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Abstract: This study addresses some issues regarding the problems of applying CAE to the injection
molding production process where quite complex factors inhibit its effective utilization. In this study,
an artificial neural network, namely a backpropagation neural network (BPNN), is utilized to render
results predictions for the injection molding process. By inputting the plastic temperature, mold
temperature, injection speed, holding pressure, and holding time in the molding parameters, these
five results are more accurately predicted: EOF pressure, maximum cooling time, warpage along the
Z-axis, shrinkage along the X-axis, and shrinkage along the Y-axis. This study first uses CAE analysis
data as training data and reduces the error value to less than 5% through the Taguchi method and
the random shuffle method, which we introduce herein, and then successfully transfers the network,
which CAE data analysis has predicted to the actual machine for verification with the use of transfer
learning. This study uses a backpropagation neural network (BPNN) to train a dedicated prediction
network using different, large amounts of data for training the network, which has proved fast and
can predict results accurately using our optimized model.

Keywords: injection molding; CAE; machine learning; transfer learning

1. Introduction

In recent years, the computer, communications, and consumer electronics industries
(hereafter referred to as the 3Cs) have developed vigorously, and their increasing diversity
of products has led to the shortening of product life cycles. In order to reduce a costly trial-
and-error process and speed up product development to match product life cycle demand,
many companies have introduced computer-aided engineering (CAE) technology to their
molded products’ production processes in order to enhance the quality of those products,
ideally avoiding defects. However, due to the physical characteristics of each injection
machine being irregular, even though possible problems are eliminated at the CAE stage,
there is still a necessity to rely on the experience of on-site personnel to manually adjust the
parameters of said machines for the actual molding process to be carried out successfully.
As such, in order to achieve the accuracy required for a product, CAE technology alone
cannot currently provide sufficient assistance regarding such processes requiring a precise
injection of molding to create products.

When defects do occur in products created via an injection molding process, these
are not due to simple linear problems. Therefore, there is no way to use simple judgment
rules to predict numerical values. In related research literature, Rosa et al. [1] mention
that experimental design, i.e., design achieved using experimental techniques, is widely
used to optimize injection molding parameters, thus improving product quality. However,
conventional experimental design methods are usually complicated and may often fail to
achieve the results expected. When the number of molding parameters increases, these
methods require many trials. (It can be said that as the number of parameters to be included
increases, the number of trials necessarily increases.) Therefore, the Taguchi orthogonal
method is used to select experimental trial data and used to reduce the number of trials
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required to obtain clear results; Marins et al. [2] propose the use of the Taguchi method
and analysis of variance (ANOVA) to evaluate the impact of varied injection molding
parameters regarding warpage, shrinkage, and mechanical properties of plastic parts.
Marins et al. use two different plastics, one of which crylonitrile butadiene styrene (ABS) is
used in this study. Their control factors are mold temperature, holding pressure, holding
time, plastic melt temperature, cooling time, mold water flow, and injection speed. The
results of their experiments show that when ABS was used for trials, the controlling factors
regarding shrinkage, warpage, and bending defects are holding time and holding pressure.

Hifsa et al. [3] use the Taguchi method with grey relational analysis to find the best
parameter configuration for injection molding of HDPE/TiO2 nanocomposites.

In another related work on machine learning, Luo et al. [4] employ an artificial neural
network to resin transfer molding (RTM) using simulation analysis results as training
data and flow behavior and filling time as output, combined with a genetic algorithm to
optimize the prediction results. Their research results show that this method can effectively
assist the engineer to determine the optimum locations of injection gates and vents for the
best processing performance, i.e., short filling time and high quality (minimum defects).

However, Kenig et al. [5] mention that the mechanical properties of plastics and
molding parameters are highly nonlinear. Therefore, they are difficult to predict. Kenig
et al. use the design of experiment (DOE) method in combination with artificial neural
networks to accurately predict the mechanical properties of the product. This method can
be used to predict other molding results effectively.

Moreover, Denni [6] proposes the use of the Taguchi method, a backpropagation
neural network (BPNN), and the hybrid particle swarm and genetic algorithms to find
optimal parameter settings. The results of Denni’s experiments show that this optimized
system not only improves the quality of plastic parts but also effectively reduces process
variation. Denni also mentions that a backpropagation algorithm will cause difficulty
in reaching optimal solutions or overfitting due to poor initial link values or excessive
training numbers. Therefore, genetic algorithms are added to alleviate this shortcoming
and increase the accuracy of predictions.

Furthermore, Kwak et al. [7] propose a kind of artificial neural network architecture to
solve the multivariable problem that affects the optical mold during the injection molding
process using the two control factors of suppressing porosity and reducing the minimum
thickness combined with an artificial neural network to make predictions, which proved
that this technology can effectively improve the product quality of optical molds.

In addition, Castro et al. [8] assert that injection molding is the most important
process for mass production of plastic products; however, the difficulty in optimizing the
injection molding process lies in performance measurement. Therefore, CAE, statistical
methods, artificial neural networks (ANN), and data envelopment analysis (DEA) are
several methods to solve the problems encountered in injection molding.

In their work, Shen et al. [9] mention that injection-molded products are sensitive to
the conditions of the injection process, so they use backpropagation to process the nonlinear
relationship between the process parameters and product quality and combine genetic
algorithms to optimize the process parameters to reduce product shrinkage. Their results
show that the combination of backpropagation and genetic algorithms can be an effective
tool for optimizing process parameters.

Mirigul [10] uses the Taguchi method to carry out experimental design and ANOVA to
perform analysis, finding that the most important factors that affect polypropylene (PP) and
polystyrene (PS) shrinkage are holding pressure and melt temperature, and through these
trials, with melt temperatures, holding pressures, holding times used as input, and the
shrinkage rate used as output, an artificial neural network training is conducted. Mirigul’s
research results show that PP shrinkage prediction error is 8.6%, and for PS, it is 0.48%,
which proves that this method is an effective tool for predicting shrinkage.

Additionally, Yin et al. [11] propose a 5-input nodes, 1-output node backpropagation
for neural network learning. The 5 input signals are mold temperature, melt temperature,
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filling pressure, filling time, and holding time. The hidden layer contains two neural
layers, each with 20 neurons, and the output signal is warpage deformation. This method
successfully uses finite element analysis of data for training and the prediction error of the
control systems is within 2%.

Alberto and Ramón [12] mention that the process parameters are one of the final
yet important steps during production; they are used to improve product quality in final
production, but the adjusted parameters might affect the quality of a product due to the
instability of material and machine. Instability affects product quality. From their work, we
can see that using machine learning can accurately improve stability and quickly improve
product quality.

Deng and Yu [13] propose general deep learning methodologies and provide an
overview of their application to various signal and information processing tasks. Per their
work, there are three criteria for selecting an application area: the author’s professional
knowledge, the application areas that have been successfully transformed by the use of
deep learning technology, and the application areas that are potentially affected by deep
learning. Their monograph also introduces the principle of pretraining in unsupervised
learning.

In the work of Jong et al. [14], the hyperparameters of a backpropagation neural
network (BPNN) are optimized with the smaller, the better feature (STB) from the Taguchi
method, and they propose a 5-input, 3-output artificial neural network architecture, where
the 5 inputs are injection speed, holding time, holding pressure, mold temperature, melt
stability, and the 3 outputs are end of filling (EOF) pressure, maximum cooling time, and
warpage along the Z-axis. There are two hidden layers: the first layer has 7 neurons, and
there are 3 neurons in the second hidden layer. The network is trained for the second
time with new training data for addressing Z-axis warping, and in terms of the warping
deformation value, the error is reduced from 7.26% to 3.69%.

Sinno et al. [15] propose that between classification tasks in similar fields, transfer
learning, if performed successfully, would greatly improve the performance of learning by
avoiding expensive data-labeling efforts.

In the research literature related to transfer learning, Dan et al. [16] use an artificial
neural network that recognizes various symbols, and it is retrained with the data of capital
letters. The results show that using the original network for transfer learning can accelerate
the training efficiency of the neural network. Furthermore, pretrained neural networks
consistently outperform randomly initialized neural networks on new tasks with few
labeled data. This result is also applied to Chinese character recognition for accelerated
neural networks.

Huang et al. [17] propose a sharing cross-language hidden layer concept for the
learning of various languages, and this hidden layer of cross-language learning features
transformations during transfer learning in which the error can be reduced to 28% at best.

Jiahuan et al. [18] introduce model-based transfer learning and data augmentation,
the knowledge from other vision tasks is transferred to industrial defect inspection tasks,
resulting in high accuracy with limited training samples. Experimental results on an
injection molding product showed that the detection accuracy was improved to about 99%
when only 200 images per category were available. In comparison, conventional CNN
models and the support vector machine method could achieve an average accuracy of only
about 88.70% and 86.90%, respectively.

