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Abstract: Pultrusion is one of the most efficient methods of producing polymer composite structures
with a constant cross-section. Pultruded profiles are widely used in bridge construction, transporta-
tion industry, energy sector, and civil and architectural engineering. However, in spite of the many
advantages thermoplastic composites have over the thermoset ones, the thermoplastic pultrusion
market demonstrates significantly lower production volumes as compared to those of the thermoset
one. Examining the thermoplastic pultrusion processes, raw materials, mechanical properties of
thermoplastic composites, process simulation techniques, patents, and applications of thermoplastic
pultrusion, this overview aims to analyze the existing gap between thermoset and thermoplastic
pultrusions in order to promote the development of the latter one. Therefore, observing thermoplastic
pultrusion from a new perspective, we intend to identify current shortcomings and issues, and to
propose future research and application directions.

Keywords: thermoplastic pultrusion; thermoplastic composites; fiber-reinforced materials

1. Introduction

Today, polymer composite materials have found wide application in various indus-
tries [1,2]. This was made possible by extensive studies conducted over the last 70 years [3,4].
The popularity of composite materials results from their properties, such as high specific
strength and stiffness [5–8]; improved durability [9,10]; high fatigue [11,12], chemical [13,14],
and corrosion resistance [15–17]; and ease of transportation and assembly [18–20] of composite
structures. Composite materials are produced by various processes, e.g., autoclave molding,
resin transfer molding, compression molding, filament winding, and pultrusion [21,22].
Pultrusion is a process where a pack of reinforcement fibers impregnated by resin is pulled
through a heated die block, where the polymerization process takes place [23]. This method
allows fabrication of products having constant cross-section [24,25]. The advantages of
pultrusion over other composite manufacturing processes are its high production rate of
up to 5 m/min [1], higher efficiency [26,27] and low costs [28,29] of production, and the
ability to produce profiles of virtually indefinite length [30]. There are thermoplastic and
thermoset matrix-based composites [31,32]. Thermosets are nonmelting polymers obtained
during chemical reaction (polymerization) between a resin and a hardener, while thermo-
plastic composites can change their state and melt under heating. Fiber reinforcement is
impregnated by hot melt thermoplastic polymer; then, after cooling, the part is ready for
use. Compared to thermosetting composites, thermoplastic composites have higher impact
toughness [33–36], are faster to produce [37,38], have higher service temperatures [39],
can be joined by welding [40–43], have less environmental impact [44–46], and can be recy-
cled [47–50]; their source materials have virtually unlimited shelf life [51–57]. Pultruded
thermoplastic profiles are used in various structures and sectors, such as vehicles [58–63]
and aircrafts construction [64–66], aerospace [67–69] and civil engineering [70–73], en-
ergy systems [74], restoration of deteriorated structures [75], marine applications [76–79],
oil and gas industries [80], electromagnetic interference shielding elements [81,82], window
profiles [83], pipes [84,85], rebars [86,87] and rods [88–91].
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Today, the number of studies and publications in the field of thermoset pultrusion is an
order of magnitude larger than the number of those in thermoplastic pultrusion, although
advantages offered by thermoplastic composites provide enough reason for deeper study.
From industrial point of view, it is worth noticing that, for instance, Fiberline Composites
A/S, being one of the largest companies in the pultrusion manufacturing and the world’s
biggest web-shop of fiberglass profiles [92], has numerous types of pultruded structural
profiles available for purchase with all of them being thermoset ones. Several questions
arise in this connection. Why are there no thermoplastic profiles available for the customers
to purchase, despite their numerous advantages? Why is there a well-developed market
for thermosetting profiles and almost no market for thermoplastic ones?

Currently, there is no review on thermoplastic pultrusion. By analyzing the thermo-
plastic pultrusion process from different perspectives (technology, raw materials, proper-
ties, numerical modeling, applications, etc.) and recalling the main publications regarding
thermoplastic pultrusion (scientific articles, patents), this article aims to understand why
thermoplastic pultrusion failed to receive the attention and broad acceptance it deserves
from the scientific and engineering community, as opposed to that of thermoset pultrusion.
Exploring this issue, the authors intend to attract scientists’ attention and stimulate further
developments in thermoplastic pultrusion. Section 2 describes the process of thermo-
plastic pultrusion and components of pultrusion machines, provides the classification of
thermoplastic pultrusion, analyzes basic parameters of pultrusion process, and reviews
patents registered and future research possibilities. Section 3 discusses raw materials used
in manufacturing of thermoplastic composites, mechanical properties of the pultruded
profiles, and promising areas for the further investigations. Section 4 reviews the methods
of process modeling and discusses of possible directions for scientific work. Section 5
analyzes the possible applications of thermoplastic profiles, patents registered, and future
research and application possibilities.

2. Thermoplastic Pultrusion and Process Parameters

Luisier et al. were the first to propose the classification of thermoplastic pultrusion
processes in two groups [93]. The first is nonreactive thermoplastic pultrusion where the
process is based on the already polymerized materials, as opposed to the second one—
reactive thermoplastic pultrusion where thermoplastic is polymerized during chemical
reaction between thermoplastic resin and catalyst/activator, with simultaneous impregna-
tion of fiber reinforcement (Figure 1) [93].
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A nonreactive pultrusion machine for thermoplastic composites consists of towpregs
bobbins, guiding system, preheating chamber (preheater), heated forming die, cooling
die, puller, and a cutting saw (Figure 2) [30]. Pretreated fibers, blended intimately with
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thermoplastics at the filament level at certain ratio, are fed into the guiding system in order
to prevent their entanglement and to distribute fibers over the whole section of the profile.
Collimated fibers are then fed into a preheater and heated to a temperature above the
melting point of the thermoplastic in order to reduce the time the reinforcement stays in
the heated die block and to ensure uniform impregnation of reinforcement. Various types
of heating systems can be used in the process, such as convective [94], infrared [95–97],
contact [98], and microwave [99]. In practice, contact heating systems demonstrate higher
efficiency, as compared to convective ones [94]. After exiting the preheating chamber,
uniformly heated material enters the heated die block where the melting of thermoplastic
takes place and the profile assumes its final shape. In order to accelerate the consolidation
of the polymer, the formed profile is fed into the cooling die where it is cooled to the
near-ambient temperature. At the last stage the profile is cut to the required lengths with a
flying saw [100].
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Nonreactive pultrusion machines can also incorporate braiding appliances [101,102].
Bechtold et al. [94] have successfully combined pultrusion and braiding, producing the pro-
file with additional external reinforcement. The Daimler AG company has investigated and
patented the braided pultrusion machine allowing fabrication of hollow profiles [103–107].
Memon and Nakai [108] used the combination of pultrusion and braiding to fabricate pipes
reinforced with jute fiber. They tested various pulling speeds, temperatures, and pulling
forces, and also investigated the influence of braiding parameters such as the braiding
angle, the gap between braiding yarns, and the filling ratio.

From the industrial point of view, it is worth noting the knowledge that was de-
veloped in the leading countries with patents on thermoplastic pultrusion: USA, China,
Germany, and France. Engineers developed various techniques to control the tension of the
filaments [109,110], the pressure in the die [111,112], and the size of the die cavity [113,114].
Different techniques of fiber impregnation [115–120] and material feeding, such as sheet
feeding of fibers and thermoplastics [121] and individual fiber feeding [122,123], were de-
veloped. Pultrusion is normally used to create profiles of constant cross-section; however,
engineers from Boeing and the Phillips Petroleum Company modified the mechanics of the
process, making it possible to produce profiles of variable cross-section, either by using
multiple dies [124,125] or by modifying the die system [126–130].

The combination of pultrusion and reaction injection molding (RIM) resulted in
development of the RIM pultrusion (reactive pultrusion) process similar to the combination
of thermoset pultrusion and injection molding [131–136], patented by Industrial Technology
Research Institute in 1993 [137]. The main difference between the reactive and nonreactive
pultrusion processes is the design of the heated die block. In the reactive pultrusion process,
preheated unimpregnated fiber is fed into the heated die block where fiber impregnation
and polymerization of matrix take place (in situ polymerization), and the polymerized
matrix has properties of thermoplastic melt [40]. The following polymers are typically
used in the RIM pultrusion: polycarbonates (PC), polyesters (PE), polyurethanes (PU),
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polymethylmethacrylates (PMMA), and polyamides (PA) (in particular, PA-6 synthesized
from ε-caprolactam (ε-CL) monomer) [138]. Figure 3 shows a schematic illustration of the
RIM pultrusion die block [139].
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The important advantage of reactive pultrusion lies in the low viscosity of thermoplas-
tic resin solution as opposed to thermoplastic polymers, which improves and accelerates
impregnation and, in turn, increases production rate. The important factor is the rate of
polymerization, as it can take 1 to 60 min for polymerization to complete, depending on
the temperature and monomer-to-activator ratio [140–142].

