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Abstract: This work analyzes the thermal degradation and mechanical properties of iron (Fe)-
containing MgAl layered double hydroxide (LDH)-based polypropylene (PP) nanocomposite. Ternary
metal (MgFeAl) LDHs were prepared using the urea hydrolysis method, and Fe was used in two
different concentrations (5 and 10 mol%). Nanocomposites containing MgFeAl-LDH and PP were
prepared using the melt mixing method by a small-scale compounder. Three different loadings of
LDHs were used in PP (2.5, 5, and 7.5 wt%). Rheological properties were determined by rheometer,
and flammability was studied using the limiting oxygen index (LOI) and UL94 (V and HB). Color
parameters (L*, a*, b*) and opacity of PP nanocomposites were measured with a spectrophotometer.
Mechanical properties were analyzed with a universal testing machine (UTM) and Charpy impact
test. The thermal behavior of MgFeAl-LDH/PP nanocomposites was studied using differential
scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The morphology of LDH/PP
nanocomposites was analyzed with a scanning electron microscope (SEM). A decrease in melt viscos-
ity and increase in burning rate were observed in the case of iron (Fe)-based PP nanocomposites. A
decrease in mechanical properties interpreted as increased catalytic degradation was also observed
in iron (Fe)-containing PP nanocomposites. Such types of LDH/PP nanocomposites can be useful
where faster degradation or faster recycling of polymer nanocomposites is required because of
environmental issues.

Keywords: polypropylene (PP) nanocomposite; ternary metal layered double hydroxide (LDH);
catalytic degradation; MgAl and MgFeAl-LDH; transition metal LDH; thermal and mechanical
properties of PP nanocomposite; rheology of LDH/PP nanocomposite

1. Introduction

Layered double hydroxides (LDHs), also known as hydrotalcite-like materials, are
anionic clays with the formula [M1−x

2+Mx3+(OH)2]x+·[(An−)x/n·yH2O]x, where M2+, M3+

and An− are divalent metal cations, trivalent metal cations and interlayer anions, respec-
tively [1–3]. The structure and its properties were first described by Allmann (1968) [4]
and Taylor (1969) [5]. LDHs are very useful inorganic materials that have been used for
many years because of their possible changes in structure, synthesis methods, and ease of
preparation [3]. There are different change possibilities in their structure, such as changes
in composition, type of metallic cation, interlayer anions, and combinations of different
metals in LDHs [6,7]. The ease of synthesis, low costs, and natural sources attract the
researcher to work on these materials [8]. There exist many techniques to prepare LDHs
with a variety of metal combinations that can be custom-made to the desired applications.
These custom-made LDHs have different structural, chemical, and physical properties
dependent on the incorporated metals and preparation methods [9–15]. There are many
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preparation methods available for the synthesis of LDHs of which the most common are
co-precipitation, urea hydrolysis, ion exchange and hydrothermal synthesis [2,16].

LDHs have been used as acid scavengers [17], in the pharmaceutical industry [18],
as antioxidants [19], in biomedical applications [20–23], as UV-Vis absorption materi-
als [12,24–26], in photovoltaic and solar cells [26], in supercapacitors [27], in sensors [28],
in wastewater treatments [29], as precursors for photocatalytic materials [30,31], as cata-
lysts [18,32], as stabilizers in polymers [33,34] and as flame retardants for polymers [35–38].
LDHs can be used for different purposes—as coolants and in producing diluents for
flammable gas [39], as flame retardants providing resistance to ignition [40], or they can
provide an alternate way of combustion with a slower rate of flame spread and can re-
duce the quantity of smoke [18,40]. Mostly, combinations of two metals have been used
previously, and MgAl is one of the most studied combinations of LDHs used in different
polymers [41–45].