Yannik, L. et al. [19] used induced network-based transfer learning to reduce the
necessary amount of injection molding process data for the training of an artificial neural
network in order to conduct a data-driven machine parameter optimization for injection
molding processes. From the research results, it is found that the source model of the
injection molding process of the part similar to the part of the target process achieves the
best result. Transfer learning technology has the potential to significantly improve the
relevance of AI methods in process optimization in the plastics processing industry.
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In their work, Shin et al. [20] mention that because ImageNet collects a large number
of image tags, the neural network acquires enough training data to make accuracy ever-
improving. Their research results show that ImageNet network transfers to thoracic–
abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification
problems with good accuracy, proving that neural networks can be extended to other
medical applications through transfer learning.

Hasan et al. [21] mention that when the amount of training data is not sufficient when
using training with random initialization, it is difficult to find an optimal solution. This
research first pretrains the network with simulated and analyzed data and then performs
transfer learning with actual experimental training. Their research results show that this
pretrained method can make a network converge quickly and can obtain results similar
to those of the control group with less training data. In related work, Hasan et al. [22]
mention that machine learning has great potential in the injection molding process, and
their research involves using different masses of LEGO bricks as training data and then
transferring what is learned to LEGO bricks of other sizes for quality prediction. The
network used in their study contains four hidden layers of neurons, the numbers of which
are 45, 45, 20, and 20, respectively. Rectified linear unit (ReLU) is used as the activation
function, the learning rate is 0.01, and the first two neural layers are frozen during the
transfer learning process to ensure that important knowledge will not be lost during the
transfer process.

From the aforementioned works, it can be found that in the application of the injection
molding process, most research is used to predict product weights, and less focus is given
to injection pressure, product shrinkage, warpage, or other issues. Additionally, beyond
the issue of weight, another criterion for judging whether the injection molding process for
any given product meets the standard is the shrinkage rate. At present, 3C products are
becoming more and more complex, so the assembly accuracy of the product is demanding,
making the parameters related to the shrinkage rate complicated. The injection speed of
the machine, mold temperature, holding pressure, and holding time are directly related.
Therefore, the on-site staff cannot quickly determine how to adjust the production process
to meet the tolerance specified during the design. The transfer learning method proposed
herein trains an artificial neural network with fewer actual parameters, which can be used
in the future to assist mold testing staff to quickly adjust machine parameters.

2. Relevant Technical Research

In recent years, with the ever-increasing speed of computer operations, artificial neural
networks have once again been widely discussed. With the development of TensorFlow
as an open-source resource by the Google Development Team, the application of artificial
neural networks has begun to develop rapidly. Artificial neural networks can be “trained”
with a significant amount of data constructing a network with rapid prediction and judg-
ment capabilities. However, not all trials can easily have a large amount of training data
collected. Therefore, the concept of transfer learning is also proposed. Neural networks
trained through similar trials can reduce the amount of training data and time necessary to
construct new networks.

Regarding programming development, this research uses the programming language
Python to interface with API via TensorFlow 2.0 (a Python-friendly open source library)
to develop artificial neural networks. After the release of TensorFlow version 2.0, the
high-level API highly supports Keras to reduce the difficulty of getting started and enables
interdisciplinary researchers to construct neural networks and adjust network hyperpa-
rameters more conveniently.

2.1. Artificial Neural Networks (ANN)

Artificial neural networks are currently widely used in the field of machine learning
and artificial intelligence. An artificial neural network consists of an input layer, a hidden
layer, and an output layer. Each layer is composed of several neurons. This study utilizes a
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backpropagation neural network as a training method, and it adjusts the values of weight
and bias between each neuron based on the results of each training trial.

2.1.1. Backpropagation Neural Network (BPNN)

A backpropagation neural network (BPNN) is a kind of supervised learning that uses
the gradient descent method to correct the erroneous difference between the expected value
and the output value. Its characteristic is that each neuron has a differentiable activation
function, and the network is highly connected.

The curve of injection molding product has multiple and deformable characteristics.
It is hard to use a simple principle to predict. Therefore, this research is based on BPNN to
predict these irregular data.

The BPNN network structure can be divided into three layers. As shown in Figure 1,
the first layer is the input layer. The input layer will receive data from the outside world.
Usually, these data will be preprocessed first. After receiving the data, the input layer will
transmit the data to the next layer. The number of hidden layers and the number of neurons
in each layer are designed according to different modeling problems, and because each
neuron is highly connected to each other, the architecture of the hidden layer will directly
affect the calculation speed of each training run; the third layer is the output layer, the
predicted values calculated by the hidden layer are exported to the outside world from this
layer, and according to different activation functions, these will have different functions.
Common ones are numerical prediction, classification, and probability, and so on.

Figure 1. Artificial neural network architecture.

2.1.2. Training and Learning Process

A backpropagation neural network is trained through the use of multiple sets of
data and continuously adjusts the weight value of each link until the error of the network
output meets the expected range. The training process is characterized by forward flow of
information in the prediction mode and backward flow of error corrections in the learning
process. Usually, the initialized weight value and offset value are randomly generated, so
the data need to be passed in the forward direction. The input data passed to the output
layer after the weight value, offset value, addition function, and activation function of the
link are calculated and predicted values can be received; the reverse signal transmission is
the reverse transmission stage of the network training. The error between the network’s
predicted value and the target value is first calculated, and then the learning effect is
controlled by the gradient descent method using the learning rate. The learning process is
shown in Figure 2.
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Figure 2. Basic architecture of a backpropagated neural network (BPNN).

2.2. Transfer Learning (TL)

The concept of transfer learning originated from the study of human behavior by
scientists. Human beings can transfer past experience to different fields and thereby
accelerate their learning in those fields new to them. In the field of machine learning, the
artificial neural network algorithm was developed by simulating the operation of human
nerves, and it also has the characteristics of transfer learning. When we do not have enough
labeled data to train the model, we can use a similar or the same type of data to “pretrain” a
model; with and on the basis of this properly trained model, a usable model can be trained
by using less labeled data. Transfer learning can be divided into two types—first, the
transition from virtual to actual reality, and second, among similar areas (as is explained
shortly hereafter). If the acquisition of training data is overly risky, the amount of data
required is too large, or it takes a lot of time and money, using a computer simulation can
obtain sufficient training data in a fast, safe, and cost-effective manner. For example, if
automatic driving technology were directly applied to a real road test before it is mature, it
would be extremely dangerous. Therefore, the use of computer-simulated driving for a
road network as pretraining and then transferring that to actual road training will greatly
reduce both risks and data requirements. Another transfer method is to transfer to a similar
field. For example, the module used for truck identification can be quickly applied to sedan
identification, which not only reduces the training data required but also speeds up the
network training. To achieve an effective transfer of learning, the data selection must be as
similar as possible, and, if possible, the data should be adjusted to match the data type of
the original network. Therefore, the data must be guaranteed to be normalized without too
much deviation; otherwise, the content received by the network will be different from the
setting.
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2.3. Computer-Aided Engineering (CAE)

Computer-aided engineering (CAE) is the use of finite element software to establish an
analysis model and perform rapid calculations on a computer for simulation. It is mainly
used in various engineering fields. Using the injection molding industry as an example,
engineers can perform simulation analysis via computer at an early stage of product
design and then evaluate the feasibility of that product design, as shown in Figure 3. This
technology can greatly shorten the development time, analyze and correct designs at the
initial stage, and reduce manpower and material costs in the subsequent testing process so
as to accelerate the time of product development, improve the product yield and quality,
and then increase the yield.

Figure 3. Flowchart of CAE design analysis.

2.4. The “Random Shuffle” Method

In machine learning, the most important thing is the correctness and quantity of
training data. Sufficient training data is one of the primary factors to ensure accuracy,
but how to use such hard-earned data is another issue of importance. Although machine
learning is fast and accurate, it never makes mistakes, so no matter how many calculations
are processed, the same result will be obtained. When humans are learning, because of
factors such as distractions and different preferences, the same information is evaluated
differently, which increases the likelihood of different resultant possibilities. Therefore,
when processing training data, that data can be randomly grouped, as shown in Figure 4,
by splitting it into multiple sets for learning purposes, the possibility of optimization can
thus be enhanced. This method, which we coin here as “random shuffle,” is similar to
the concept of training on batch commonly used in machine learning. “Training on batch”
describes when a training data set is divided into multiple batches in order to avoid the
difficulty of convergence due to processing too much training data at a time. The greatest
difference between training on batch and random shuffle is that the former uses the data
in only one training run, while random shuffle utilizes incomplete data sets for each run,
thus increasing the chance of mutation during all training runs. Because each training
data set is incomplete, after training, you need to train it again using the complete data set.
Random shuffle can be regarded as a kind of pretraining, and then the full data are used
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to make final adjustments to the pretraining network, such as shown in Figure 5, where
the data segmentation of random shuffle needs to be searched for using the trial-and-error
method. This research has been tested at 80% of the full data segmentation with a learning
rate of 0.1, which shows an improved effect. In terms of epochs, the number depends on
the amount of data in the set—the more training data that are in the set, the fewer epochs
will be needed.