Further in the chapter we will discuss the parameters of the nonreactive thermoplastic
pultrusion process, such as preheater temperature, temperature and geometry of the heated
die, pressure inside the heated die, cooling die temperature, pulling speed, and pulling
force, and their influence on the production process. We will not limit the discussion to
the description of the process, but will also include a brief overview of articles investi-
gating a particular manufacturing parameter from a scientific point of view, and, finally,
note promising areas for future research.

2.1. Preheater Temperature

The aim of a preheating system analysis is to find the optimum temperature that
would allow maximum increase in production rate without compromising the performance
of the profiles produced. Increase in pulling speed reduces the time a material stays in
the preheating chamber and, thus, requires the use of more efficient heating techniques.
In 1997, Carlsson and Astrom [95] suggested that a preheater should meet the following
requirements: the heating should be noncontact (to prevent melting of thermoplastic), con-
tinuous (to prevent overheating and degradation of the material), and uniform (to prevent
temperature differences in a material).

However, as was shown in practice, the use of a contact preheater allows engineers to
speed up the process, increase heating efficiency, and improve the shear strength of the
material [94]. The optimum preheater temperature is assumed to be close to the melting
temperature of a thermoplastic, in spite of the fact that high preheating temperature reduces
the viscosity and drag while reducing the probability of fiber breakage [143]. On the other
hand, preheating temperature that exceeds the thermoplastic melting temperature may
cause the partial loss of material and increased void content, especially when using contact
preheaters. In addition, high preheat temperatures result in the higher surface roughness
of a product [95].

Kerbiriou and Friedrich [144] experimentally studied basic manufacturing parameters,
namely temperature conditions on the preheater, heated die and cooling die, pressure
in the heated die, and pulling speed, and their influence on density and mechanical
properties. At the same time, Bechtold et al. [145] studied the effects of preheating, heated
die temperature, and pulling speed on the mechanical characteristics by using glass fiber–
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polyamide 6 (Nylon 6) microbraided yarn. The influence of preheating temperature on the
properties of produced profiles was determined by Evstatiev et al. [146].

2.2. Temperature and Geometry of the Heated Die

The main component of the nonreactive pultrusion machine is the heated die block.
The purpose of the die block is to melt the matrix, to impregnate fibers, and to impart
a shape to the composite. To control the process of pultrusion, manufacturers equip the
heated die block with thermocouples, pressure gauges, and electrical heaters [147]. On the
one hand, the increase in temperature lowers the viscosity of the matrix, and increases
pressure due to the thermal expansion, thus improving the impregnation of fibers [98].
As shown experimentally by Carlsson and Astrom [95], the increase in temperature results
in better mechanical performance of the glass fiber and polypropylene (GF/PP)-based
composite. On the other hand, the maximum temperature is limited by the temperature of
thermal degradation of polymers [148], which, if exceeded, can result in polymer burn-out
and rejected products. High pressure and temperature may cause the fracture of reinforcing
fibers. Also, low viscosity in combination with low pulling speed and high pressure may
force the matrix to move backward and accumulate at the entrance of the heated die [98].
Figure 4 shows the typical distribution of temperatures during the pultrusion process [149].
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Experimental trials with different die geometries were carried out by Michaeli and
Jurss [147]. Evstatiev et al. explored the influence of heated die temperature on the proper-
ties of pultruded profiles, using scanning electron microscopy, wide-angle X-ray scattering,
and mechanical testing [146]. In the study with jute fiber composites [108], Memon et al.
observed an increase in flexural strength at a certain temperature; however, further in-
crease in temperature resulted in a reduction thereof. Schafer and Gries [150] proposed
the unconventional heating method for braided pultrusion process. Simultaneously, Os-
wald et al. [151] analyzed the influence of temperature regime on the void content of
thermoplastic pultruded profiles based on natural fibers, and investigated the influence of
heating conditions on the void content. Optimized parameters of the pultrusion process
(temperature conditions in particular) were investigated by Wongsriraksa and Nakai [152].
In [153], the effects of heating conditions on the mechanical performance of carbon fiber
reinforced polymer (CFRP) composites were experimentally evaluated. Chen et al. [154]
analyzed correlation between die temperature and properties (crystallinity, melting point,
mechanical properties) of the manufactured profiles. At the same time, Lapointe and
Laberge Lebel [149] investigated the use of a multi-die system for the better impregnation
of thermoplastic pultruded rods.

Another important parameter affecting the impregnation of fibers is the geometry of
the heated die block [149], the inner part of which has a tapered section linearly narrowing
to the die exit (Figure 5) [155,156]. Near the exit of the die block, the cross-section becomes
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constant and assumes the geometry corresponding to the desired shape of a composite [157].
The tapered section of the die block is described by the angle of taper that affects the
pressure and backward motion of the thermoplastic melt. In order to minimize friction
between a composite and internal surfaces of the die block, and to reduce the pulling force,
the internal surfaces of the die block are chromium plated [158]. In addition to the tapered
die block designs where the reinforcement pack is shaped and impregnated by way of
pressure exerted upon a material by internal surfaces of the die block, there is also a die
block design where the thermoplastic melt is forced into fibers by special pins [97].
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2.3. Heated Die Pressure

The process of fiber impregnation depends on the pressure. Pressure, in turn, depends
on the viscosity of a polymer, pulling speed, and the angle of taper [157]. Pressure in a
die block originates from thermal expansion of a polymer inside a tapered die block [147].
It is very difficult to evaluate the influence of pressure on the quality of a composite
experimentally, as high pressure values can only be achieved at high pulling speed that
adversely affects the quality of material because of resulting high void content [147].
Fanucci et al. [159] manufactured special sensors and studied their application for pressure
registration during thermoplastic pultrusion.

2.4. Temperature of a Cooling Die

The profile exiting the die block can lose its shape under external forces due to
plasticity of the polymer at high temperatures. To prevent the loss of shape, it is necessary
to cool the profile below the glass transition temperature [147]. As the profile already
has the desired shape at the cooling stage, the cooling die has a constant cross-section.
In order to achieve a sharp temperature gradient, the distance between the heated and
cooling dies is rather small [157]. The experiments by Carlsson et al. [95] and by Kerbiriou
et al. [144] show that cooling temperature influences the surface roughness of a product,
and its flexural and shear strength.

Astrom et al. [143] experimentally investigated the influence of process parameters in
general, and of the cooling die in particular, on the degree of crystallinity, and, therefore,
on the mechanical properties of thermoplastic composites. More recently, Michaeli and
Blaurock [160] discussed the relationship between cooling zone parameters and surface
quality of produced profiles. Ghaedsharaf et al. [161] studied the effects of cooling die
temperature and pulling speed on the resin impregnation, void content, and quality of the
final surface.

2.5. Pulling Speed

The most important pultrusion parameter affecting all other parameters is the pulling
speed. The pulling speed determines the time the reinforcement and a polymer stay within
the preheater and inside a die block. Impregnation, pressure within the heated die block,
pulling force, heating uniformity, and viscosity of thermoplastic melt—all depend on the
pulling speed [98]. It was experimentally established that reduction in flexural strength
is associated with increase in a pulling speed [162,163]. In addition, the increase in a
pulling speed can adversely affect the shear strength and interlaminar shear strength [162].
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Carlsson and Astrom [95] observed formation of defects at specimen surfaces with the
increase in pulling speed. They attributed it to matrix sticking to the internal surfaces of
the heated die block due to high pulling speed and high cooling temperature. Wiedmer
and Manolesos also observed the shift from glossy to rough surfaces [98].

The relationships between pulling speed and compressive, flexural, and interlaminar
shear strength of thermoplastic pultruded composites were experimentally analyzed by
Astroem et al. [164]. Cho et al. [139] investigated the influence of pulling speed, heating
temperature, and the reinforcement volume fraction on the temperature evolution of the
resin, its conversion, and physical and mechanical characteristics. At the same time, aim-
ing to achieve higher pulling speeds, Squires et al. conducted an experimental study by
varying heating and cooling temperatures, as well as pressure profiles [165]. Azari [166]
investigated the influence of pulling speed on the wet-out and mechanical properties of
pultruded strands. Seeking to optimize pulling speed, Ozturk et al. explored the sensitivity
of the process to changes in the pulling speed by changing the manufacturing parameters
of the pultrusion line [167]. Subsequently, the effects of pulling speed on the microstruc-
tural and mechanical characteristics of pultruded profiles were investigated by Evstatiev
et al. [146]. Nunes et al. [168] analyzed the influence of pulling speed and heating temper-
ature on the mechanical and physical properties of pultruded profiles manufactured of
towpregs. The effect of pulling speed on the mechanical performance of CFRP composites
was evaluated by Wongsriraksa and Nakai [153]. Pulling speed optimization in the case
of glass-fiber-reinforced polyamide-6 (PA-6) composite manufactured by thermoplastic
reaction injection pultrusion technique is discussed in [154]. Simultaneously, Lapointe
and Laberge Lebel investigated effects of pulling speed on the void content and quality of
impregnation [149].

