distance dependency of the main-chain conjugation.

Keywords: near infrared; azaphenalene; homopolymer; narrow band gap; oxidative polymerization

1. Introduction

Heteroatom-containing π-conjugated polymers have been regarded as an attracting
platform for organic electronic materials due to their optoelectronic properties, such as
light-absorption properties, luminescent properties, and carrier-transport properties, which
are caused from main-chain conjugation and intriguing electronic properties originating
from heteroatoms [1–6]. Therefore, the construction of unique electronic structures with
various elements is still a relevant topic in this research field [7–10]. Currently, most of
heteroatom-containing conjugated polymers have donor-acceptor type structures in the
main-chains. In contrast, homopolymers are an important class of conjugated polymers
since homopolymers tend to form an electronic interaction among the monomeric unit.
From the previous examples on homopolymers, light-absorption properties with large
molar extinction coefficients and narrow HOMO-LUMO gaps can often be observed [11,12].
These electronic properties are favorable for presenting not only high carrier-transport
ability, but also electric conductivity by doping.

We have focused on azaphenalene derivatives as an element-block, which is a min-
imum functional unit containing heteroatoms [13–17], for constructing conjugated poly-
meric materials due to their unique electronic structures [18–25]. By extending conjugated
systems through polymer main-chains, bathochromic shifts of optical bands are usually
observed. Interestingly, significant bathochromic shifts were observed from the donor-
acceptor type conjugated polymers involving pentaazaphenalene (5AP, Scheme 1), in which
each 5AP unit was connected at the meta position [18]. It was suggested that electronic
communication should be extended through the meta-connected 5AP units [18]. Moreover,
it was discovered that 5AP forms the π-conjugated systems with the isolated orbitals
stemming from the spatially separated frontier molecular orbitals (FMOs) [19–25]. In the
5AP skeleton, when one of the electronic orbitals of FMOs exists on the skeletal carbon,
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the node is obtained in another FMO. This character of π-conjugated system is sometimes
observed in a certain heterocyclic compound and is far different from those of commodity
π-conjugated polymers, where both of the FMOs are delocalized over the main chains of
the polymers [12,26–30]. Based on the character of FMOs, we have demonstrated that one
of the FMOs can be selectively tuned by the substituent effect, the boron complexation,
and connection with other conjugation units [21,22]. As a result, near-infrared-absorbing
dyes and deep-red emissive materials were obtained with 5AP [21,22]. In summary, by
introducing electron-donating substituents at 7,9-positions, only energy levels of HOMOs
can be significantly elevated. Meanwhile, those of LUMOs can be selectively lowered by
the introduction of electron-accepting substituents at 2,5-positions. From these data, it was
presumed that energy levels might be able to be modulated by the extension of electronic
conjugation. To evaluate the validity of this hypothesis, we designed 5AP homopolymers.
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separated FMOs [25]. When connected at the 7,9-positions, it is presumable that the delo-
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Scheme 1. Synthesis of 5AP homopolymers via oxidative polymerization in the Scholl reaction.

Herein, we illustrate the synthesis and electronic properties of homopolymers of 5AP.
When the transition-metal catalyzed reactions are not applicable, oxidative polymerization
in the Scholl reaction has been utilized. However, we often suffer from the generation
of structural isomers at the connecting points due to the intrinsic high reactivity of inter-
mediates. In this study, regioselective polymerization for obtaining homopolymers was
observed. In particular, although each monomer unit has steric hindrance, we accom-
plished the attainment of homopolymers with the single connecting motif. In addition,
variable lengths of homopolymers can be isolated with chromatography. From the op-
tical measurements, we evaluated the influence of the extension of conjugated system
through the meta-substituted skeleton and distance dependency of the main-chain conju-
gation on optical properties. We can propose that the heterocyclic compounds which have
spatially-separated FMOs are versatile for building robust conjugation systems.