Figure 4. Schematic diagram of random shuffle.

Figure 5. The random shuffle training process.

2.5. Data Normalization

Data normalization is used to compare data from different units. A unit of a set of data
can be removed and analyzed. Taking the injection molding parameters applied to neural
network training as an example, a temperature of 200 degrees for a plastic and the holding
time of 5 s as the input layer, due to the high value of the plastic’s temperature, more
iterations will be required in the calculations with the gradient descent (algorithm), which
will cause too many iterations on the holding pressure intervals with a relatively small
value that, in turn, causes overfitting. Therefore, the preprocessing of data is important
for machine learning. The two most common methods in the field of machine learning are
min–max normalization and Z-score standardization.
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The main purpose of minimum and maximum normalization is to scale all the data to
between [0, 1] and retain the distribution state of the data. The calculation method is shown
in Equation (1). This method is mainly used when the difference among data sets is too
great, which can accelerate the convergence of the model and avoid potential overfitting;
Z-score standardization is used to convert the data and to make it conform with normal
distribution, so that the average value is equal to 0 and the standard deviation is equal
to 1. The calculation method is shown in (2); it is mainly used to further optimize data
when the data themselves have close to a normal distribution. The data used in this study
are all evenly distributed, and the numerical difference between each input is large, so the
minimum and maximum normalization will be used to perform the preprocessing of the
data.

Xnom =
X− Xmin

Xmax − Xmin
∈ [0, 1] (1)

Z =
X− µ

σ
∼ N(0, 1) (2)

2.6. The Taguchi Method

The Taguchi method is a statistical method developed by Dr. Taguchi Genichi in the
1950s. It can improve design quality and computational cost efficiency. Through the use of
an orthogonal meter, the interference of noise on the product can be reduced, the number
of trials can be reduced, and the quality variation can be reduced to achieve the purpose of
robust design.

2.6.1. Quality Characteristics

Appropriate quality characteristics have the following two criteria: one is that real,
continuous functions are required, and the other is that a monotonic function is preferred.
It may likely be anticipated that “smaller” error between the inferred value and the target
output value is better, so it has a quality characteristic of “the smaller, the better” (STB),
and for STB, its target value of the S/N ratio should be approximating 0. The definition of
the S/N ratio is shown in Equation (3).

S/N = −10log[
1
n

n

∑
i=1

y2
i ] (3)

2.6.2. Definition and Selection of Experimental Factors

The factors that affect quality characteristics can be divided into three categories,
namely control factors, signal factors, and interference factors (also called noise factors),
as shown in Figure 6. The quality of the design will affect whether the subsequent results
achieve the standard desired and will not change with excessive variation due to the
interference of external factors, that is, sensitivity to the interference factor is reduced.

Figure 6. Experimental factors in Taguchi designs.
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Three strategies can be used for interference factors: random experiment, internal
orthogonal table, and interference experiment. If the quality characteristics are still not
affected by the extreme compound interference factors, then the combination is the best
stable design and can resist changes from other interference factors. To understand the
Taguchi orthogonal method as mentioned prior, the main effect between the factors, that
is, the degree of influence of the factor on the quality characteristics, and the fact that the
average effect of each factor is the experimental combination configured in the Taguchi
orthogonal table experiment, must be understood and ascertained, and then the S/N ratio
of each factor calculated, and finally made a response table.

3. Using CAE Data to Study Transfer Learning among Different Models

Because of the fact that actual injection molding data is difficult to obtain, this study
first uses CAE software to analyze a circular flat plate as the source of training data and
combines our random shuffle and database normalization processes for network training
and optimization; then, the trained network will be transferred and used on a similar but
square plate model. Finally, the use of the CAE data of the square plate model is used to
readjust the transferred weight and bias to make the entire network more suitable for the
numerical prediction of the square plate, as shown in Figure 7.

Figure 7. Transfer learning process between different models.

3.1. Network Training of the Circular Flat Model

This study uses a circular flat panel model to perform the pretraining of the backprop-
agation neural network (BPNN). The pretraining is divided into two parts: data collection
and network parameter tuning. The pretraining is to provide a set of available initial
weight and bias for the square flat panel model as a training purpose.

3.1.1. Training Materials

The training data are produced by using the mold flow analysis software, Moldex3D.
Each set of training data contains 5 control factors as input values and 5 analysis results as
expected values of output. The input values are injection speed, holding pressure, holding
time, plastic temperature, and mold temperature; the output values are gate EOF (end of
Filling) pressure, maximum cooling time, the value of warpage along the Z-axis, product
shrinkage along the X-axis, and product shrinkage along the Y-axis. The measurement
points are shown in Figure 8.
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Figure 8. CAE data measurement location of the circular flat model.

In terms of the process parameters, this study takes the default setting provided by
Moldex3D as a reference and then set values according to the number of levels. Among the
5 control factors, the injection speed, melt temperature, mold temperature, holding time,
and holding pressure are set at 3 levels, and then using a full factorial trial, a total of 243
sets of training data will be produced. The detailed training data parameters are shown on
Table 1. After the artificial neural network training is completed, it needs to be tested with
data that has not been learned at all. In this study, 16 sets of parameters corresponding to
the L16 orthogonal table of the Taguchi method are used as verification data. The detailed
parameters are shown on Table 2.

Table 1. Training data factors and level settings (CAE-243).

Factor Default Level

Melt Temperature (◦C) 210 185 207.5 230
Packing Time (sec) 4.5 3 6 9

Packing Pressure (MPa) 135 100 130 160
Injection Speed (mm/sec) 70 50 65 80

Mold Temperature (◦C) 50 40 55 70
Total Processed Data 243

3.1.2. Hyperparameter Settings

In terms of artificial neural networks, this study uses the optimized network param-
eters proposed by Jong et al. [14]. The parameters that need to be set are the number of
training times, the number of repetitions, the activation function, the learning rate, the
optimization method, the initial link value, the number of hidden layers, and the number
of neurons; this network architecture is shown in Figure 9. As for other settings, the
number of training runs is reduced to 20,000 due to the introduction of random shuffle for
pretraining, and the learning rate is 0.1. Both hidden layers use sigmoid as the activation
function and use the stochastic gradient descent (SGD) for optimization, and the network
hyperparameter settings are shown on Table 3.
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Table 2. Validation data settings (CAE-243).

No. Melt
Temp. (◦C)

Packing Time
(sec)

Packing
Pressure (MPa)

Injection Speed
(mm/sec)

Mold
Temp. (◦C)

1 195 4 110 55 45
2 195 5 120 60 50
3 195 7 140 70 60
4 195 8 150 75 65
5 205 4 120 70 65
6 205 5 110 75 60
7 205 7 150 55 50
8 205 8 140 60 45
9 210 4 140 75 50

10 210 5 150 70 45
11 210 7 110 60 65
12 210 8 120 55 60
13 220 4 150 60 60
14 220 5 140 55 65
15 220 7 120 75 45
16 220 8 110 70 50

Figure 9. Optimal network architecture (CAE-243).

Table 3. Network hyperparameter settings (CAE-243).

Parameters Value Parameters Value

Epoch 20,000 Learning Rate 0.1
Hidden Layer 1 7 Initial Weight Random
Hidden Layer 2 3 Initial Bias Random

Optimized Method SGD Activation Function Sigmoid

As for the data input, this research uses random shuffle to randomly divide 243 process
parameters into 1000 sets of training data. Each set of data contains 195 (80%) process
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parameters. The network alternates a set for training every 500 trials during training to
avoid overfitting occurring.

3.2. Transfer Learning of the Square Plate Model

In terms of transfer learning, the square plate and the round plate model are the same,
as are the network architecture of the two, as well as the optimized weight and bias values
for both, and then the training data of the square plate are used to fine-tune the network to
achieve the goal of transfer learning.

3.2.1. Training Materials

The training data are the same as those of the round flat model. The five analysis
results are used as the expected values of output. The input values are injection speed,
holding pressure, holding time, plastic temperature, and mold temperature; the output
values are EOF pressure, maximum cooling time, the value of warpage along the Z-axis,
the amount of product shrinkage along the X-axis, and the offset of the product along the
Y-axis. The measurement point positions are shown in Figure 10.

Figure 10. Model measurement position for the square plate.

The purpose of transfer learning is to reduce the required training data and save
calculation time. Therefore, in the training data setting for the square tablet, the L27
orthographic table of the Taguchi method is used to produce 27 sets of training data as
input, as shown on Table 4. The L16 orthogonal array produces 16 sets of verification
parameters to verify the network, as shown on Table 5.

3.2.2. Hyperparameter Tuning

The hyperparameters used in the transfer learning of the square plate are the same
as those used for the round plate. The architecture uses two hidden layers. The first layer
contains seven neurons, and the second layer contains three neurons. For other settings, the
learning rate is 0.1. Both hidden layers use sigmoid as the activation function. A transfer
function is used to input weight and bias. The network hyperparameter settings are shown
on Table 6.
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Table 4. Square tablet training data (CAE-27).