2.6. Pulling Force

Pulling force can change depending on the pulling speed, section geometry, taper
angle, and viscosity of a polymer. The critical value of pulling speed should be tightly
controlled in order to prevent production interruptions and to maintain the integrity of a
profile [169]. As shown by Carlsson and Astrom [95], the pulling speed is the main factor
affecting the pulling force. Astrom [155] succeeded in establishing the relation between
the taper angle and pulling force. At angles exceeding 5◦, the pulling force is relatively
low; the drastic increase in pulling force is observed with the decrease in the angle of
taper. In addition, the increase in the perimeter of a profile cross-section also results in
the increased pulling force. The correlation between pulling force and pulling speed was
experimentally investigated by Nakai and Morino [170].

2.7. Future Trends

Analysis of the thermoplastic pultrusion process and its parameters, as well as consid-
eration of thermosetting pultrusion scientific and industrial state-of-the-art, demonstrate
that deeper research is needed to better understand the peculiarities of the thermoplastic
pultrusion process. The deeper knowledge of the thermoplastic pultrusion process will
stimulate the interest in this manufacturing technique from the scientific and engineering
community. This subchapter briefly discusses promising directions for future investigations
in this field. All the topics listed below require careful research, since there are currently
few publications available on the mentioned subject, or research has not been conducted
at all.

Although some relationships between process parameters and mechanical characteris-
tics of the thermoplastic pultruded products have been established, extensive experimental
research is needed to understand the direct influence of these parameters on each of the
following mechanical properties at different loading conditions and strain rates: tension,
compression, flexure, buckling, shear, creep, and fatigue. Degree of crystallinity, melting,
and consolidation evolution during polymerization depends on the temperatures used;
thus, a deeper understanding of this interconnection is necessary in order to improve
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process outcomes. The influence of the die geometry defining the thickness of the manufac-
tured profiles and, thus, determining mechanical properties and shape distortions of the
final product, also requires detailed research. Moreover, severity of process-induced shape
distortions both in thermoset [12,23,171] and in thermoplastic pultrusion depends on the
temperature and, therefore, is another potential field of investigation. The relationship
between process parameters and formation of voids, cracks, and delaminations also require
in-depth research. A successful application of thermoplastic pultruded structures in harsh
and severe environments will require better understanding of the influence of process
parameters on the service life of the produced profiles.

Finally, in order to avoid expensive trial–error experiments when studying the influ-
ence of process parameters of the thermoplastic pultrusion, we need better optimization
and numerical simulation algorithms. Moreover, the existing models require refinement to
improve control over process parameters and to obtain better outcomes of the thermoplastic
pultrusion process.

The studies discussed above mostly deal with profiles of simple cross-sections (rods,
flat profiles). Currently, there is a lack of studies describing the thermoplastic pultrusion
of complex shape profiles, such as pipes, channels, I-beams, decks, etc., commonly used
in the construction industry. Despite the large number of publications on pultrusion with
unidirectional reinforcement, there are no studies on thermoplastic pultrusion with various
reinforcement types, and on application of fabrics, mats, and veils. Moreover, there are
no studies on the stability of the thermoplastic pultrusion process; i.e., how many profiles
(particularly of complex shape) of steady, acceptable quality can be produced within a
single manufacturing cycle. Furthermore, successful scaling, development, and industrial
application of thermoplastic pultrusion will require more studies on manufacturing process
controls and elimination of defects.

3. Raw Materials and Properties of Obtained Composites

Final properties of a material depend both on the quality of manufacturing and on the
quality of raw materials. The main problem in thermoplastic composite manufacturing is
the need to ensure good impregnation of reinforcing fibers with matrix, as the viscosity
of thermoplastic polymers is significantly higher than that of the thermosetting ones,
e.g., the average viscosity of thermosetting polymers is 0.03–1 Pa·s [142], as opposed to
500–5000 Pa·s [172] in case of thermoplastic ones. One way to simplify the process of
nonreactive thermoplastic pultrusion is the use of prepregs where reinforcing fibers are
in the close contact with matrix uniformly distributed over the whole length of a prepreg.
When the prepreg enters the die block, thermoplastic polymer contained in the prepreg
will melt and impregnate the fibers under pressure. Tables 1 and 2 show properties of some
polymers and fibers used in the thermoplastic pultrusion.

Longmuir and Wilcox proposed a novel technique allowing a variable number of fiber
strands to be used during the manufacturing process [173]. Thomasset et al. performed a
rheological study on the polypropylene and long-glass-fiber composites manufactured by
pultrusion [174]. Simultaneously, Broyles et al. [175–177] studied the influence of fiber siz-
ing agents on the mechanical properties and moisture absorption. Next, Roy et al. [178,179]
succeeded in improving compression behavior of pultruded composites by modifying ma-
terial composition and parameters of the thermoplastic pultrusion process. Subsequently,
Fink and Ganster [180] conducted an experimental study of the influence of synthetic
fibers and of the choice of matrix on mechanical properties of composites. A novel tool
intended for the manufacturing of thermoplastic pultruded profiles was proposed by Novo
et al. [181]. Tao et al. [182] analyzed mechanical performance, thermal stability, and mor-
phology of composites based on long- and short-glass-fiber reinforcements. The influence
of fiber content on mechanical and tribological properties, morphology, and thermal stabil-
ity of pultruded polyoxymethylene (POM)–basalt fiber composites was studied by Wang
et al. [183]. Kahl et al. [184] used different types of reinforcement (cellulose and glass
fibers) and matrix material (polypropylene and polyamide) to evaluate the influence of raw
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materials on the mechanical performance of manufactured specimens. Shayan Asenjan
et al. [185] conducted the experimental study to understand a correlation between the
length of fibers and high-velocity impact performance. Chen et al. [154] investigated the
influence of volume fraction of reinforcement on the density, heat distortion temperature,
void occurrence, and mechanical characteristics of the glass fiber–polyamide-6 (PA-6) com-
posites produced by RIM pultrusion. Recently, the relationship between impregnation and
mechanical properties was studied by Saito et al. [186]. At the same time, seeking for a
reduction in carbon footprint, Asensio et al. [187] studied the possibility to use recycled
material for the pultrusion of thermoplastic composites.

Table 1. Polymers used as a matrix in thermoplastic pultrusion.

Material Melting
Point, ◦C

Glass Transition
Temperature, ◦C

Density,
g/cm3

Elastic
Modulus,

GPa

Tensile
Strength,

MPa

Flexural
Modulus,

GPa

Flexural
Strength,

MPa
Reference

PBT 230–223 31–60 1.21–1.38 1.8–2.5 40–55 1.9–2.8 76 [188–191]
PA 6 220 49–75 1.10–1.12 2.8 48–80 1.9–3.2 69–117 [189,191,192]

PA 66 268 60–70 1.06–1.12 2.8–3.9 30–85 1.2–3.7 86 [189,191,193,194]
PA 12 174–185 55 1.01–1.03 0.5–1.9 45–70 0.36–1.2 - [191]

PP 160–175 −15–−8 0.89–0.92 1.0–2.0 28–41 0.8–1.7 45–55 [169,188,189,191–193,195]
PEEK 334–345 143–158 1.29–1.34 3.1–8.3 90–115 2.8–3.9 110 [149,169,188,191,192,196]
PEKK 360 154–171 1.27–1.31 4.0 110 - - [188,189,191]
PET 243–250 60–88 1.30–1.38 2.5–4.0 50–70 2.8 110 [188,189,191,193]
PEI 216–220 209–249 1.26–1.70 2.7–6.4 100–105 2.9–3.3 151 [188,189,191,196]
PES 220–238 220–246 1.36–1.58 2.4–8.6 83–126 [188,191]

PMAA 105–160 82–105 1.17–1.26 2.8–3.4 62 3.2 97 [191,193]
PPS 280–290 74–92 1.35–1.43 3.4–4.3 66–93 3.4–4.1 96–151 [188,189,191,192,196,197]
PLA 150–162 55–75 1.18–1.26 0.5–3.5 21–170 1.8–2.8 - [189,191,195]

HDPE 130–137 −133–−118 0.95–0.97 0.7–1.4 20–40 1.2 - [189,191,195,198]
LDPE 105–125 −133–−103 0.92–0.93 0.1–0.4 5–17 - - [189,191]

PC 255–267 −158–−134 1.18–1.22 2.4 55–75 2.1–2.4 80–93 [189–193]
PE 104–113 −133–−59 0.92 0.2 10–18 - - [188,191]
PU 220–230 −60–−19 1.15–1.25 0.1–0.7 5–28 - - [188]

Table 2. Fibers used as reinforcement in thermoplastic pultrusion.