The demand for polymeric materials has steadily increased in recent decades, and
because of this increase in demand environmental pollution has also increased. With
improving lifestyle, focus on the sustainable development of such polymer products is
increasing. New rules and regulations on the environmental aspects of polymer products
and their recyclability have encouraged researchers and manufacturers to work on envi-
ronmentally friendly polymer composites or composites that can degrade faster or are
easier to recycle, even in a chemical process. Biopolymers are a way to address these issues
but they have the drawback of poor thermal and mechanical properties as compared to
conventional polymers [46]. The higher cost of biopolymers and their difficult processing
hinder their practical use in industrial and large-scale applications. Another option to
address these problems is to add fillers to conventional polymers that can accelerate the
degradation of polymers. These filler-based polymer nanocomposites are alternatives
for sustainable development because of their low cost, easy processability, and industrial
viability. Transition metal complexes can be useful for accelerated degradation of polymers
such as ferric stearate, which is an effective photodegradant [47]. One such filler is layered
double hydroxide (LDH) because of its multifunctional nature and its tunable structure.
Adding such types of transition metal-based LDHs to polymers, which degrade the product
faster after its end-use, can be useful for polymer nanocomposites. Bheki Magagula et al.
used MnAl-LDH and CoAl-LDH stearate as photodegradants for LDPE and discovered
that 0.1% of these active additives are sufficient to cause mechanical embrittlement of LDPE
films [48].

Layered double hydroxides containing transition metals in combinations of three are
the least studied in polymer nanocomposites. The use of these ternary metal LDHs in
different polymers is an ongoing field of research and requires further study by preparing
their polymer nanocomposites. There are very few studies available on combinations of
polymers with such ternary metal LDHs, and organic modified LDHs prepared using the
co-precipitation method have mostly been used in polymers. Wang et al. (2015) prepared
MgAl and MgZnAl-LDH using the co-precipitation method and modified these LDHs
with SDBS. They observed slightly decreased tensile strength in LDH/PP nanocomposites
as compared to pure PP [49]. There are other examples in which ternary metal LDHs
were used in polymers to study their effect, such as that of Nagendra et al. (2017), which
studied the effect of ZnAl, CoAl, and CoZnAl-LDH on the properties of polypropylene (PP).
They also used the co-precipitation method to synthesize these LDHs [50]. Gomez et al.
(2019) used modified MgZnAl in polyethylene (PE), and they indicated that ternary metal
(MgZnAl) can be a potential filler to protect polyethylene (PE) from UV radiations [51].
Furthermore, incorporation of a third metal ion into the layer structure can alter the LDH
optical properties, UV-Vis light absorption range, and catalytic properties. Preparation
methods of LDH, such as co-precipitation or urea hydrolysis, change the structure and
properties of LDHs [52,53]. The incorporation of transition metals such as iron (Fe), cobalt
(Co), Nickle (Ni), Copper (Cu), or zinc (Zn) in MgAl-LDH can also alter the properties of
LDH, as the layer structure changes because of these transition metals. The structure of
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LDHs also depends on the method of preparation, whether it is co-precipitation or urea
hydrolysis [6,7].

Therefore, the incorporation of LDHs prepared with different methods has different
effects on polymer nanocomposites. In this research work, MgFeAl-LDHs were prepared
using the urea hydrolysis method with different substitution levels of iron (Fe). The use of
MgFeAl-LDH prepared via the urea hydrolysis method in polypropylene (PP) has not been
discussed previously. In most of the previous research on LDH/PP composites, researchers
used binary metal LDHs that were either unmodified or organically modified [54–58].
Thus, the focus of this work is to investigate the effect of ternary metal (MgFeAl) LDH on
PP nanocomposites and to analyze their thermal degradation and mechanical properties.
Ternary metal LDHs containing magnesium (Mg), aluminum (Al), and iron (Fe) were
prepared with two different values of iron (Fe) substitution (5 and 10 mol%). These three
types of LDH (MgFeAl(0), MgFeAl(5), and MgFeAl(10)) were used in polypropylene (PP)
at the loadings of 2.5, 5, and 7.5 wt% to prepare PP nanocomposites via melt mixing method
using a small-scale compounder. Different properties, including mechanical and thermal
degradation, were studied for these MgFeAl-LDH/polypropylene (PP) nanocomposites to
analyze whether faster degradation occurs in iron (Fe)-containing PP nanocomposites.