No. Melt Temp(◦C) Packing Time
(sec)

Packing Pressure
(MPa)

Injection Speed
(mm/sec)

Mold
Temp. (◦C)

1 185 3 100 50 40
2 185 3 100 50 55
3 185 3 100 50 70
4 185 6 130 65 40
5 185 6 130 65 55
6 185 6 130 65 70
7 185 9 160 80 40
8 185 9 160 80 55
9 185 9 160 80 70

10 207.5 3 130 80 40
11 207.5 3 130 80 55
12 207.5 3 130 80 70
13 207.5 6 160 50 40
14 207.5 6 160 50 55
15 207.5 6 160 50 70
16 207.5 9 100 65 40
17 207.5 9 100 65 55
18 207.5 9 100 65 70
19 230 3 160 65 40
20 230 3 160 65 55
21 230 3 160 65 70
22 230 6 100 80 40
23 230 6 100 80 55
24 230 6 100 80 70
25 230 9 130 50 40
26 230 9 130 50 55
27 230 9 130 50 70

Table 5. CAE verification data for square tablet (CAE-27).

No. Melt Temp. (◦C) Packing Time
(sec)

Packing Pressure
(MPa)

Injection Speed
(mm/sec)

Mold
Temp. (◦C)

1 195 4 110 55 45
2 195 5 120 60 50
3 195 7 140 70 60
4 195 8 150 75 65
5 205 4 120 70 65
6 205 5 110 75 60
7 205 7 150 55 50
8 205 8 140 60 45
9 210 4 140 75 50

10 210 5 150 70 45
11 210 7 110 60 65
12 210 8 120 55 60
13 220 4 150 60 60
14 220 5 140 55 65
15 220 7 120 75 45
16 220 8 110 70 50

3.2.3. Hyperparameter Tuning

The hyperparameters used in the transfer learning of the square plate are the same
as those used for the round plate. The architecture uses two hidden layers. The first layer
contains seven neurons, and the second layer contains three neurons. For other settings, the
learning rate is 0.1. Both hidden layers use sigmoid as the activation function. A transfer
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function is used to input weight and bias. The network hyperparameter settings are shown
on Table 6.

Table 6. Hyperparameters settings for the square plate (CAE-27).

Parameters Value Parameters Value

Epoch 20,000 Learning Rate 0.1
Hidden Layer 1 7 Initial Weight Transfer
Hidden Layer 2 3 Initial Bias Transfer

Optimized Method SGD Activation Function Sigmoid

As for the data input, this research uses random shuffle to randomly divide 27 sets
of process parameters into 1000 sets of training data. Each set of data contains 22 (80%)
process parameters. The network alternates a set of training for every 500 trials during
training to avoid the occurrence of overfitting.

3.3. Comparison of Transfer Learning Results among Different Products

This study compares the training process of transfer learning with full data and
random shuffle processing and discusses the results of transfer learning based on the two
results of the S mean error and standard deviation.

3.3.1. Training Results of the Round Plate Model

In this study, the prediction results of 243 groups of circular flat models analyzed via
Moldex3D were used as the input value for the backpropagation neural network, and the
data processing method of random shuffle was utilized to improve accuracy of prediction.
With the same training data, network architecture, and hyperparameter settings, after using
the data processing method of random shuffle, the average error of EOF pressure, cooling
time, warpage value along the Z-axis, shrinkage along the X-axis, and shrinkage along
the Y-axis all delivered different degrees of improvement, of which Z-axis warpage shows
the most significant mitigation. In addition to reducing the average error, random shuffle
also has different degrees of optimization vis-à-vis the standard deviation. The standard
deviation regarding warpage has been reduced most obviously. Our detailed comparison
results are shown on Table 7.

Table 7. CAE data training results for the round flat plate model (CAE-243).

Circle Plate Result (CAE-243)

EOF
Pressure

Cooling
Time

Z-Axis
Warpage

X-Axis
Shrinkage

Y-Axis
Shrinkage

Full Data
AVG (%) 12.67 8.78 29.84 14.80 13.36

STD 5.29 4.48 45.46 18.33 11.71

Random
Shuffle

AVG (%) 11.22 8.61 19.89 12.83 10.72
STD 5.22 4.42 26.45 13.91 7.54

Difference
AVG (%) 1.45 0.16 9.94 2.06 2.63

STD 0.07 0.05 19.01 4.42 4.17

3.3.2. Training Results for the Square Flat Model

In the case of trials on the square plate, this study only uses 27 sets of training data as
the input value for the backpropagation neural network, and the process parameters are
the same as those for the round plate. Our detailed training results are shown on Table 8.
If 27 sets of data are used for training directly, among the five output values, only EOF
pressure and cooling time are having less than 10% of predicted error. As for warpage
along the Z-axis, shrinkage along the X-axis, and shrinkage along the Y-axis, their error is
high, of which the 59% for the warpage along the Z-axis is the highest. After using random
shuffle to reprocess the data, the error rate and standard deviation of the five output results
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are all reduced, but the errors of warpage and shrinkage along the X and Y axes are still
significant.

Table 8. Training results for the square flat model (CAE-27).

Square Plate Result (CAE-27)

EOF
Pressure

Cooling
Time

Z-Axis
Warpage

X-Axis
Shrinkage

Y-Axis
Shrinkage

Full Data
AVG (%) 4.85 10.98 59.61 17.14 20.64

STD 2.18 7.43 66.65 22.05 18.43

Random
Shuffle

AVG (%) 3.91 10.16 56.25 15.39 18.54
STD 1.90 6.40 60.58 18.66 17.63

Difference
AVG (%) 0.94 0.82 3.36 1.75 2.10

STD 0.28 1.03 6.07 3.39 0.81

3.3.3. Transfer Learning Results for the Square Tablet Model

The round flat and square flat are both flat types of models. Therefore, this study
uses the trained round flat network architecture as the network architecture for square
flat training and integrates the optimized weight and bias into the network as the starting
values for square tablet training. Our training results are shown on Table 9. Without
preprocessing the data, using the optimized weight and bias from training for the round flat
plate, the error value and standard deviation of the EOF pressure, cooling time, shrinkage
along the X-axis, and shrinkage along the Y-axis are all reduced, except for the average of
percentage errors for warpage along the Z-axis, which has increased from 59.61% to 79.96%;
if the data are preprocessed with random shuffle, the error value and standard deviation of
the five output items will decrease, among which the warpage has been mitigated most
obviously, and the error value has been reduced from 79.96% dropped to 31.05%, and the
standard deviation dropped from 70.34% to 17.56%.

Table 9. Transfer learning results for the square flat model (CAE-27).

Square Plate with Transfer Learning Result (CAE-27)

EOF
Pressure

Cooling
Time

Z-Axis
Warpage

X-Axis
Shrinkage

Y-Axis
Shrinkage

Full Data
AVG (%) 3.44 8.69 79.96 15.02 18.15

STD 1.83 5.36 70.34 10.85 12.18

Random
Shuffle

AVG (%) 2.77 8.48 31.05 11.81 16.46
STD 1.80 4.94 17.56 8.97 11.19

Difference
AVG (%) 0.67 0.22 48.91 3.22 1.69

STD 0.03 0.42 52.78 1.89 0.99

4. Prediction of Molding Using the Network Trained via CAE Data and Transferred for
Actual Injection

In this section, the use of a larger amount of circular flat model CAE data to train
a more accurate neural network is described and discussed. This network trained with
CAE data is then transferred to the actual injection molding prediction, and the circular
flat data obtained from actual trials are used for retraining to verify that there is feasibility
of conversion between virtual and actual reality models for the injection molding process.

4.1. Transfer Learning between Virtual and Actual Reality

In the transfer learning process between virtual and actual reality, because the same
model is used, the two sets or types of data must be as similar as possible. If the actual data
and the CAE data are too divergent, prediction accuracy is seriously impacted after the
final transfer. Therefore, the data collection during the running of trials is important. In
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this study, with the gates, the in-mold pressure sensor was used to collect measurements
of the pressure change curve. After the product was left for one day, the round plate of
the amount of change in the X- and Y-axis was measured using a coordinate measuring
machine; however, warpage and cooling time data are difficult to obtain, so these two
results are not considered during the transfer process. The entire process is shown in
Figure 11.

Figure 11. Flow chart of transfer learning from virtual to actual reality trials.

4.2. Round Flat CAE Data Pretraining

The prediction accuracy before transfer of learning greatly affects the results after
transfer. Therefore, herein, the use of more CAE data and the reoptimization by tuning the
hyperparameters using the Taguchi method and the performance of pretraining before TL
are detailed and discussed. All prediction errors of the training model are maintained at
less than 5% of the total.

4.2.1. Training Data

The training data in this section are produced by the mold flow analysis software,
Moldex3D. The number of data sets has been increased from 243 sets to 1024 sets. Each set
of training data contains 5 control factors as input values and 5 analysis results as expected
output values. The input values are injection speed, holding pressure, holding time, plastic
temperature, and mold temperature, respectively; and the output values are gate EOF
pressure, maximum cooling time, warpage along Z-axis, shrinkage along the X-axis, and
shrinkage along the Y-axis. The position of the measuring point is shown in Figure 12.