Material Density,
g/cm3

Tensile
Modulus,

GPa

Tensile
Strength,

GPa

Poisson’s
Ratio Reference

E-Glass 2.5–2.54 70–73 1.5–2.3 0.20–0.30 [1,188,189,199]
S-Glass 2.46 90 4.5 0.21–0.23 [1,188]
Carbon 1.94–2.15 585–725 2.2–3.8 0.25–0.30 [1,188]

Flax fibers 1.5 50 0.5–0.9 - [1,189]
Jute fibers 1.3 26.5 0.4–0.7 - [200]

Hemp fibers 1.45 64 0.69 - [189]
Graphite 1.90 3.3 - 0.28 [197]
Aramid 1.45 125 2.8–3.5 0.35 [188,199]

Various additives (fillers), with the most popular being nanotubes, can improve the
performance of composites. Nanotubes improve interlaminar shear strength, interfacial
shear strength, and delamination resistance of a composite [201,202]. Addition of Ni
powders increases the flexural modulus; the optimal ratio of matrix, filler, and Ni powder
improves the mechanical performance of composites [81]. Various fiber coatings make it
possible to improve tensile, compression, and flexural strength of a composite with a 2%
increase in material weight cost [175]. Markov [203] showed how the distribution of filler
particles within the pultruded composites affects their electric characteristics. Recently,
Chen et al. [141] experimentally analyzed the influence of activators and initiators on the
polymerization process.

Several prepreg types for thermoplastic pultrusion are currently available on the
market: preconsolidated tapes (Figure 6a), commingled yarns (Figure 6b), and towpregs
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(Figure 6c) [192,204]. Seeking to optimize thermoplastic pultrusion process, Iftekhar [205]
explored the influence of fillers and additives on the viscosity of resins. The relationship
between width/thickness of the prepregs and the mechanical and physical properties of
composites was studied by Mariatti [206]. Hedayati Velis et al. analyzed the influence
of polymer matrix and of a series of prepregs on the mechanical properties of pultruded
composites [198].

(b) (c)(a)

Figure 6. Prepregs schemes: (a) preconsolidated tapes, (b) commingled yarns, and (c) towpregs.

3.1. Preconsolidated Tape

Preconsolidated tape (PCT) consists of reinforcement fibers impregnated with a ther-
moplastic polymer at a specific volume fraction. The PCT fabrication method is similar
to that of pultrusion—hot thermoplastic melt is injected into the heated die block [192].
The material is then cooled and wound onto reels for storage and transport. Figure 7 shows
the schematic illustration of a PCT production machine [192].
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Currently, produced PCT can have widths of up to 300 mm and thicknesses of
0.125–0.500 mm [188]. The most popular PCTs are produced with fiber volume fraction of
60%, at the rate of 20–60 m/min. PCT can be produced in a towpreg production line with
the additional heated die installed at the end of the line [194,207].

3.2. Commingled Yarns (CY)

Commingled yarns (CY) are composed of intermingled matrix and reinforcement
filaments [208]. One of the ways to manufacture CY is a mixing of fibers during winding
with the use of a winding machine (Figure 8) [188]. In CY production it is possible to
ensure uniform distribution of matrix and reinforcement filaments over the whole length
of prepreg while maintaining the desired volume fraction of reinforcing material [99].
Distribution of filaments plays a very important role, as it affects flexural performance of a
composite, its specific weight, and fiber volume fraction in a composite. There are four types
of mixed fibers prepregs currently available on the market: commingled, cowrapped, core-
spun, and stretch-broken yarns [172]. The most popular are commingled yarns [209–213].
Under pressure from thermoplastic melt, reinforcing fibers tend to aggregate during the
impregnation and form agglomerations (Figure 10) [213].
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3.3. Towpregs

Towpregs fabrication consists in mixing fine-powdered thermoplastic polymer with re-
inforcing fibers. In dry methods of towpregs fabrication, reinforcing fibers pass through the
chamber with powdered polymer and are further fed into the heated chamber where ther-
moplastic polymer is ultimately joined with reinforcement fibers. In 2000, a pultrusion head
for producing towpregs materials was patented at the University of Minho [214]. By con-
vention, towpreg machines consist of five components: fiber creel, guiding system, powder
feeder, heating chamber, and winding mechanism (Figure 9) [192]. The powder feeder
can utilize various powder agitation systems, such as pneumatic [194], vibration [192],
and electrostatic [188]. To handle the problem of high viscosity of thermoplastic melts,
the alternative method of wet fabrication can be applied, where a solution of thermoplastic
polymer in a solvent is used for impregnation. Reinforcement fibers are impregnated with
a solution of thermoplastic polymer and then placed into a heated chamber to evaporate
solvent, leaving the neat thermoplastic polymer on fibers. However, as the solvent is quite
difficult to remove completely, this can result in increased porosity of the finished compos-
ite [188]. Optimization of the towpregs manufacturing process by means of Taguchi’s DOE
(design of experiments) method was performed by Novo et al. [215]. Nunes et al. [168]
studied the influence of pulling speed and furnace temperature on the polymer content in
towpregs.
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3.4. Mechanical Properties of Obtained Composites

Typically, the same standards are used in mechanical testing of thermoplastic and
thermoset pultrusion samples. For instance, ASTM D6641-16 is used for compression [216],
ISO 527-5 is used for tension [217], ASTM D790-15e2 is used for flexure [218], ASTM D7078/
7078M-12 is used for in-plane shear [219], and ASTM D2344-16 is used for interlaminar
shear testing [220]. For comparison purposes, we have listed some mechanical properties
of pultruded thermoplastic (Table 3) and thermoset (Table 4) [1,30] matrix composites.
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Table 3. Mechanical properties of thermoplastic pultruded components.

Material Volume
Fraction

Pultrusion
Speed, m/min

Flexural
Strength, MPa

Flexural
Modulus, GPa

Tensile
Strength, MPa

Elastic Modulus,
GPa

Notched Izod Impact
Strength, J/m2

Interlaminar Shear
Strength, MPa Reference

GF/Nylon 12 0.50 0.3–3.0 380–610 - - - - 15–40 [162]
GF/Nylon 6 0.71–0.75 0.1–0.9 359–469 - 828–869 - 1868–2348 - [199]

GF/ABS 0.75 0.1–0.9 538 - 710 - - - [199]
GF/PPS 0.70–0.75 0.1–0.9 965 - 793 - - - [199]

GF/PMMA 0.75 0.1–0.9 656–863 - 897–1035 - 1815–2188 - [199]
GF/PBT 0.38–0.41 0.1–1.2 - - - - - - [144]
GF/PP 0.35 0.01–1.5 465–485 22–24 - - - - [94,95]
GF/PP 0.32 0.2–0.3 299–359 15–18 302–409 20–23 - 27–28 [192]
GF/PP 0.37 0.2–0.3 571–620 24–28 516–597 24–26 - 25–28 [192]
GF/PP 0.53–0.59 0.9 113–121 22 279–331 27–33 - - [194]
GF/PP 0.52 0.2–0.3 146–170 27–29 314–358 32–35 - 7–8 [192]

GF/PMMA - 0.4 414 - 720 - 2400 - [221]
GF/PMMA - 0.7 207 - 530 - 1300 - [221]
GF/PMMA - 1.0 100 - 410 - 700 - [221]
GF/PA 6 * 0.70 0.8 800–1060 26–34 - - - 61–70 [154]
GF/PU * 0.50 2.7 210 6 - - - - [222]
CF/PEEK 0.55 0.06–0.6 1150–1380 108–130 - - - - [143]

CF/Nylon 6 0.57 0.1–0.9 498 - 1496 - 1708 - [199]
CF/PPS 0.58 0.1–0.9 1365 - 1172 - 1601 - [199]
CF/PP 0.32 0.2–0.3 155–163 36–40 - 196–213 - 14 [192]
CF/PP 0.55 0.2–0.3 222–243 86–91 - 100–116 - 12–13 [192]

Flax/PLA 0.40 0.5–0.7 65–115 5–8 15–75 6–8 - - [99]
Graphite/PEI 0.61 0.18 1150 103 - - - - [196]
Graphite/PPS 0.61 0.08 1770 131 1820 117 - - [197]

* Reaction injection molding (RIM) pultrusion.
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Table 4. Mechanical properties of thermoset pultruded components.