2. Materials and Methods

Chemically pure (CP) or analytical grade (AR) reactants were used for all experiments
without further treatment. Mg(NO3)2·6H2O, Al(NO3)3·9H2O, and Fe(NO3)3·9H2O were
purchased from ABCR. Urea was purchased from Sigma Aldrich. Distilled water was used
for all experiments. Polypropylene (PP)(HD120MO) was purchased from Borealis A/S
Denmark. Polypropylene functionalized with maleic anhydride (SCONA TPPP 2112 FA),
was provided by BYK Additives & Instruments, Germany.

2.1. Synthesis of MgAl and MgFeAl Layered Double Hydroxides (LDHs)

MgAl and iron (Fe)-based MgFeAl-LDH were prepared by simple urea hydroly-
sis method as explained in the literature [6,16]. Iron (Fe) was substituted as follows:
M/(Al+M) = 0.05, 0.1 for Fe (molar basis). Fe(NO3)3·9H2O, Mg(NO3)2·6H2O, and
Al(NO3)2·9H2O salts were mixed in distilled water at the required amounts, a round
bottom flask was used for solution and heated to 100 ◦C, the temperature was kept for
48 h. After finishing the reaction, the slurry was cooled down to room temperature and
then filtered and washed with distilled water. The filtered material was dried in an oven at
70 ◦C for 24 h. The LDHs are designated by the following naming convention: MgFeAl(x)
where x = 0 (0% Fe molar substitution), 5 (5% Fe molar substitution) and 10 (10% Fe molar
substitution).

2.2. Preparation of MgAl and MgFeAl-LDH/PP Nanocomposites

All the nanocomposites were prepared in a small-scale compounder (Thermo Scientific-
Germany, Process 11) with three different ratios of MgFeAl(0), MgFeAl(5), and MgFeAl(10)-
LDH as shown in Table 1. The compatibilizer/PP ratio was kept constant in the different
formulations. The temperature used was 190 ◦C and the screw rotation speed was set to
100 rpm. Specimens for tensile strength, impact strength, and fire testing were generated
by injection molding using a Dr. Boy 22 A HV (Dr. Boy Machine Incorporation, Germany).
The sample names and their LDH/PP amounts are shown in Table 1. The pictures of
prepared samples are also shown in Table 1.
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Table 1. Sample details of LDH/PP nanocomposites with their pictures.

Sr. No. LDHs Amount (wt%) PP (wt%) Sample Color

1 - 0 100
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the spectrophotometer CM-3600A (Konica Minolta). The limiting oxygen index (LOI) 
measurements were carried out using an oxygen index meter (FTT, UK) following ASTM 
D2863-19. The UL94 V and UL94 HB testing was carried out according to the method pro-
vided previously to determine the burning rate of the PP nanocomposites [42]. Rheologi-
cal characteristics of PP nanocomposites were studied in oscillatory shear using a strain-
controlled rheometer (ARES, Rheometrics Scientific, USA). The experiments were per-
formed over a frequency range of 0.1 to 100 rad/s at 180 °C and 5% strain. Tensile tests 
were done with a Zwick 1456 (model 1456, Z010, Ulm Germany) (length: 82 mm, width: 
10 mm, thickness: 2 mm) with a crosshead speed of 50 mm min−1 according to DIN EN 
ISO 527-2/1BA/50, including the modulus testing at a crosshead speed of 1 mm/min up to 
0.25% elongation. The Charpy impact strength was measured by PSW 15J using the stand-
ard ISO 179/1eU. The results were averaged over five measurements for each sample for 
the flammability investigation, tensile testing, and Charpy impact testing. All the speci-
mens prepared for flammability and mechanical testing were injection molded under 
identical conditions at 180 °C. Scanning electron microscopy (SEM) images of samples 
were taken with a Zeiss Ultra Plus. The samples for SEM analysis were cut with an Ultra-
microtom UC7 from Leica at −180 °C. The thermal characterization of LDH/PP nanocom-
posites was determined using thermogravimetric analysis (TGA) and differential scan-
ning calorimetry (DSC). TGA measurement was performed at a heating rate of 10 °C/min 
using a TGA Q5000 from TA instruments in an inert nitrogen atmosphere and air atmos-
phere. The temperature range of 25 to 800 °C was used for TGA analysis. Differential scan-
ning calorimeter (DSC) analysis was done using DSC Q2000 from TA instruments. Three 
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2.3. Characterization Methods