In terms of process parameters, for this study, the preset value provided by Moldex3D
is taken as the reference, and then the value is adjusted according to the number of levels.
Among the five control factors, the injection speed, melt temperature, mold temperature,
holding pressure time, and holding pressure are all set at level 4, and then using the full
factor method, a total of 1024 sets of training data are produced. Our detailed training data
parameters are shown on Table 10. After the artificial neural network training is completed,
it needs to be tested with data that have not yet been learned. In this study, 16 sets of
parameters corresponding to the L16 orthogonal table of the Taguchi method are used as
verification data. Our detailed parameters are shown on Table 11.
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Figure 12. Measurement position of the round plate model.

Table 10. Training data for the round plate (CAE-1024).

Factor Default Level

Melt Temperature (◦C) 210 185 200 215 230
Packing Time (sec) 4.5 3 5 7 9

Packing Pressure (MPa) 135 100 120 140 160
Injection Speed (mm/sec) 70 50 60 70 80

Mold Temperature (◦C) 50 40 50 60 70
Total Process Data 1024

Table 11. Validation data for the round plate (CAE-1024).

No. Melt Temp. (◦C) Packing Time
(sec) Packing Pressure (MPa) Injection Speed (mm/sec) Mold

Temp. (◦C)

1 194 4.2 112 56 46
2 194 5.4 124 62 52
3 194 6.6 136 68 58
4 194 7.8 148 74 64
5 203 4.2 124 68 64
6 203 5.4 112 74 58
7 203 6.6 148 56 52
8 203 7.8 136 62 46
9 212 4.2 136 74 52

10 212 5.4 148 68 46
11 212 6.6 112 62 64
12 212 7.8 124 56 58
13 221 4.2 148 64 58
14 221 5.4 136 56 64
15 221 6.6 124 74 46
16 221 7.8 112 68 52

4.2.2. Hyperparameter Tuning

In order to achieve better prediction accuracy, 1024 sets of data are used in this section
and 1024 process parameters are randomly divided into 200 sets of training data with
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random shuffle. Each set of data contains 819 (80%) processes. A set of training materials is
changed every 50 runs during training to avoid overfitting.

This study uses the optimized network architecture proposed by Jong et al. [14] to
train 1024 sets of CAE data and found that if the warpage along the Z-axis cannot be less
than 5%, loss value cannot continue to decrease, even with the number of training runs
increased; for this, the change of loss value can be observed from either the training data
or verification data. If overfitting is the cause of the inability to reduce accuracy, the loss
values of the two (i.e., the loss value of the training and verification set) will cross over.
However, in fact, the loss values of the two, though they fluctuate significantly, remain
parallel, and there is no crossover phenomenon, as shown in Figure 13. The rapid rises
and falls, seen illustrated in Figure 13, represent that weight and bias are continuously
being updated, but the loss value cannot be further reduced. Therefore, it can be inferred
that in the optimized network architecture proposed by Jong et al. [14]., the number of
neurons cannot fully learn the knowledge presented by the 1024 sets of data. Therefore, in
this section, discussion of use of the Taguchi method to recorrect the optimized network
design and hyperparameters is present, and factor levels are shown in Table 12, while the
orthogonal array is shown in Table 13.

Figure 13. Comparison diagram for loss value in the training set and the verification set.

Table 12. Artificial neural network factors and level settings.

Factor Parameters Level 1 Level 2 Level 3

A Training Cycle 10,000 20,000 30,000
B Learning Rate 0.05 0.1 0.3
C Hidden Layer 1 7 9 11
D Hidden Layer 2 7 9 11

4.2.3. Hyperparameter Optimization

In this section, with the use of random shuffle, 200 sets of new data are made with
80% of the full data (819 sets of data) are detailed and discussed. Because each set of data
is relatively large, in order to avoid overlearning the content of a single set of data, the
epoch is set to 50, and the learning rate is 0.1 for pretraining, hyperparameter optimization,
using Z-axis warpage as the indicator of optimization as discussed prior in Section 3, and
the error percentage between the predicted value and the expected value is used as the
optimization target (i.e., STB). Trials results from the Taguchi orthogonal array are shown
on Table 14. The most effective result is No. 5, the warpage along Z-axis is 5.22%, and our
ANOVA analysis is shown on Table 15. The optimization factors are A2, B1, C3, D1, and
the corresponding hyperparameters are as follows: training times 20,000, learning rate 0.05,
11 neurons in the first layer, and 7 neurons in the second layer, and the difference between
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the optimized parameters and No. 5 is only the factor B, which are the learning rates of
0.05 and 0.1, respectively.

Table 13. L9 orthogonal table (CAE-1024).

No A B C D Training
Cycle

Learning
Rate

Hidden
Layer 1

Hidden
Layer 2

1 1 1 1 1 10,000 0.05 7 7
2 1 2 2 2 10,000 0.1 9 9
3 1 3 3 3 10,000 0.3 11 11

4 2 1 2 3 20,000 0.05 9 11
5 2 2 3 1 20,000 0.1 11 7
6 2 3 1 2 20,000 0.3 7 9

7 3 1 3 2 30,000 0.05 11 9
8 3 2 1 3 30,000 0.1 7 11
9 3 3 2 1 30,000 0.3 9 7

Table 14. Experimental results from the Taguchi orthogonal array.

No A B C D EOF
Pressure

Cooling
Time

Z−Axis
Warpage

X−Axis
Radius

Y−Axis
Radius

S/N
Ratio

1 1 1 1 1 5.04 3.21 7.10 2.22 1.99 −17.03
2 1 2 2 2 4.90 3.20 7.31 2.28 2.18 −17.28
3 1 3 3 3 4.97 3.55 8.10 2.28 2.22 −18.17

4 2 1 2 3 4.98 1.36 5.50 2.17 2.56 −14.81
5 2 2 3 1 5.10 1.72 5.22 2.04 2.20 −14.35
6 2 3 1 2 4.78 3.42 6.78 2.11 2.38 −16.62

7 3 1 3 2 5.04 1.32 5.85 1.98 1.96 −15.34
8 3 2 1 3 5.18 2.06 6.39 1.73 2.40 −16.11
9 3 3 2 1 4.94 1.13 6.26 2.08 2.09 −15.93

Table 15. ANOVA analysis (CAE-1024).

A B C D

LEVEL 1 −17.49 −15.73 −16.59 −15.77
LEVEL 2 −15.26 −15.91 −16.41 −16.41
LEVEL 3 −15.79 −16.91 −15.95 −16.36

It can be found from Figure 14 that the C and D factors representing the neural network
structure in the ANOVA analysis, in the indications, are the same as the results given prior
in Section 3, which is the first layer is the bigger, the better, and the second layer is the
smaller, the better, and the first layer is larger than the second layer; as for the learning
rate, it shows a trend that the smaller the value, the better, so this research uses this trend
to adjust the optimized hyperparameters to 20,000 training times, learning rate 0.01, 13
neurons in the first layer, and 5 neurons in the second layer. Finally, this parameter with
No. 5 and the optimized parameters are compared. The results are shown on Table 16.
The optimized parameters have the smallest error value. The combination adjusted with
optimized parameters is also better than No. 5. The network architecture is shown in
Figure 15, and the hyperparameters are shown on Table 17.
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Figure 14. Response graph of S/N ratio (CAE-1024).

Table 16. Verification of optimized hyperparameters (CAE-1024).

Training
Cycle

Learning
Ratio Layer 1 Layer 2 Z-axis

No.5 20,000 0.1 11 7 5.22%
Op1. 20,000 0.05 11 7 3.61%
Op2. 20,000 0.03 13 5 4.88%

Figure 15. Optimal network architecture (CAE-1024).
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Table 17. Optimized network hyperparameters (CAE-1024).

Parameters Value Parameters Value

Epoch 20,000 Learning Rate 0.05
Hidden Layer 1 11 Initial Weight Random
Hidden Layer 2 7 Initial Bias Random

Optimized Method SGD Activation Function Sigmoid

4.3. Transfer Learning for Injection Molding

In the transfer learning between virtual and actual reality, the data collection of the
actual reality trials is important. The final results will be more accurate if the CAE data are
more similar. For this study, the training data and verification data are obtained by actual
injection molding, and then the training data are imported to the pretrained model.

4.3.1. Training Data

In terms of the training data for the injection molding process, the input values are
injection speed, holding pressure, holding time, plastic temperature, and mold temperature,
and the five analysis results are categorized as the expected output values, respectively. As
for the output values, because it is difficult to measure the amount of warpage along the
Z-axis and the maximum cooling time, so for this study, the output values of EOF pressure,
shrinkage along the X-axis, and shrinkage along the Y-axis only are captured. The other
two are replaced by 0 during training, so that the network can run smoothly.