Material Volume Fraction Tensile Strength, MPa Elastic Modulus, GPa

GF/Polyester 0.5–0.8 307–1320 21–59
GF/Vinylester 0.6 240 18–42

GF/Epoxy 0.5 414–790 32–40
CF/Vinylester - 1400 140–145

CF/Epoxy 0.5–0.6 1213–2200 130–180

3.5. Durability of Thermoplastic Pultruded Materials

If we want pultruded thermoplastic profiles to be widely used, then we need be sure
of their durability. Unfortunately, durability of both thermoset [223] and thermoplastic pul-
trusion has not been studied deeply enough. Articles published are mostly related to topics
other than pultrusion technology. We intend to analyze reaction injection molding and
press molding in brief in order to attract scholars’ and engineers’ attention to thermoplastic
pultrusion durability.

Under microorganism actions, the molecular structure of a polymer can biodegrade
and both physical and chemical properties can also change. Polymers can be the source of
energy for the microorganisms [224]. The molecular bonds can be destroyed, as well as the
composite’s properties. Biodegradation depends on crystallinity, temperature, pH of the
environment, humidity, molecular weight of the polymer, various additives with enzymes,
and bioorganisms [225]. Not all plastics are biodegradable, only some, such as polyvinyl
alcohol (PVA), polycaprolactone (PCL), polyester, polylactide (PLA), polyethylene, ny-
lon, polyhydroxybutyrate (PHB), and polyglycolide (PGA) [226,227]. Some composites
are nonsusceptible to the process of biodegradation; thus, starch polymers [228–235] and
fish waste [236] additives are used to accelerate the process. Composite materials based
on natural fibers can be of great interest as they fully recycle through biodegradation.
Moreover, biocomposites can be recycled in composting conditions [224,233,237]. Re-
inforcements based on wood [238], aspen [239], flax, hemp, sisal [240], cellulose [241],
pineapple leaves [242], and reed [243] are typically applied. Degradation rate depends
on the structure of the natural fibers, like the flexural strength of composites based on
nonwoven mat decreases more than that of a woven composite [237].

Although the reaction of polymerization in thermoplastics composites is complete,
the shelf life of the polymers is virtually unlimited [51–57]. The degradation of material
properties may occur over time due to fatigue loads, temperature exposure, humidity,
chemical reactions, radiation, etc. For example, fatigue provokes fiber failure, matrix
cracking, interface debonding [244], and decrease in material strength [245].

Polymers behave differently depending on heating conditions and temperatures.
Fatigue strength decreases faster at cryogenic temperature comparing with room tempera-
ture [246]. Long-term aging of composite material at a temperature below melting causes a
change in glass transition temperature and strength [247,248]. During short-term aging,
thermoplastic composite is sharply heated to thermal decomposition temperature; thus,
rapid decrease in tensile and interlaminar shear strength is observed [249,250]. Apart from
debonding and cracks, delamination and fiber failures can occur [251,252]. Freeze and thaw
cycles, accompanied by cooling the material below 0 ◦C, lead to loss of flexural strength
and Young’s modulus [253].

Water immersion and exposure to humidity affects tensile, compression, and flexural
strength [254]. Mechanical properties depend on the temperature of the surrounding
medium [254]. Typically, thermoplastic composites are studied in seawater [254–256],
tap water [257,258], etc. Acid and harsh environments negatively affect the molecular
bonds and mechanical characteristics of the polymers [259]. Various gases, such as air,
air under pressure, and nitrogen, reduce the strength of composites [260].

Research on thermoplastic pultruded material behavior, when placed in a different
harsh environment, is needed if we want wide use of profiles in marine and chemical
engineering. Nuclear engineering is interested in the study of reactive radiation effects.
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Durability of both matrix and fiber reinforcement is to be studied as well. Experiments
conducted at high and low temperatures are needed to apply the thermoplastic pultruded
profiles for civil engineering in different climatic zones.

3.6. Future Trends

The properties of the pultruded profiles depend greatly on the choice of raw materials.
The lack of knowledge in the field of thermoplastic pultrusion becomes apparent in the
choice of raw materials, as opposed to the thermoset pultrusion. To popularize the applica-
tion of thermoplastic pultrusion, we need better understanding of physical phenomena
taking place during the manufacturing process, and their dependence on the choice of
raw materials, and clearer understanding of the influence raw materials have on mechan-
ical performance and the life cycle of thermoplastic composite materials and structures.
This subchapter will briefly discuss the most promising areas of research, from the authors’
point of view.

In spite of availability of several studies on the influence of raw materials on mechan-
ical performance of pultruded thermoplastic composites and structures, we believe that
more research is necessary in order to study this question. Of special importance here are
the studies of stress–strain state in composite materials under different modes and rates of
loading.

An in-depth research of existing and perspective additives is necessary to better
understand their influence on the properties of end products and to improve mechani-
cal performance and physical properties of pultruded thermoplastic profiles. Currently,
only the studies by Markov [203] and Chen et al. [141] are available in this field. In addition,
there is an obvious lack of studies on the influence of micro- and nanoadditives, both in
thermoset pultrusion (Kuruvilla and Renukappa [261], Manjunath et al. [262]) and in the
thermoplastic one (Roy et al. [263], Alam et al. [264]).

Striving to reduce environmental footprint, human society demonstrates ever increas-
ing interest in sustainable development and the use of natural materials, and the composite
industry is no exception. Application of biocomposites is currently one of urgent research
topics in thermoplastic materials [265–270]. Broad introduction of such composites into
everyday life will obviously require extensive study of their properties and characteristics.

While the influence of additives improving UV-aging performance and corrosion
resistance of end products is mostly well understood for the thermoset pultrusions, this is
not the case for the thermoplastic ones. Therefore, the real application of thermoplastic com-
posites will require extensive studies of their behavior in the presence of various additives,
which might be of special interest for the industrial and scientific community. In addition,
of great interest for the composite community is the influence of nonbiodegradable and
flame-retardant compounds on the properties of thermoplastic materials.

The use of hybrid reinforcements (e.g., the simultaneous use of glass and carbon
reinforcing fibers) is currently one of the hottest topics, since some loaded parts of pultruded
structures may benefit from the use of different fiber types. However, there is a lack of
knowledge on this issue both in thermoset [271] and, particularly, in thermoplastic pultrusion.

4. Process Modeling

Manufacturing of pultruded thermoplastic composites depends on various process
parameters such as preheater temperature, heated die geometry, temperature and pressure
inside a heated die, cooling die temperature, pulling speed, and pulling force, and, thus,
necessitates the development of mathematical models for process optimization. In addition
to process parameters, the properties of prepregs, such as melting temperature, glass
transition temperature, coefficient of thermal expansion, etc., should also be taken into
account. All things considered, mathematical models should allow an engineer to deter-
mine the degree of impregnation, temperature distribution, pulling force, etc., for complex
profile geometries. These models, based on modern methods, would allow calculation of
residual stresses in a composite, making it possible to predict cracking, warping, shrink-



Polymers 2021, 13, 180 15 of 36

age, and other process-induced deformations. Among the published articles and books
on mathematical modeling in thermoplastic pultrusion, of particular interest is the book
by Suresh Advani and Murat Sozer [272]. Currently, several studies of residual stresses
and strain are underway in the field of thermoset pultrusion [30,171,273–275], while the
number of similar studies for thermoplastic pultrusion is significantly lower. An overview
of existing mathematical models of nonreactive thermoplastic pultrusion follows.

4.1. Impregnation

Properties of final products depend on the fiber volume fraction. The volume frac-
tion and strength of material, in turn, depend on fiber impregnation [276] impeded by
the high viscosity of thermoplastics. Several mathematical models were developed to
find optimum manufacturing conditions and to investigate the relationship between the
degree of impregnation and process parameters. Most of these models describe the nonre-
active thermoplastic pultrusion with commingled yarns and are based on the following
approximations:

• Reinforcing fibers are represented by separate groups (agglomerations) in the thermo-
plastic melt (Figure 10);

• These groups have an elliptical or circular section;
• Fibers are impregnated uniformly over the bulk of the product on all sides.