Color parameters (L*, a*, b*) (DIN 6174) and opacity (ISO 2471) were measured using
the spectrophotometer CM-3600A (Konica Minolta). The limiting oxygen index (LOI)
measurements were carried out using an oxygen index meter (FTT, UK) following ASTM
D2863-19. The UL94 V and UL94 HB testing was carried out according to the method
provided previously to determine the burning rate of the PP nanocomposites [42]. Rhe-
ological characteristics of PP nanocomposites were studied in oscillatory shear using a
strain-controlled rheometer (ARES, Rheometrics Scientific, USA). The experiments were
performed over a frequency range of 0.1 to 100 rad/s at 180 ◦C and 5% strain. Tensile
tests were done with a Zwick 1456 (model 1456, Z010, Ulm Germany) (length: 82 mm,
width: 10 mm, thickness: 2 mm) with a crosshead speed of 50 mm min−1 according to DIN
EN ISO 527-2/1BA/50, including the modulus testing at a crosshead speed of 1 mm/min
up to 0.25% elongation. The Charpy impact strength was measured by PSW 15J using
the standard ISO 179/1eU. The results were averaged over five measurements for each
sample for the flammability investigation, tensile testing, and Charpy impact testing. All
the specimens prepared for flammability and mechanical testing were injection molded
under identical conditions at 180 ◦C. Scanning electron microscopy (SEM) images of sam-
ples were taken with a Zeiss Ultra Plus. The samples for SEM analysis were cut with
an Ultramicrotom UC7 from Leica at −180 ◦C. The thermal characterization of LDH/PP
nanocomposites was determined using thermogravimetric analysis (TGA) and differen-
tial scanning calorimetry (DSC). TGA measurement was performed at a heating rate of
10 ◦C/min using a TGA Q5000 from TA instruments in an inert nitrogen atmosphere and air
atmosphere. The temperature range of 25 to 800 ◦C was used for TGA analysis. Differential
scanning calorimeter (DSC) analysis was done using DSC Q2000 from TA instruments.
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Three cycles of heating-cooling-heating with a heating/cooling rate of 10 ◦C/min and
sample size of about 5 mg were used. The thermograms of the second heating cycle were
analyzed for the study of the melting behavior of the samples.

3. Results and Discussion
3.1. Color Parameters (L*, a*, b*) and Opacity Measurement

The color of pure PP was almost transparent, and the color of MgFeAl(0)/PP nanocom-
posites was turbid, which increased as the amount of MgFeAl(0)-LDH increased. The colors
of MgFeAl(5)/PP and MgFeAl(10)/PP nanocomposites were light brown to dark brown
from a low amount to a high amount of LDH. The amount of iron (Fe) also caused a darker
color as it increased from 5 to 10 mol%, as can be seen in Table 1. The values of opacity
and color parameters (L*, a*, b*) measured by spectrophotometer are shown in Table 2,
which indicated that samples of polypropylene (PP) showed some scattering because of
the semi-crystalline nature of PP. The color impression on the red–green axis was as close
to unity as can be expected, whereas the value on the blue-yellow axis already indicated
a small shift to yellow, which can also be expected of once processed PP. With the addi-
tion of filler all color values changed. As the amount of MgFeAl(0)-LDH increased from
2.5 to 7.5 wt% in PP composites, the values of opacity increased because of the increase
in scattering phenomena related to the dispersed LDH particles. Furthermore, the iron
(Fe)-based LDH caused an even darker color in PP nanocomposites from the presence of
the transition metal and the related absorption of light. The value of opacity increased even
more as the amount of MgFeAl(5)-LDH and MgFeAl(10)-LDH increased, compared to the
sample containing no iron, as can be seen in Table 2.

Table 2. Color parameters (L*, a*, b*) and opacity measured by spectrophotometer.