The training data and verification data discussed herein are all based on the L16 OA
table, each generating 16 sets of data and a total of 32 unique data sets. Due to the gap
between the actual machine settings and the simulation software, the holding pressure
is set at the upper limit of 140 MPa as the basis to modify the molding parameters. The
relevant process parameters are shown on Tables 18 and 19.

Table 18. Training data for the round plate model (EXP-16).

No. Melt Temp. (◦C) Packing Time
(sec)

Packing Pressure
(MPa)

Injection Speed
(mm/sec)

Mold
Temp. (◦C)

1 185 3 100 50 40
2 185 5 113 60 50
3 185 7 126 70 60
4 185 9 139 80 70
5 200 3 113 70 70
6 200 5 100 80 60
7 200 7 139 50 50
8 200 9 126 60 40
9 215 3 126 80 50

10 215 5 139 70 40
11 215 7 100 60 70
12 215 9 113 50 60
13 230 3 139 60 60
14 230 5 126 50 70
15 230 7 113 80 40
16 230 9 100 70 50

4.3.2. Hyperparameter Settings

The hyperparameters used in transfer learning are the same as those used in CAE data
pretraining. In terms of the architecture, two hidden layers are used. The first layer contains
11 neurons, and the second layer contains 7 neurons. For other settings, the learning rate is
0.05. Both hidden layers use sigmoid as the activation function. Weight and bias use the
transfer method. The network hyperparameter settings are shown in Table 20.
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Table 19. Validation data for the round plate model (EXP-16).

No. Melt Temp. (◦C) Packing Time
(sec)

Packing Pressure
(MPa)

Injection Speed
(mm/sec)

Mold
Temp. (◦C)

1 194 4.2 109 56 46
2 194 5.4 118 62 52
3 194 6.6 127 68 58
4 194 7.8 136 74 64
5 203 4.2 118 68 64
6 203 5.4 109 74 58
7 203 6.6 136 56 52
8 203 7.8 127 62 46
9 212 4.2 127 74 52

10 212 5.4 136 68 46
11 212 6.6 109 62 64
12 212 7.8 118 56 58
13 221 4.2 136 62 58
14 221 5.4 127 56 64
15 221 6.6 118 74 46
16 221 7.8 109 68 52

Table 20. Network hyperparameter settings (EXP-16).

Parameters Value Parameters Value

Epoch 20,000 Learning Rate 0.05
Hidden Layer 1 11 Initial Weight Transfer
Hidden Layer 2 7 Initial Bias Transfer

Optimized Method SGD Activation Function Sigmoid

As for data input, this research uses random shuffle to randomly divide 16 process
parameters into 1000 sets of training data. Each set of data contains 13 (80%) process
parameters. The network changes one set of training data after every 500 runs during
training to avoid overfitting from happening.

4.4. Comparison of Simulation and Actual Transfer Learning Results, CAE Data Training Results
for the Circular Flat Model

In this study, the prediction results for the 1024 sets of the circular flat model analyzed
by Moldex3D were preprocessed with random shuffle data processing as the input value of
the backpropagation neural network and combined with the hyperparameters generated
using the Taguchi method to optimize the model. After these methods are used, the EOF
pressure, cooling time, gate warpage value, shrinkage along the X-axis, and shrinkage
along the Y-axis, the average error is less than 5%, and Z-axis warpage is mitigated most
obviously, which is a more complicated factor. In addition to reducing the average error,
random shuffle also has different degrees of optimization vis-à-vis the standard deviation.
In terms of the improvement in the standard deviation, gate warpage is the most obvious.
Our detailed comparison results are shown in Table 21.

4.4.1. Training Results of Experimental Data of the Circular Flat Model

In the actual trials, this study only uses 16 sets of data for training and 16 sets of
data for verification. The hyperparameters are the same as the CAE data for training. The
detailed training results are shown in Table 22. If 16 sets of data are used for training
directly, all 3 output values are not ideal. After using random shuffle to reprocess the data,
the error rate of the three output results has slightly decreased, and the standard deviations
have shown significant reduction.
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Table 21. Training results for the round flat model (CAE-1024).

Circle Plate Result (CAE-1024)

EOF
Pressure

Cooling
Time

Z-Axis
Warpage

X-Axis
Shrinkage

Y-Axis
Shrinkage

Full Data
AVG (%) 4.01 1.84 8.50 3.48 2.73

STD 2.61 1.35 5.21 2.78 2.23

Random
Shuffle

AVG (%) 3.99 1.27 3.61 1.34 1.89
STD 2.01 0.92 2.87 1.01 1.10

Difference
AVG (%) 0.02 0.57 4.9 2.14 0.84

STD 0.60 0.43 2.34 1.77 1.13

Table 22. Training results for the round flat model (EXP-16).

Circle Plate Result (EXP-16)

EOF
Pressure

Cooling
Time

Z-Axis
Warpage

X-Axis
Shrinkage

Y-Axis
Shrinkage

Full Data
AVG (%) 15.03 8.31 9.26 15.03 8.31

STD 8.58 13.34 15.73 8.58 13.34

Random
Shuffle

AVG (%) 13.61 7.36 7.45 13.61 7.36
STD 6.62 9.33 8.63 6.62 9.33

Difference
AVG (%) 1.42 0.95 1.81 1.42 0.95

STD 4.96 4.01 7.10 4.96 4.01

4.4.2. The Results of the Transfer Learning Trials Data for the Round Plate Model

In terms of data collection, the CAE and actual trials use the same model. In this study,
the circular flat network structure trained with CAE data is used as the network structure
for the trial data, and the optimized weight and bias are imported as training input. The
training results are shown on Table 23.

Table 23. Results of transfer learning for the round plate model (EXP-16).

Circle Plate Result
(EXP-14)

with Transfer Learning without Transfer Learning

EOF
Pressure

X-Axis
Shrinkage

Y-Axis
Shrinkage

EOF
Pressure

X-Axis
Shrinkage

Y-Axis
Shrinkage

Full Data
AVG (%) 5.88 2.56 3.96 15.03 8.31 9.26

STD 4.71 2.26 3.97 8.58 13.34 15.73

Random
Shuffle

AVG (%) 5.56 2.35 3.91 13.61 7.36 7.45
STD 4.20 2.19 3.42 6.62 9.33 8.63

Difference
AVG (%) 0.32 0.21 0.05 1.42 0.95 1.81

STD 0.51 0.07 0.55 4.96 4.01 7.10

Without preprocessing the data, this study uses the optimized weight and bias of the
CAE data for training, and the error values and standard deviations of the EOF pressure,
shrinkage along the X-axis, and shrinkage along the Y-axis are all reduced. After the data
are processed with random shuffle, the error values and standard deviation of all outputs
are reduced.

5. Results and Discussion

Random shuffle and transfer learning for the training of neural networks have been
applied for this study. It has been shown that random shuffle can effectively improve the
accuracy of the network and reduce the standard deviation. Through observation of the
loss value, the vibration amplitude of the loss value of the verification data decreased
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significantly after using random shuffle, while transfer learning can transfer the learned
knowledge to new applications. By expanding weight and bias, it can be found that the
shape of weight and bias after using transfer learning is similar. Compared with the initial
weight and bias group, which never used transfer learning, the difference is obvious.

5.1. Discussion on Random Shuffle Method’s Effect

The training data has been divided into many data sets after implementing random
shuffle. Therefore, the data contained in each set are incomplete and only contain partial
learning content. The training process of random shuffle data can be regarded as a kind of
pretraining; the fragmented data helps the weight and bias of the network to be unable to
escape from the local minimum after initialization. The effect is similar to dropout. Taking
the training of the 1024 sets of CAE data as an example, the loss value with and without
random shuffle implemented are compared; Figure 16 shows the change in loss over 50
training runs. The loss values of the two are similar, and the loss of the verification data is
volatile; Figure 17 shows the change over 100 training runs, and the amplitude of the loss
value of the verification data is reduced. Figure 18 shows that change over 200 training
runs. The loss value of the training data decreases faster for the sets used within the same
training runs, and the loss vibration amplitude of the verification data is reduced to only
half of the control group. The loss vibration amplitude of the verification data is small,
meaning that the network is more stable for forecasting data.

Figure 16. Change of loss value with or without random shuffle (50 runs).

Figure 17. Change of loss value with or without random shuffle (100 runs).
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Figure 18. Change of loss value with or without random shuffle (200 runs).

5.2. Discussion on the Effect of Transfer Learning

In this section, the learning results using random shuffle for transfer learning are
discussed. From Table 24, it can be seen that the error values trained directly from the square
plate CAE data and the round plate trial data are not ideal; even with the data processing
method of random shuffle, which can optimize standard deviation, the error value is still
not ideal. Without changing any hyperparameters, the trained parameters are imported
into the network before training. These results are shown in Table 25. The error values for
the square and round plate trials have improved significantly. The original warpage along
Z-axis of the square plate was as high as 56.25, because warpage is complicated, and the
plastic flow method adopted, holding pressure, holding time, and cooling time will all affect
warpage. Even experts cannot judge such trends in warpage, certainly from the 27 sets
of training data, not to mention having an accurate prediction, and after importing the
243 sets for round flat data training weight and bias, the network itself already contains
warpage-related trends, and then it has been fine-tuned for the square flat training data,
resulting in the amount of warpage along Z-axis with a reduction of the error value of the
standard deviation to 31.05%.