Polymers 2020, 12, x FOR PEER REVIEW 15 of 36 

 

4.1. Impregnation 
Properties of final products depend on the fiber volume fraction. The volume fraction 

and strength of material, in turn, depend on fiber impregnation [276] impeded by the high 
viscosity of thermoplastics. Several mathematical models were developed to find opti-
mum manufacturing conditions and to investigate the relationship between the degree of 
impregnation and process parameters. Most of these models describe the nonreactive 
thermoplastic pultrusion with commingled yarns and are based on the following approx-
imations: 
• Reinforcing fibers are represented by separate groups (agglomerations) in the ther-

moplastic melt (Figure 10); 
• These groups have an elliptical or circular section; 
• Fibers are impregnated uniformly over the bulk of the product on all sides. 

 
Figure 10. Schematic illustration of yarn section and consolidation process; Pg—pressure from the void, Pc—capillary 
pressure, PA—applied pressure. 

The aim of these models is to determine the degree of impregnation at any moment 
of time and to estimate the void content [209,213]. The motion of thermoplastic melt 
through fibers is governed by Darcy law describing the flow of fluid through a porous 
medium [277]: ݑ = − ௄ఓ (1) ,݌∇

where ݑ—the speed of fluid motion inside fibers, ܭ—fiber permeability tensor, μ—vis-
cosity, ∇—nabla operator, and ݌—external pressure. 

Taking into account the fiber volume fraction and local speed of fibers and thermo-
plastic melt, Bernet et al. [213] obtained the following expression for Darcy law: ൫1 − ௙ܸ൯(ݑ௟ − (௦ݑ =  − ௄ఓ (2) ,݌∇

where ௙ܸ—fiber volume fraction, ݑ௟ and ݑ௦—local speeds of thermoplastic melt and fi-
ber, respectively. 

As the permeability ܭ is not constant and uniform in all directions, the impregna-
tion process is difficult to model. In order to calculate permeability in the direction parallel 
to fiber orientation, the Kozeny–Carman equation is used [211]: ܭ∥ = ௥೑మ∙(ଵି௏೑)యସ∙௞బ∙௏೑మ , (3)

where ݎ௙—fiber radius, ௙ܸ—instantaneous fiber volume fraction depending on the pres-
sure, and ݇଴—the permeability constant. 

To determine permeability of fibers in transverse direction, the equation proposed 
by Gutowski et al. is used [278]: 

Figure 10. Schematic illustration of yarn section and consolidation process; Pg—pressure from the
void, Pc—capillary pressure, PA—applied pressure.

The aim of these models is to determine the degree of impregnation at any moment
of time and to estimate the void content [209,213]. The motion of thermoplastic melt
through fibers is governed by Darcy law describing the flow of fluid through a porous
medium [277]:

u = −K
µ
∇p, (1)

where u—the speed of fluid motion inside fibers, K—fiber permeability tensor, µ—viscosity,
∇—nabla operator, and p—external pressure.

Taking into account the fiber volume fraction and local speed of fibers and thermo-
plastic melt, Bernet et al. [213] obtained the following expression for Darcy law:(

1−Vf

)
(ul − us) = −

K
µ
∇p, (2)

where Vf —fiber volume fraction, ul and us—local speeds of thermoplastic melt and fiber,
respectively.
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As the permeability K is not constant and uniform in all directions, the impregnation
process is difficult to model. In order to calculate permeability in the direction parallel to
fiber orientation, the Kozeny–Carman equation is used [211]:

K‖ =
r2

f ·
(

1−Vf

)3

4·k0·V2
f

, (3)

where r f —fiber radius, Vf —instantaneous fiber volume fraction depending on the pressure,
and k0—the permeability constant.

To determine permeability of fibers in transverse direction, the equation proposed by
Gutowski et al. is used [278]:

K⊥ =
r2

f

(√
Va
Vf
− 1
)3

4k0

(
Va
Vf

+ 1
) , (4)

where Va—maximum possible fiber volume fraction and k0—the permeability constant.
When modeling the impregnation process during pultrusion, one should consider the

motion of matrix along the fibers. Kim et al. [212] proposed the micromodel describing
the impregnation of fibers in a transverse direction, and the macromodel describing the
lengthwise flow of matrix. The macromodel was based on Darcy law and the Kozeny–
Carman equation. Later, the model was supplemented with mass conservation equations
in a cylindrical coordinate system (Equation (5) for matrix, and Equation (6) for fiber
reinforcement):

∂

∂t

(
1−Vf

)
+

1
r

∂

∂r

((
1−Vf

)
rul

)
= 0, (5)

∂

∂t
Vf +

1
r

∂

∂r

(
Vf rus

)
= 0, (6)

where r—matrix propagation front.
Koubaa et al. [279,280] have developed a pultrusion impregnation model based on

the Navier–Stokes equation, having the following expression in a cylindrical coordinate
system:

∂P
∂z

=
µ

r
∂

∂r

(
r

∂uz

∂r

)
, (7)

where z—coordinate axis coinciding with the pulling direction and uz—fluid motion
speed along the longitudinal axis. The following boundary conditions are imposed: zero
component of fluid motion speed outside fibers, and equality of fluid motion speed inside
fibers and of the pulling speed.

The model proposed by Gibson et al. [281] takes into account the capillary force.
Sala and Cutolo [163] conducted numerical and experimental studies and proposed the
model that uses both Newtonian and power-law relationships to predict the impregnation
process outcomes. At the same time, Haffner et al. [282] developed a mathematical model
that describes the microscopic flow of resin and accounts for different fiber arrangements,
volume fraction of reinforcement, and impregnation time. Miller et al. [38] proposed the
impregnation model for a composite material based on towpregs. The model represents a
cell consisting of three filaments with two thermoplastic particles incorporated in spaces
between filaments. Melting thermoplastic particles impregnate the filaments and fill the
space between them. The proposed model considers the external pressure exerted by the
fiber bed, capillary pressure, viscous pressure resulting from matrix motion, and springing
pressure from fiber compaction. The resulting equation for impregnation time accounts for
filament diameter and the size of particles, assuming them constant over the whole bulk
of material. Results obtained with the analytical model are close to the experimental data,
demonstrating good accuracy of the model. Subsequently, Bechtold et al. [283] proposed
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two different methods to model the impregnation process in the case of thermoplastic
pultrusion with braided commingled yarns. Koubaa et al. [284] studied the impregnation
of a single glass-fiber bundle and proposed the model based on the Young–Laplace law
that takes into account the influence of capillary force. Ngo et al. [285] proposed a model of
thermoplastic pultrusion with carbon fiber-reinforced prepreg that accounts for a multiscale
3D impregnation die.

4.2. Temperature Distribution

The thermal model makes it possible to determine the distribution of temperatures
over the heated die and the degree of crystallinity of a thermoplastic polymer. All de-
veloped models rely on the heat transfer equation adapted to the pultrusion process,
which results in introduction of a pulling speed term on the left side of the following
equation [286]:

ρ CV
∂T
∂x

=
∂

z

(
k

∂T
∂z

)
+ Q, (8)

where ρ—specific density, C—specific heat capacity, V—pulling speed, x—coordinate
axis parallel to the die block axis, z—coordinate axis perpendicular to the die block axis,
T—temperature, and Q—energy released during crystallization. Most polymers are amor-
phous and do not form a crystal lattice [286], making it possible to disregard the Q variable
in most cases.

Using the model proposed by Åstroöm and Pipes [169,287], Babeau [288] conducted
the experimental test and numerical simulation, and obtained results that are very close
to the analytical model. Carlsson [96] proposed the following expression for the energy
released during crystallization of polypropylene:

Q = m
∂α

∂t
H, (9)

where m—mass fraction of a polymer matrix, α—degree of crystallinity, and H—theoretical
ultimate heat of crystallization at 100% crystallinity.