Sr. No. LDHs Amount (wt%) Color Parameters
(L*, a*, b*) Opacity

1 - 0 65.3, 0.81, 6.75 22.53

2 2.5 55.08, 1.62, 14.08 41.98
3 MgFeAl(0) 5 51.81, 2.14, 13.64 48.83
4 7.5 48.59, 2.33, 12.69 60.64

5 2.5 32. 38, 11.16, 9.6 88.82
6 MgFeAl(5) 5 33.16, 8.08, 7.18 96.72
7 7.5 35.55, 9.33, 7.55 96.06

8 2.5 30.82, 9.36, 7.64 97.59
9 MgFeAl(10) 5 30.67, 8.86, 7.31 98.88

10 7.5 35.92, 7.71, 6.33 101.25

3.2. Limiting Oxygen Index (LOI) Test, UL94 Test, and Burning Behavior of Different
LDH/PP Nanocomposites

The limiting oxygen index (LOI) provides basic information about fire retardancy for
any polymeric nanocomposites [59]. The influence of different LDH systems and different
concentrations of loading on values of the LOI for LDH/PP nanocomposites is shown
in Table 3. Pure PP has the LOI value of 20 and with the addition of different LDHs the
LOI increases. LOI values increased from 20 (pure PP) to 21.0, 22.4 and 21.9 in cases
of MgFeAl(0)/PP, MgFeAl(5)/PP, and MgFeAl(10)/PP, respectively. The increase in the
LOI in all the systems of LDH/PP was only slight, as the level of loadings was not as
large as previously studied LDH/polymer systems [42]. During the LOI test, the flame
propagated vertically downward, and flame propagation took place through the surface to
the core of the LDH/PP nanocomposites. Pure PP burned like a candle with continuous
dripping of melt until the whole sample burned, while the LDH/PP nanocomposites
showed different behavior, as three regions were identified on the burning surface. The
skin layer of nanocomposites consisted of char and then melt layer supported by a solid
layer. The convective flow of mass in the melt layer occurred with the bubbling of gaseous
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material because of the decomposition of LDHs. Because the loading levels of the LDHs
were not high enough to make the thicker char layer in these nanocomposites, the difference
was not large. Francis Costa et al. (2007) used a higher concentration of MgAl-LDHs, which
reached 20 wt% in polyethylene, and the LOI increased from 18 to 22. In the case of 2.5 and
5 wt%, there was no increase in the LOI, and in the case of 7.5 wt%, a 0.7 increase in the
LOI was observed [42]. Therefore, the inclusion of transition metal-based MgFeAl-LDH
provided a greater increase in the LOI in PP nanocomposites at 7.5 wt%, although the effect
was small.

Table 3. Limiting oxygen index (LOI) of different LDH/PP nanocomposites.

LDHs Contents (%) Limiting Oxygen Index (LOI)

MgFeAl(0)/PP MgFeAl(5)/PP MgFeAl(10)/PP

0 20 ± 0.08 20 ± 0.08 20 ± 0.08
2.5 21.6 ± 0.15 21.7 ± 0.07 21.4 ± 0.11
5 20.8 ± 0.1 21.8 ± 0.1 21.7 ± 0.11

7.5 21 ± 0.08 22.4 ± 0.11 21.9 ± 0.15

UL94 Test

The UL94 test followed two standards (UL94 V and UL94 HB). None of these LDH/PP
nanocomposites passed UL94 V test specifications (vertical burning test standard). This
was expected as the amount of LDH used in PP was very low in this research, and there was
neither an organic modification nor a synergistic flame retardant present in the composition.
Compared with previous investigations of MgAl-LDHs in polyethylene (PE) up to 16.2 wt%,
a similar result was observed [42]. Previously studied Clay/PP nanocomposites also
showed similar results, and there were no UL94 ratings achieved in that case, either [60].
All the prepared MgAl and MgFeAl-LDH/PP nanocomposites started burning after 10 s
and burned completely up to the clamp holder. As the addition of LDHs changed the
melt viscosity, especially at higher loading, the dripping behavior also changed. Iron (Fe)-
containing MgAl-LDH decreased the melt viscosity of PP nanocomposites, and these results
can be interlinked with the rheological analysis shown in Section 3.3. In the rheological
analysis as shown in Figure 2 the viscosity decreased in Fe-containing MgAl-LDH-based
PP nanocomposites.