Table 24. Predicted results for square plate (CAE-27) and round plate (EXP-16).

Result of Square Plate (CAE-27) & Circle Plate (EXP-16)

EOF
Pressure

Cooling
Time

Z-Axis
Warpage

X-Axis
Shrinkage

Y-Axis
Shrinkage

Square
Plate

AVG (%) 3.91 10.16 56.25 15.39 18.54
STD 1.90 6.40 60.58 18.66 17.63

Circle
Plate

AVG (%) 13.61 7.36 7.45
STD 6.62 9.33 8.63

Table 25. Transfer learning results for square plate (CAE-27) and round plate (EXP-16).

Result of Square Plate (CAE-27) & Circle Plate (EXP-16)

EOF
Pressure

Cooling
Time

Z-Axis
Warpage

X-Axis
Shrinkage

Y-Axis
Shrinkage

Square
Plate

AVG (%) 3.91 10.16 56.25 15.39 18.54
STD 1.90 6.40 60.58 18.66 17.63

Square
Plate
(TL)

AVG (%) 2.77 8.48 31.05 11.81 16.46
STD 1.80 4.94 17.56 8.97 11.19

Circle
Plate

AVG (%) 13.61 7.36 7.45
STD 6.62 9.33 8.63

Circle
Plate(TL)

AVG (%) 5.56 2.35 3.91
STD 4.20 2.19 3.42
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In the actual reality trials for circular plate, after importing the optimized weight and
bias from 1024 sets of circular plate data, the error value of the EOF pressure, shrinkage
along the X-axis, and shrinkage along the Y-axis is reduced to less than 5%. Figure 19 shows
the structure of an optimized weight and bias; Tables 26–28 show optimized weight and
bias. Taking this result as an example, the weight and bias matrix between the two layers
are expanded into a column and a distribution map is drawn, as shown in Figures 20–25;
therein, CAE represents the original distribution before the transfer, TL represents the
distribution after transfer, and EXP represents the distribution after direct training. It can
be found that the weight and bias distributions of CAE and TL are almost the same, with
only a numerical difference. EXP can be different in trend from the other two. Because there
are only 16 sets of data for training, the distribution of weight and bias is only between [2,
−2], and the other two sets are widely distributed between [6, −6].

Figure 19. Optimized hyperparameters and network structure for the circular plate (CAE-1024).

Table 26. Weight and bias between the input layer and the first hidden layer (CAE-1024).

Input to Hidden Layer 1

Weight H101 H102 H103 H104 H105 H106 H107 H108 H109 H110 H111

I01 −1.1380 −1.3887 −0.2855 −1.4546 −4.7642 2.0215 0.5312 2.7493 3.0976 −2.0409 0.3560
I02 3.7457 0.6322 1.7630 1.2978 0.0940 0.0474 0.1391 0.4969 −0.0035 5.3307 1.1453
I03 −0.0767 0.4169 0.2950 −1.4659 0.2065 0.0649 0.1480 −0.0729 −0.0716 −1.5080 0.6472
I04 0.4478 0.6541 −0.3143 0.0424 −1.1876 4.3344 −0.0358 0.6161 −1.3805 −0.1439 0.2278
I05 0.1851 −0.0521 −0.4043 −1.0403 −0.2708 0.3893 3.1411 −1.1837 −0.1945 −1.4266 1.2472
Bias 0.4616 −0.4964 −0.3441 −0.1590 −0.4003 0.4831 −4.2604 0.7888 −0.8406 0.5141 −0.5477
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Table 27. Weight and bias between the first and second hidden layers (CAE-1024).

Input to Hidden Layer 2

Weight H201 H202 H203 H204 H205 H206 H207

H101 0.4846 −0.2906 −0.4810 0.0960 4.0143 0.8524 −0.7530
H102 0.7461 0.3182 −0.0355 −0.2350 0.9976 1.7191 −0.8385
H103 −0.2167 −0.7549 0.3227 −1.3992 0.0234 0.5743 −1.3188
H104 −0.2193 1.0535 1.0047 0.3022 −1.0671 −0.8595 1.7802
H105 0.1245 0.1110 3.5158 −0.6555 0.3523 −0.1515 2.2811
H106 0.3782 −0.6278 0.1922 −0.3553 −0.9026 1.3512 1.7357
H107 −0.6336 −2.0454 −1.5661 2.2850 −1.7217 0.4527 −0.1687
H108 −0.6807 0.9787 −2.7245 −0.1729 −1.7629 0.0099 −0.0046
H109 −0.0665 −0.2635 −0.7414 −0.0496 −0.1540 −1.1532 −1.7003
H110 0.7065 0.4036 0.5818 0.4633 3.8549 −0.7217 0.6002
H111 0.2691 0.0886 −1.2342 0.6715 −0.6184 −1.4114 0.8704
Bias 0.0969 −0.4892 −0.1725 −0.2370 −1.9194 −0.2119 0.1383

Table 28. Weight and bias between the second hidden layer and the output layer (CAE-1024).

Hidden Layer 2 to Output

Weight O01 O02 O03 O04 O05

H201 0.1771 −0.9374 1.2355 1.4501 1.2729
H202 −0.8741 −1.1480 0.7641 0.0267 −0.3646
H203 1.7557 0.3356 −0.0501 1.3303 2.0018
H204 −0.6002 2.2428 1.1498 −0.0814 −0.5862
H205 0.0348 0.0010 −1.1131 −0.1650 0.2440
H206 0.7898 0.1205 −0.8733 0.8862 1.7326
H207 1.1126 0.0468 0.4803 −1.3758 −2.2127
Bias −0.4228 0.4861 −0.2742 −0.0809 0.2185

Figure 20. Weight distribution diagram between the input layer and the first hidden layer.
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Figure 21. Bias distribution diagram between the input layer and the first hidden layer.

Figure 22. Weight distribution diagram between the first layer and the second hidden layer.

Figure 23. Bias distribution diagram between the first layer and the second hidden layer.



Polymers 2021, 13, 3874 30 of 32

Figure 24. Weight distribution diagram between the second hidden layer and the output layer.

Figure 25. Bias distribution diagram between the second hidden layer and the output layer.

It can be understood from the expanded distribution graph that the distribution trend
of weight and bias after the transfer has been fixed, and subsequent retraining will only
change the distribution by a small margin without major changes, so there is no need
for excessive training data and training runs for a usable network to be obtained quickly.
Moreover, even a high number of neurons will not help a set of training data that is too
small.

6. Conclusions

In this study, an artificial neural network has been utilized to render result predictions
for the injection molding process. The CAE analysis data are used as training data and the
error value is reduced to less than 5% through the Taguchi method and random shuffle
method, which we have introduced herein. The performance of the network transfer to
the actual machine can show that transfer learning can solve the problem of difficult data
acquisition, just like Jiahuan [18] and Yannik [19]. In addition, predicting the performance of
the task from the circle plate can support the argument that the transfer learning proposed
by Shin [20] can maintain good performance and that its performance is better than the
initial training network. In this conclusion, the applications of the neural network and
transfer learning are summarized.
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6.1. Artificial Neural Network Applications

In this study, artificial neural network training was carried out a total of four times,
including via use of 243 sets of circular flat CAE data, 27 sets of square flat CAE data, 1024
sets of circular flat CAE data, and 16 sets of circular flat real data. Regarding optimization
of the hyperparameters for the network, these are summarized in the following points:

1. Random shuffle can reduce the error rate and standard deviation. In this study, the
data volume was 80% and the learning rate was 0.1 for random shuffle pretraining.

2. The Taguchi method can effectively optimize the hyperparameters of artificial neural
networks, and after ANOVA analysis, optimal solutions can be achieved.

3. By monitoring the loss value of the training and verification data simultaneously,
it can be judged whether there is overfitting. If the loss curve of the training data
continues to decline while diverging ever further from the loss curve of the verification
data, it may be that the training time is too long and overfitting is caused. If the two
loss curves can no longer be optimized, there are two possibilities: one is that the
learning rate is not suitable, which makes it impossible to get rid of the local minimum.
The other is that the content of the training data is more complex, and the number of
neurons is insufficient. Optimization has bottlenecks.

6.2. Transfer Learning Applications

This study carried out transfer learning twice, namely the transfer of CAE round plate
to CAE square plate and the transfer of CAE round plate to the actual reality trial for round
plate. Although both are transfer learning, the former is not using the same model. The
time and space for the latter when it comes to data collection are different. Based on the
results of these two transfer learning results, this study indicates the following points,
summarized here:

1. Since the cost of injection data acquisition is quite high, the transfer learning can
predict with less data under some specific conditions. At the same time, actual
experiments can prove that transfer learning has better effects in similar work.