The crystallization process can be divided into two stages. The first stage is the
formation of primary nuclei. The second stage is the growth of a crystal formed on the
nuclei. Thus, the derivative of the degree of crystallinity can be expressed as follows [96]:

∂α

∂t
(T, α) = ( f1(T) + f2(T)α)(1− α), (10)

where the f1 function accounts for formation of primary nuclei and f2 accounts for further
growth of the crystal. Expressions for f1 and f2 were proposed by Malkin [289]. In addition
to analytical methods, scientists often use numerical methods to determine the degree of
crystallinity and the heat transfer, as explained by Haffner et al. [290]. Trying to minimize
modeling oscillations in the case of high pulling speed and rough mesh, Ruan et al. [291]
developed a 2D thermal model of thermoplastic pultrusion. Subsequently, Yn et al. [142]
utilized the finite difference method to predict temperature and reaction evolutions within
the pultruded profile and to optimize process parameters while maximizing the thickness of
pultruded profile. Nejhad [148] proposed and verified experimentally a numerical model
dealing with thermal analysis of impregnated tows/tapes in thermoplastic pultrusion.
Numerical modeling providing information on both temperature distribution within a
profile during pultrusion and crystallization kinetics of the polymer was proposed by
Carlsson and Astrom [292]. Ahmed et al. [293] applied the FE–NCV (finite element–nodal
volume control) approach to determine the heat distribution over the heated die block and
to calculate the degree of crystallinity. Aside from Ahmed, Joshi and Lam [294] used the
same modeling approach to investigate crystallization in a composite based on carbon
fibers and PEEK polymer (CF/PEEK) specimen.
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4.3. Pressure and Pulling Force

Åstroöm [287] proposed a model describing the distribution of pressure over the
heated die and the model of pulling force. He used the integral relationship between the
pulling force and the drag over the unit area, expressed in the following form:

ftot(x) = (1−Ω(x)) fv(x) + fc(x) + Ω(x) f f (x), (11)

where Ω(x)—the part of a composite subjected to pressure, fv(x)—viscous drag for Carreau
fluid, fc(x)—compaction resistance resulting from fibers compaction in the tapered portion
of the heated die block, and f f (x)—friction resistance.

The model [287] uses the Carreau model and considers the nonlinear nature of ther-
moplastic melt viscosity:

ηa = η0

(
1 + (λγ)2

) n−1
2 , (12)

where η0—zero-shear rate viscosity, γ—shear rate, λ—indicates the shear rate at which
shear-thinning effects become significant, and the dimensionless constant n describes the
degree of shear thinning. The comparison of results obtained with the analytical model
and experimental data can be found in [155].

Lee et al. [286,295] proposed a numerical model to predict pressure and pulling force,
as well as temperature and crystallinity. Simultaneously, a model predicting pulling
resistance from the die, together with temperature and pressure distribution within a
composite was developed by Astrom and Pipes [155,296]. Parasnis et al. [297] studied
the influence of viscosity and shear load on the pulling force. They used a finite element
model and compared calculated pulling force values with experimental data. The authors
reported a discrepancy between experimental and calculated data, appearing after a certain
value of pulling speed was reached. While the model predicted an exponential increase in
pulling force, the experiments demonstrated that the increase in pulling force takes place
until a certain pulling speed value was reached; after reaching this value, the pulling force
remained unchanged. Blaurock and Michaeli proposed a method predicting pulling force
and then compared it with experimental data [298]. Stavrov and Tsvirko [179] analyzed
the relationship between pulling force and viscous characteristics.

4.4. Future Trends

Existing impregnation, and temperature and pressure distribution models rely on a
series of approximations allowing a determination of process parameters for simple profile
and die shapes, and mostly for commingled yarns. However, modeling of thermoplas-
tic pultrusion for complex cross-sections, towpregs, and PCT still remains an open issue.
Thermoplastic pultrusion cannot boast significant progress in mathematical modeling as
opposed to the thermoset pultrusion, where it widely applied, first, to model complex shaped
profiles (L- and I-shaped sections [274], wind turbine blades [299,300], etc.) with complex
reinforcement lay-ups, and, second, to develop algorithm for their optimization [301–317].
In recent years, a significant interest to optimization has been observed in the scientific
and engineering community. Optimization tools allow engineers to solve a large number
of problems, from pultrusion process optimization to optimization of raw materials for
pultruded profiles, and to take full advantage of composite materials. However, in spite
of certain advances in optimization, there is, still, a lack of knowledge and experience on
multiobjective optimization, both in thermoplastic and thermoset pultrusion. Aside from
process parameters optimization, multiobjective optimization makes it possible to optimize
the geometric topology of composites [318]. Modern mathematical models should allow a
solution of process optimization problems with large number of input parameters. More-
over, modeling methods may help researchers investigate residual stresses in a composite,
and their influence on cracking, delamination, warpage, shrinkage, and other process-
induced defects [171,275]. The authors believe that expanding the use of supercomputers
will bring the problems of mathematical modeling and optimization of composites to a



Polymers 2021, 13, 180 19 of 36

fundamentally new level. Thus, aside from solving problems discussed earlier, the growing
computational power will allow us to explain and model macrobehavior of composite
materials, based on their microscale parameters.

5. Application
5.1. Pultrusion Market

The pultrusion market demonstrates steady growth from year to year. According
to the European Pultrusion Technology Association (EPTA) forecast [319], the pultrusion
market is expected to reach the mark of €100 billion in 2022. This growth opens new oppor-
tunities both for the thermoset and thermoplastic pultrusion. Thermoplastic pultrusion
steadily gains popularity along with the thermoset one, although at a slower pace. For the
sake of comparison, the entire thermoplastic composites market, including, aside from
pultrusion, all the other thermoplastics applications as well, is expected to grow from
€22.2 billion in 2020 to €31.8 in 2025, according to the report titled “Thermoplastic Com-
posites Market by Resin Type (Polypropylene, Polyamide, Polyetheretherketone, Hybrid),
Fiber Type (Glass, Carbon, Mineral), Product Type (SFT, LFT, CFT, GMT), End-Use Industry,
and Region-Global Forecast to 2025” [320]. The main factor limiting the application of
thermoplastic pultrusions is the price, i.e., the availability of thermoplastic resins, since they
cost more than those used in thermoset pultrusion. This is one of the factors restraining the
growth in thermoplastics applications [320]. Therefore, lower production costs, and, thus,
lower final price of the manufactured products could stimulate the demand for thermo-
plastic profiles, offering competition to thermoset profiles, although both reports should
be considered in the context of coronavirus (SARS-CoV-2) COVID-19 pandemic situation.
To illustrate, in November 2020, the Federation of Reinforced Plastics reported a 12.7% drop
in production of glass-fiber-reinforced plastics in Europe, reaching the mark of 996,000 tons
in 2020, which is the steepest drop since the global economic crisis of 2008–2009 [321].
According to the same report, pultrusion production volumes in 2020 plunged by 10.7%,
making the pultrusion industry the least affected by the crisis, when compared to all other
composite sectors.

5.2. Patents

According to registered patents, one of the most common applications of thermoplastic
pultrusion are thin [322–325], round, and rectangular profiles. Typically these cross-sections
are utilized as wires [326,327] and their coatings [328], rods [329–331], pipes [332,333],
and hollow profiles [334,335] used in the production of doors and windows [336,337],
etc. Global IP Holding Co. LLC patented the method to produce parts of sandwich struc-
tures [338,339] using the pultrusion process. They also patented constructions that combine
both metal elements and composite materials [340,341]. Various combinations of fiber struc-
tures are used; for example, some of the layers are made of unidirectional fibers [342], while
the others are made with transversely oriented fibers [343], fabrics [344,345], or long-fiber
thermoplastics (LFTs) [346]. Pultruded profiles are widely used in railway construction.
A group of engineers from Pultrusion Technique Inc. developed a method for the produc-
tion of rail clamps, providing the benefit of excellent corrosion resistance [347], as compared
to their iron counterparts. In addition, they patented wavy profiles [348] and elements
with asymmetrical shapes [349,350].

5.3. Current Applications of Thermoplastic Pultruded Profiles

Pultruded thermoplastic profiles effectively combine properties of thermoplastic com-
posites with advantages of pultrusion as a manufacturing process. Offering improved
toughness and fire resistance, thermoplastic composites find application in many industries.
Pultruded thermoplastic composites have found wide application in aerospace and [67,69]
aviation [64,66] engineering. For example, landing gear doors made of thermoplastic
composites have lower weight, compared to their aluminum counterparts, are weldable,
and can be recycled, as opposed to those made of thermoset composites [68,351]. Thermo-
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plastic composites can be used to manufacture airplane flooring [68], ice protection panels
protecting the fuselage [351], various interior elements [351], rivets for fastening [15,65],
aircraft wings [68], radomes [68], and flaps [68]. Aside from aviation, thermoplastic compos-
ites are widely used in the automotive industry [59,60,62,63]. The thermoforming ability of
thermoplastics allows fabrication of various complex shape parts, such as dashboard carri-
ers [61], body structures [61], bumpers [58,61,352], wheel rims [353], and seat structures [61]
(commonly produced from long-fiber thermoplastics (LFT) [354]), etc. In civil engineer-
ing [70,71], thermoplastic composites are used to manufacture airfoils for wind turbine
blades [355], pipes [84,85], rebars [86,87] and rods [88–91], reinforcement for concrete struc-
tures [86], window profiles [83], elements of walls [72], flooring [72], exterior siding [72],
and roofing systems [72,73]. In addition, composite poles used in powerline-supporting
structures for energy grids are often produced by thermoplastic pultrusion [74]. Moreover,
pultruded elements can be used in restoration of deteriorated structures and rehabilitation
projects [75]. Aside from these applications, there is a demand from the marine [76–79,356]
and oil/gas [80] sectors. In view of product recycling capabilities, thermoplastic pultrusion
is the process of choice for production of semiproducts for LFT [357–363] and cork and
pellet composites [364–368]. Pultrusion can produce prepregs for constant size LFT with
specified length of fibers and precisely maintained fiber volume fraction.