UL94 HB (horizontal burning test standard) revealed that iron (Fe)-substituted MgAl-
LDH/PP nanocomposites showed a faster burning rate as compared to pure PP and
MgAl/PP nanocomposites. The melt viscosity was low in the case of MgFeAl/PP nanocom-
posites as compared to MgAl/PP nanocomposites. The burning rate values are shown in
Table 4. The burning rate increased because the viscosity of the LDH/PP nanocomposites
was not high enough to hold the burned material/char, and so it dripped away from the
sample, creating a new surface, and the new material started burning easily [42]. The Fe
present in the nanocomposites decreased the melt viscosity, while burning those samples
showed a higher burning rate. Figure 1a–c shows images of samples after the burning test,
and it can be observed that the color of char became darker as the amount of Fe increased
in LDH.

Table 4. Burning rate of different LDH/PP nanocomposites.

LDH Contents (%) Burning Rate (mm/min)

MgFeAl(0)/PP MgFeAl(5)/PP MgFeAl(10)/PP

0 14.2 ± 0.17 14.2 ± 0.17 14.2 ± 0.17
2.5 16.3 ± 0.03 19.8 ± 0.13 15.7 ± 0.28
5 14.9 ± 0.15 17.1 ± 0.29 13.6 ± 0.35

7.5 14.2 ± 0.03 15.3 ± 0.09 12.8 ± 0.49
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Figure 1. Burning behavior of different loading level of LDHs/PP nanocomposites with different iron (Fe) substitutions:
(a) 0, (b) 5, and (c) 10%.

3.3. Rheological Analysis of Different LDH/PP Nanocomposites

To understand the particle dispersion of LDH in PP nanocomposites and provide in-
formation about its melt processability, it was important to analyze the rheological behavior
of these tri-metal LDH-based PP nanocomposite systems [61]. Melt rheological properties
of LDH/PP nanocomposites depend on the interaction of tri-metal LDH particles with PP.
The complex viscosities of pure PP and MgFeAl(0)/PP, MgFeAl(5)/PP, and MgFeAl(10)/PP
nanocomposites are shown in Figure 2a–c. From Figure 2a–c it can be observed that the
addition of LDH decreased the viscosity of the LDH/PP nanocomposites. The decrease in
viscosity was more prominent in MgFeAl-LDH as compared to MgAl-LDH. As the amount
of MgAl and Fe-based MgFeAl-LDH increased, the viscosity decreased further. This was
related to the increased mobility or enhanced relaxation of PP chains [41,61].

The complex viscosity decreased more in the case of MgFeAl(5)-based PP nanocom-
posites from 2.5 to 7.5 wt% as compared to MgFeAl(0)/PP nanocomposites. The reason
for the decrease in complex viscosity was an increase in free volume and dilution effect
caused by iron (Fe)-based MgFeAl-LDH. The other reason was that degradation reactions
in the PP occurred because of melt processing and the addition of the compatibilizer. As
the amount of iron (Fe) increased, the amount of degradation in processing grew, since
compatibilizer and processing at high temperatures enhance the expected catalytic effect of
iron (Fe). Previously, Wang et al. studied polypropylene (PP)/Mg3Al–tartrazine-layered
double hydroxide (LDH) nanocomposites and observed a similar behavior of decrease in
viscosity of the composites [61]. They found that when the average particle separation
distance is smaller than twice the polymer radius of gyration Rg, then the nanoparticles
will disturb polymer chain configurations and lead to a decrease in the viscosity [61].
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3.4. Mechanical Properties (Tensile Testing and Impact Testing)