2. Results and Discussion

Initially, the structures and electronic properties were theoretically investigated by
density functional theory (DFT) calculations using the Gaussian 16 C.01 package. Opti-
mized structures were estimated with the calculations at the B3LYP/6-31+G(d,p) level of
theory for the monomer and the B3LYP/6-31+G(d,p)//B3LYP/6-31G(d,p) level of theory
for the dimer and trimer. The calculated orbital energies of the HOMOs and LUMOs are
summarized in Figure 1. The extension of the π-conjugated system in the homopolymers
was quite different from those in the copolymers. As mentioned above, 5AP has the
spatially-separated FMOs [25]. When connected at the 7,9-positions, it is presumable that
the delocalized HOMO over the main chain and the isolated LUMO on each 5AP could
be obtained since only HOMO is distributed at the connected points. From the calculated
data, it was clearly shown that large degrees of the elevation of HOMOs were observed
from the dimer and trimer, whereas only a slight lowering was observed from the LUMOs.
This result significantly suggests that the selective elevation of HOMO of 5AP can be
induced by polymerization, followed by narrow band gaps. Compared to the results from
the monomers and copolymers, LUMOs were relatively lowered by the connection at the
7,9-position. Due to steric hindrance between the 5AP units, torsion should be induced
(Figure S1). Therefore, the lowering effects of LUMOs could be induced by polymerization.
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Figure 1. The HOMO and LUMO levels of the monomer, dimer, and trimer calculated at B3LYP/6-
31+G(d,p) (monomer) and B3LYP/6-31+G(d,p)//B3LYP/6-31G(d,p) (dimer and trimer) levels
of theory.

To obtain homopolymers, we preliminary conducted commodity metal-catalyzed
reactions, such as the Yamamoto coupling, which is often applied for the attainment of
electronic acceptor-consisting homopolymers, with brominated 5AP [31]. However, we
obtained insoluble species, and any analyses were not applicable. Therefore, we performed
oxidative polymerization in the Scholl reaction using phenyliodine bis(trifluoroacetate)
(PIFA) as an oxidizer (Scheme 1) [32–34]. Preliminary screening of the solvent and tem-
perature was conducted as described in Table S1, and the crude reaction mixture was
analyzed by size-exclusion chromatography (SEC, Figure S2). Consequently, we found
the appropriate reaction condition and obtained the polymeric products, according to the
SEC profile after the reaction. In order to evaluate the influence of a conjugation length
on the electronic properties, we prepared various lengths of polymers by the separation
with preparative high-performance liquid chromatography (HPLC). According to the SEC
profiles, a series of polymers with variable lengths were obtained (Figure 2). Moreover, we
confirmed their molecular weights by matrix-assisted laser desorption ionization time-of-
flight mass spectroscopy (MALDI-TOF-MS, Figure S3). From the analyses, it was revealed
that the mixture sample was mainly composed of the trimer and tetramer of 5AP. The
mass values that increased repeatedly corresponded to the expected monomer unit. The
polymer with 10 repeating units was detected from the spectra of the fractionated samples
(Figure S4). From the mass values, it was observed that hydrogen atoms were introduced
at the chain ends. These data indicate that the undesired byproducts, such as oxidative
decomposition products, were not incorporated into polymer chains. From the thermal
analyses, a lower decomposition temperature was obtained from the polymer (Figure S5).
Torsion through the polymer main-chain might be responsible for instability.
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Figure 2. GPC traces of the crude sample (up) and the fractionated sample (down).