In spite of a steady growth in application of thermoplastic pultrusions in auxiliary
elements of structures in the last few years, there are no published articles, patents, or news
on the application of such profiles in the design and construction of full-scale bearing
structures, such bridges, cooling towers, etc. This can be explained by the lack of knowledge
on the behavior of these types of structures, which are produced of thermoplastic pultruded
elements. Scientists and engineers have yet to investigate the strength, buckling, creep,
fatigue, and durability aspects of thermoplastic pultruded profiles as applied to the full-
scale structures.

Advances and experience in implementation of such structures are almost completely
lacking, as there are no relevant design codes. European [369–371] and US [372] design
codes regulating the design of pultruded structures deal only with thermoset profiles,
or have no clear mention of pultrusion type. Therefore, these design codes can only be
freely applied in the design of thermoset pultruded structures, as they were specifically
developed for these types of profiles. The peculiarities of thermoset and thermoplastic
pultrusion processes will undoubtedly impose certain limitations on the behavior of profiles
under a particular loading mode. The behavior of thermoplastic and thermoset profiles
under the same load may differ significantly. Thus, to account for specifics of thermoplastic
profiles, existing structural design codes should be revised or rebuild anew. This will
require extensive experimental investigations, the results of which will be used as a basis
for future design codes.

5.4. Future Trends

Advanced studies mentioned in this subchapter show that pultruded thermoplastic
profiles can be applied both in traditional areas mentioned previously, and in some, at first
sight, nonconventional ones. The authors believe it is important to draw the attention of
the composites research community to these perspective fields of research.

Application of green technologies and materials in manufacturing is a hot topic both
in the composite community and in other industries [373]. Multiple studies conducted
in the last few years demonstrate that human society should do its best to thoughtfully
use and recycle the products of its activity, and to minimize its carbon footprint. Recent
studies in recycling of thermoplastic composites demonstrate the growing interest to this
field. There are various mechanical, chemical, and thermal approaches to composites
recycling. The main problem associated with the application of recycled composites lies in
a degradation of mechanical properties of recycled fibers to be used in newly produced
composites [374,375]. On the other hand, striving to minimize carbon footprint, researchers
opened a new perspective on the application of polyethylene terephthalate (PET), typi-
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cally used in worldwide packaging, as a raw material for thermoplastic pultrusion [187].
Thus, any investigations aimed at application of recycled and natural raw materials in
thermoplastic pultrusion will have a good perspective.

The application of thermoplastic polymers in composites holds considerable promise
for the use of welded joints; however, the performance of such joints is yet poorly under-
stood and will require the analysis on a case-by-case basis. In spite of the large number of
publications in a field of thermoplastics welding in general [376–379], there are no studies
on the welding of pultruded thermoplastic composites in particular.

There are a few studies reporting on the medical application of thermoplastic pul-
truded profiles. Tanimoto et al. [380,381] manufactured and investigated the properties of
pultruded glass-fiber-reinforced polycarbonate wiring for orthodontic applications. Engi-
neers from Fraunhofer Institute for Production Technology developed the process allowing
a pultrusion of thermoplastic elements as small as 1 mm in diameter, which can be used in
medical applications [382,383]. Authors report the excellent compatibility with magnetic
resonance imaging (MRI) techniques and good post formability. Thermoset pultrusion was
used to fabricate guidewire appliances that were mechanically tested along with in vivo ex-
periments on animals [384]. In addition, the appliance compatible with magnetic resonance
(MR) was pultruded and tested in various MR-guided cases aimed to study the behavior
of arteries [385]. Recently, an experimental study [386] demonstrated the feasibility of
thermoset micropultrusion of 280 µm-diameter carbon fiber elements, and proposed the
use of thermoplastic matrices as a recommendation for further research.

Invented in ETZ Zurich, continuous lattice fabrication (CLF) is a new additive manu-
facturing (AM) technique making it possible to print thermoplastic fiber reinforced poly-
mers (FRPs) in three-dimensional space at any imaginary trajectory, with the help of robotic
arms [387–389]. This approach combines both extrusion and pultrusion. Introduction of
AM or robotic fabrication techniques into thermoplastic pultrusion manufacturing would
definitely broaden the perspectives for thermoplastic pultrusion. Meanwhile, a novel
technique proposed by the Institute of Plastics Processing at RWTH Aachen University
presents hybrid pultruded profiles combining both a thermoset core and thermoplastic top
layer, combining the advantages of both processes [390]. Combination of thermoplastic
and thermoset pultrusions may certainly result in more efficient structural components,
thereby exploiting the advantages of both manufacturing techniques.

As the human society demonstrates the increasing interest in colonization of Moon
and Mars, there will be a large demand for space transport technologies and to produce
various structures for space stations, power generation platforms [391], and other facilities
necessary to settle on other planets. There are no considerable obstacles to shipping a pul-
trusion machine into space [3] to utilize the advantages of thermoplastic polymers [392,393].
British company Magna Parva, specializing in space research, plans to use pultrusion in
space where no kind of production has been done before [394].

Typically, pultruded profiles are supposed to have straight shapes; however, pultru-
sion of nonlinear profiles can be accomplished as well. Curved pultruded profiles can
be used to minimize the excessive deflection of structures, to implement components of
complex shapes, or to impart individuality to architectural forms. Currently, fabrication
of curved pultruded profiles is actively investigated in thermoset pultrusion [395–397].
However, similar studies in thermoplastic pultrusion are very limited [398], and, therefore,
this issue requires further investigation.

According to the studies on urban planning and development, over 70% of world pop-
ulation will live in cities by 2025. Steadily growing migration from countryside to the cities
forces telecom companies to search for solutions to today’s technology challenges. Large
megapolises require effective and innovative information services and data transmission
facilities. Offering data rates of 10–20 Gbps, 5G may be a solution to these problems [399].
Pultruded profiles, being transparent to radio frequency signals, are perfectly suited for
use in the growing 5G network infrastructure around the globe [399].
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In addition, the growing interest in smart polymers, materials able to change their
physical and chemical properties under the influence of various external factors (pH,
temperature, UV light, etc.) [400], may also apply to thermoplastic pultrusion. Of special
interest are shape memory polymers, a subset of smart polymers, which are able to recover
their shape under the influence of certain external factors [401,402]. These materials with
their unique properties can have various applications —in medicine [403] and self-healing
systems [404], and in aerospace [405], electronic [403] and civil [403,406] engineering.

6. Conclusions

This study reviews the state-of-the-art in thermoplastic pultrusion. We discussed
the distinctive features of the process, materials used, patents registered, properties of
pultruded profiles, industrial market situation, and applications of thermoplastic pultruded
profiles. Application of thermoplastic polymers in pultrusion instead of thermoset ones
makes it possible to improve the impact strength of structures, and offers the advantages
of recycling, indefinitely long storage of source material, and application of welded joints
of composite profiles. However, the limited number of studies in the field of pultruded
thermoplastic composites makes it difficult to unveil the full potential of thermoplastic
pultrusion. Trying to answer the question of the huge industrial, scientific, and experience
gap existing between thermoset and thermoplastic pultrusion, we were able to develop
recommendations on further research in the application of composite structures in general,
and pultruded thermoplastic profiles in particular. We also recommend the research
areas necessary to broaden the field of thermoplastic profiles application in order to
obtain the knowledge sufficient for understanding the complex mechanics of thermoplastic
composites, which is necessary to design complex critical structures currently built of
thermoset profiles.

It must be noted that this review, being the first of its kind (as no review papers on
thermoplastic pultrusion were published earlier), discusses only general questions and
does not probe deeper into specific aspects of thermoplastic pultrusion and the materials
produced. However, as there is an urgent need for such studies, in the near future we can
expect publication of separate review papers concerning specific subtopics of thermoplastic
pultrusion, such as, for instance, additives, structural design, durability of pultruded
thermoplastic elements, process-induced shape distortions, biocompatibility, and natural
materials, among others.
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