The mechanical properties of LDH/PP nanocomposites are shown in Table 5. Tensile
strength decreased with the addition of MgFeAl(0), MgFeAl(5), and MgFeAl(10)-LDHs as
compared to pure PP. On the other hand, the modulus increased steadily as the amount
of LDHs increased. The effect of compatibilizer was also relevant for LDH/PP nanocom-
posites when studying the tensile properties [62]. The reinforcing nature of MgAl-LDH or
MgFeAl-LDH was more prominent when LDH modified with organic anions was used
in higher amounts in PP. Impact strength also decreased as the amount of MgFeAl(0),
MgFeAl(5), and MgFeAl(10)-LDH increased. As the amount of MgFeAl(0) increased from
2.5 to 7.5 wt% the tensile strength increased from 33.7 to 35.1 MPa. On the other hand, in the
cases of MgFeAl(5) and MgFeAl(10), the tensile strength decreased steadily as the amount
increased from 2.5 to 7.5 wt%. Impact strength also decreased with the addition of LDH, as
can be seen in Table 5. The impact strength was 110 kJ/m2 for pure PP and 47.5, 35.9, and
44.4 kJ/m2 for 7.5 MgFeAl (0), 7.5 MgFeAl (5), and 7.5 MgFeAl (10), respectively. The de-
crease in mechanical properties was greater in the case of MgFeAl (5)/PP nanocomposites
because of enhanced PP-degradation due to Fe during processing, and this was supported
by the decrease in viscosity in rheological analysis. The substitution of Fe in MgAl-LDH
changed the structure of the layers of LDH, as studied and discussed previously [6,7]. This
change in structure by using transition metal substitution (Fe) changed the charge on LDH
layers and caused the catalytic degradation when mixing with PP at higher temperature,
eventually causing the decrease in tensile strength and impact strength.
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Table 5. Mechanical properties of different LDH/PP nanocomposites.

Sr. No. LDH/PP
Nanocomposites

Youngs
Modulus (MPa)

Tensile Strength
(MPa)

Charpy Impact
Strength (kJ/m2)

1 PP 1340 ± 32 37.3 ± 1.5 110 ± 11

2 2.5 MgFeAl(0) 1630 ± 60 33.7 ± 0.4 57.6 ± 5.4
3 5 MgFeAl(0) 1710 ± 100 34.3 ± 0.8 55.4 ± 4.3
4 7.5 MgFeAl(0) 1850 ± 100 35.1 ± 1.1 47.5 ± 4.5

5 2.5 MgFeAl(5) 1630 ± 120 35.1 ± 0.5 57.0 ± 3.3
6 5 MgFeAl(5) 1670 ± 80 34.6 ± 0.4 47.9 ± 4.8
7 7.5 MgFeAl(5) 1800 ± 80 34.5 ± 0.6 35.9 ± 7.6

8 2.5 MgFeAl(10) 1650 ± 60 34.1 ± 0.6 69.8 ± 3.9
9 5 MgFeAl(10) 1670 ± 40 33.5 ± 0.6 55.3 ± 3.1
10 7.5 MgFeAl(10) 1700 ± 140 33.5 ± 0.3 44.4 ± 3.4

3.5. Thermogravimetric Analysis (TGA) of MgFeAl(0), MgFeAl(5). and MgFeAl(10)
PP Nanocomposites

The influence of the different metal ion combinations of LDHs and various loadings of
different LDHs on the thermal behavior of PP nanocomposites was determined with TGA
analysis. TGA analysis results of the decomposition in nitrogen for PP nanocomposites
containing 0, 5, and 10% Fe of different loadings are shown in Figure 3a–c. The addition
of Fe into the MgAl-LDH structure resulted in a difference in the thermal behavior of
nanocomposites, as can be observed in Figure 3a–c.
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The TGA curves for the LDH/PP nanocomposites are very similar to that of the pure
PP with the difference in decomposition rate. The TGA study of Fe-containing LDHs
revealed a more complex behavior as compared to MgAl-LDH. As seen in the TGA, traces
of a catalytic effect on degradation can be expected in Fe-containing MgFeAl-LDH/PP
nanocomposites [63]. Figure 4a–c shows the TGA results of nanocomposites studied in an
air environment. As the substitution level of Fe increased from 5 to 10% in MgAl-LDHs, a
difference in weight loss rate in PP nanocomposites was also observed. The peaks shifted
toward lower temperature in the case of Fe-containing LDH/PP nanocomposites, as can
be seen in Figure 4b. As the substitution level of iron (Fe) increased in the LDH, the
thermal stability of PP nanocomposites decreased [60,64]. As the substitution level of Fe
increased in MgAl-LDHs the surface area was also enhanced, and the platelet sizes of
the LDH particles decreased because the Fe2O3 phase increased as the substitution level
increased [52]. The difference in loading level also affected the thermal behavior, and
results are shown in the Supplementary files (Figures S1 and S2). The residue after TGA
analysis contained not only carbonaceous materials but also some metal oxides, which are
observed in the dark color of char in Figure 1a–c [42].
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3.6. Differential Scanning Calorimetry (DSC) Analysis of Different LDH/PP Nanocomposites