As is often the case with oxidative polymerization, the products contain structural
isomers at the connecting points [11]. Therefore, the chemical structures of the polymeric
products in Fractions 1–5 were carefully examined by 1H NMR spectroscopy (Figure S6).
By the comparison of the spectra, it was clearly shown that the products should have the
expected structure. The doublet peaks around 6.2 ppm (marked with a black triangle)
should be attributable to the peaks of the hydrogen atoms at the 7- (7-H) and 9-positions
(9-H). The multiple peaks (marked with a bright green square) were probably assigned
as the peaks of the hydrogen atoms at the 8-positions (8-H). It should be noted that they
contain a doublet peak originating from the 8-H at the chain-ends. The singlet peak at
7.4 ppm (marked with a red pentagon) was not detected, indicating that coupling reactions
selectively occurred at the 7,9-positions of the 5AP unit. Owing to the localization of
HOMO, good selectivity in oxidative reactions should be obtained.

The extension of the π-conjugated system in the 5AP homopolymers was evaluated
by UV-vis absorption spectroscopy. The spectra of Fractions 2, 3, and 4 were measured
in the chloroform (Figure 3, 1.0 × 10−5 M per repeating units). Fractions 1 and 5 were
not used due to the possibility that impurities, such as monomers, could be included.
Compared to the spectrum of the monomer, the absorption bands were observed from the
polymers in the longer wavelength regions, clearly indicating that electronic conjugation
should be elongated through the polymer main-chains. The color of the monomer was
purple, meanwhile the homopolymer showed a dark brown color, representing the fact
that absorption in the visible region is enhanced by polymerization. It should be noted that
the electronic interaction can be obtained through the meta-substituted 5AP. The unique
π-conjugation can be obtained in homopolymers. Furthermore, corresponding to the
calculated data, all of the polymers exhibited similar spectra, suggesting that the effective
conjugation length should be around three monomer units. Due to torsion at the connecting
points, an electronic interaction should be disturbed. Moreover, significant effects of the
chain-ends were hardly observed in the spectra, although the effects from the chain-ends
are often critical in the short polymer main-chain. Owing to the hydrogen chain ends,
perturbation in the spectra should be suppressed.
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3. Conclusions

We successfully synthesized homopolymers of 5AP through the oxidative coupling
reaction. Traditionally, structural isomers are often generated in this reaction, while side-
reactions can be suppressed, probably due to the localized HOMO of 5AP. Owing to the
reliable polymer structure, we can analyze their electronic structures. Accordingly, it was
shown that electronic conjugation can be obtained through the meta-substituted 5APs.
As a result, peak shifts to longer wavelength regions were accomplished, indicating that
the band gap should be narrowed. Computer calculation results suggest that selective
elevation of the energy level of the spatially-separated HOMO should be the origin of
peak shifts. These data propose that further narrower band gaps might be obtained by the
combination of the modification with electron-accepting groups at 2,5-positions, which
can induce critical lowering of LUMO energy levels. Due to the material properties as
a polymer, such as film-formability and solubility, these optical properties are favorable
for the application of advanced organic optical materials, such as a wavelength convertor
for near-infrared light, although the magnitude of absorption should be needed. From
our findings, heterocyclic compounds, which often have spatially-separated FMOs, are
potential candidates, not only as a monomer for constructing homopolymers, but also as a
building block for developing advanced narrow-band gap materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13224021/s1. Figure S1: The LUMO and LUMO+1 of the dimer of 5AP. The bonding
and anti-bonding interactions are clearly seen around the 7C-7′C bond in the LUMO and LUMO+1,
respectively (red dashed circle). Figure S2: GPC traces of (a) monomer and Entries 1–3 and (b) Entries
4–7. Figure S3: MALDI-TOF-MS spectra of the crude sample (up) and the fractionated samples
(down). Figure S4: The enlarged MALDI-TOF-MS spectra of Fraction 4. The m/z values corre-
sponding to the main isotopic peaks are illustrated. Figure S5: (a) TGA and (b) DSC profiles of
5AP monomer and homopolymer. Figure S6: 1H NMR spectra of monomer and the fractionated
samples (aromatic region, measured in CD2Cl2). Table S1. Screening of the reaction conditions for
homopolymerization via oxidative coupling.
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agreed to the published version of the manuscript.
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