2. From the weight and bias distributions before and after transfer learning, it can be
found that retraining will not significantly change the distribution; however, a slight
change is possible. Therefore, the original network selected will determine the results
of transfer learning.

3. If the set of training data is too small to contain enough effective content, the fluctua-
tion range of weight and bias will be smaller. In this state, adding neurons will not
improve the training error value.

Author Contributions: Conceptualization, W.-R.J.; Investigation, Y.-M.H.; Methodology, Y.-M.H.;
Supervision, W.-R.J. and S.-C.C.; Validation, Y.-M.H.; Writing—original draft, Y.-M.H.; Writing—
review & editing, W.-R.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rosa, J.L.; Robin, A.; Silva, M.B.; Baldan, C.A.; Peres, M.P. Electrodeposition of Copper on Titanium Wires: Taguchi Experimental

Design Approach. J. Mater. Process. Technol. 2009, 209, 1181–1188. [CrossRef]
2. Marins, N.H.; Mello, F.B.; Silva, R.M.; Ogliari, F. Statistical Approach to Analyze the Warpage, Shrinkage and Mechanical Strength

of Injection Molded Parts. Polym. Process. 2016, 31, 376–384. [CrossRef]

http://doi.org/10.1016/j.jmatprotec.2008.03.021
http://doi.org/10.3139/217.3219


Polymers 2021, 13, 3874 32 of 32

3. Hifsa, P.; Mohammad, S.M.; Abdel-Hamid, I.M. Optimization of Injection Molding Parameters for HDPE/TiO2 Nanocomposites
Fabrication with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis. Materials 2016, 9,
710. [CrossRef]

4. Luo, J.; Liang, Z.; Zhang, C.; Wang, B. Optimum tooling design for resin transfer molding with virtual manufacturing and
artificial intelligence. Compos. Part A Appl. Sci. Manuf. 2001, 32, 877–888. [CrossRef]

5. Kenig, S.; Ben David, A.; Omer, M.; Sadeh, A. Control of Properties in Injection Molding by Neural Networks. Eng. Appl. Artif.
Intell. 2001, 14, 819–823. [CrossRef]

6. Denni, K. An Integrated Optimization System for Plastic Injection Molding Using Taguchi Method, BPNN, GA, and Hybrid
PSO-GA. Ph.D. Thesis, Department of Technology Management, Chung Hua University, Hsinchu City, Taiwan, 2004.

7. Kwak, T.S.; Suzuki, T.; Bae, W.B.; Uehara, Y.; Ohmori, H. Application of Neural Network and Computer Simulation to Improve
Surface Profile of Injection Molding Optic Lens. J. Mater. Process. Technol. 2005, 70, 24–31. [CrossRef]

8. Castro, C.E.; Rios, M.C.; Castro, J.M.; Lilly, B. Multiple Criteria Optimization with Variability Considerations in Injection Molding.
Polym. Eng. Sci. 2007, 47, 400–409. [CrossRef]

9. Shen, C.; Wang, L.; Li, Q. Optimization of Injection Molding Process Parameters Using Combination of Artificial Neural Network
and Genetic Algorithm Method. J. Mater. Process. Technol. 2007, 183, 412–418. [CrossRef]

10. Mirigul, A. Reducing Shrinkage in Injection Moldings Via the Taguchi, ANOVA and Neural Network Methods. Mater. Des. 2010,
31, 599–604. [CrossRef]

11. Yin, F.; Mao, H.; Hua, L.; Guo, W.; Shu, M. Back Propagation Neural Network Modeling for Warpage Prediction and Optimization
of Plastic Products During Injection Molding. Mater. Des. 2011, 32, 1844–1850. [CrossRef]

12. Alberto, T.; Ramón, A. Machine learning algorithms for quality control in plastic molding industry. In Proceedings of the 2013
IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Cagliari, Italy, 10–13 September 2013. [CrossRef]

13. Deng, L.; Yu, D. Deep Learning: Methods and Applications; Microsoft Research; Microsoft: Redmond, WA, USA, 2014. [CrossRef]
14. Jong, W.R.; Huang, Y.M.; Lin, Y.Z.; Chen, S.C.; Chen, Y.W. Integrating Taguchi method and artificial neural network to explore

machine learning of computer aided engineering. J. Chin. Inst. Eng. 2020, 43, 346–356. [CrossRef]
15. Sinno, J.P.; Qiang, Y. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
16. Dan, C.C.; Ueli, M.; Jürgen, S. Transfer learning for Latin and Chinese characters with Deep Neural Networks. In Proceedings of

the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012. [CrossRef]
17. Huang, J.T.; Li, J.; Yu, D.; Deng, L.; Gong, Y. Cross-Language Knowledge Transfer Using Multilingual Deep Neural Network with

Shared Hidden Layers. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
Vancouver, BC, Canada, 26–31 May 2013. [CrossRef]

18. Jiahuan, L.; Fei, G.; Huang, G.; Maoyuan, L.; Yun, Z.; Huamin, Z. Defect detection of injection molding products on small datasets
using transfer learning. J. Manuf. Process. 2021, 70, 400–413. [CrossRef]

19. Yannik, L.; Christian, H. Induced network-based transfer learning in injection molding for process modelling and optimization
with artificial neural networks. Int. J. Adv. Manuf. Technol. 2021, 112, 3501–3513. [CrossRef]

20. Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summer, R.M. Deep Convolutional Neural
Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med.
Imaging 2016, 35, 1285–1298. [CrossRef]

21. Hasan, T.; Alexandro, G.; Julian, H.; Thomas, T.; Chrisitan, H.; Tobias, M. Transfer-Learning Bridging the Gap between Real and
Simulation Data for Machine Learning in Injection Molding. In Proceedings of the 51st CIRP Conference on Manufacturing
Systems, Stockholm, Sweden, 16–18 May 2018; Volume 72, pp. 185–190. [CrossRef]

22. Hasan, T.; Alexandro, G.; Tobias, M. Industrial Transfer Learning: Boosting Machine Learning in Production. In Proceedings of
the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019. [CrossRef]

http://doi.org/10.3390/ma9080710
http://doi.org/10.1016/S1359-835X(00)00147-0
http://doi.org/10.1016/S0952-1976(02)00006-4
http://doi.org/10.1016/j.jmatprotec.2005.04.099
http://doi.org/10.1002/pen.20639
http://doi.org/10.1016/j.jmatprotec.2006.10.036
http://doi.org/10.1016/j.matdes.2009.06.049
http://doi.org/10.1016/j.matdes.2010.12.022
http://doi.org/10.1109/ETFA.2013.6648103
http://doi.org/10.1561/2000000039
http://doi.org/10.1080/02533839.2019.1708804
http://doi.org/10.1109/TKDE.2009.191
http://doi.org/10.1109/IJCNN.2012.6252544
http://doi.org/10.1109/ICASSP.2013.6639081
http://doi.org/10.1016/j.jmapro.2021.08.034
http://doi.org/10.1007/s00170-020-06511-3
http://doi.org/10.1109/TMI.2016.2528162
http://doi.org/10.1016/j.procir.2018.03.087
http://doi.org/10.1109/INDIN41052.2019.8972099

	Introduction 
	Relevant Technical Research 
	Artificial Neural Networks (ANN) 
	Backpropagation Neural Network (BPNN) 
	Training and Learning Process 

	Transfer Learning (TL) 
	Computer-Aided Engineering (CAE) 
	The “Random Shuffle” Method 
	Data Normalization 
	The Taguchi Method 
	Quality Characteristics 
	Definition and Selection of Experimental Factors 


	Using CAE Data to Study Transfer Learning among Different Models 
	Network Training of the Circular Flat Model 
	Training Materials 
	Hyperparameter Settings 

	Transfer Learning of the Square Plate Model 
	Training Materials 
	Hyperparameter Tuning 
	Hyperparameter Tuning 

	Comparison of Transfer Learning Results among Different Products 
	Training Results of the Round Plate Model 
	Training Results for the Square Flat Model 
	Transfer Learning Results for the Square Tablet Model 


	Prediction of Molding Using the Network Trained via CAE Data and Transferred for Actual Injection 
	Transfer Learning between Virtual and Actual Reality 
	Round Flat CAE Data Pretraining 
	Training Data 
	Hyperparameter Tuning 
	Hyperparameter Optimization 

	Transfer Learning for Injection Molding 
	Training Data 
	Hyperparameter Settings 

	Comparison of Simulation and Actual Transfer Learning Results, CAE Data Training Results for the Circular Flat Model 
	Training Results of Experimental Data of the Circular Flat Model 
	The Results of the Transfer Learning Trials Data for the Round Plate Model 


	Results and Discussion 
	Discussion on Random Shuffle Method’s Effect 
	Discussion on the Effect of Transfer Learning 

	Conclusions 
	Artificial Neural Network Applications 
	Transfer Learning Applications 

	References