Figure 5a–c shows the DSC thermograms of different LDH/PP nanocomposites. The
addition of LDH into PP resulted in higher crystallization peak temperature, which indi-
cated a higher nucleation activity. The structure of MgFeAl-LDH was different from that of
MgAl-LDH and the substitution of Fe3+ increased the d(003) value and “c ” parameter; the
detailed structural analysis was explained in a previous article [6]. The small increase in
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LDH layer spacing and the change in structure could be the reasons for higher nucleation
and the higher crystallization of Fe-containing LDH/PP nanocomposites, assuming a better
match of structural parameters in PP and LDH [62]. The small increase in interlayer spaces
could have increased the crystallization temperature (Tc), as shown previously in the cases
of LDH and MMT [64]. The change in crystallization behavior was more prominent with
the grreater increase in the interlayer spacing and organomodification, as compared to the
change in only the layer structure, which was the case in this research. The replacement
of Al+3 with Fe+3 in the MgAl-LDH structure changed the charge structure of LDH layers
more, as compared to the interlayer spaces [62,65].
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3.7. Scanning Electron Microscopy (SEM) Images and Morphological Analysis of Different
LDH/PP Nanocomposites

Figure 6a–c shows the SEM images of pure polypropylene (PP) and different LDH/PP
nanocomposites with 2.5, 5, and 7.5 wt% loadings. Figure 6a–c shows the SEM images
of MgFeAl(0), MgFeAl(5), and MgFeAl(10), respectively. Particles of LDH can be seen in
all the LDH/PP nanocomposites. As the amount of LDH increased, the agglomeration of
LDH particles increased, which led to poor dispersion and a decrease in the mechanical
properties of nanocomposites [66,67]. As the amounts of MgFeAl(5) and MgFeAl(10)
increased, the agglomeration of LDH particles increased and led to even lower dispersion
in PP. This led to lower mechanical strength. The amount of ternary metal LDH as well
as the substitution percent of iron (Fe) could also change the thermal degradation of
MgFeAl/PP nanocomposites. The Fe-based ternary metal MgFeAl-LDH needed organic
modification to enhance the miscibility of MgFeAl and PP. In such an effort, the metal
activity then cannot be traced back to the metal alone, but also to an interaction with the
anion used for modification. This can lead to different thermal degradations of PP in
modified MgFeAl-LDH as compared to unmodified MgFeAl-LDH. The iron (Fe)-based
LDH can then cause degradation to PP but with poor miscibility, as seen in the SEM images.
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7.5 wt%), (c) MgFeAl(10)/PP (2.5, 5, 7.5 wt%) nanocomposites.

4. Conclusions

The effect of MgFeAl-LDH on the thermal degradation and mechanical properties of
polypropylene (PP) nanocomposites was analyzed. MgFeAl-LDH was synthesized using
the urea hydrolysis method, and nanocomposites of PP were prepared using the melt
mixing method. The effect and interaction of Fe-containing MgAl-LDH and Fe-free MgAl-
LDH in PP nanocomposites were analyzed and compared in this research work. MgAl-
LDH substituted with two different amounts of Fe, 5 and 10%, was compounded with
polypropylene (PP) at filling levels of 2.5, 5, and 7.5%. It is known that iron (Fe) substitution
in MgAl-LDH can change the layered structure, particle size, and surface area of LDH.
Here, because of the presence of Fe, the thermal behavior changed and showed a lower
degradation temperature than Fe-free LDH polypropylene (PP) nanocomposites, indicating
a catalytic degradation. Additionally, because of the change in layer structure, a higher
effect on nucleation was determined in the DSC investigation. Rheological measurement
led to lower viscosity, which was interpreted as degradation combined with relaxation
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phenomena. The flammability study and rheological study emphasized the catalyzing
effect of Fe, which enhanced the burning rate of MgFeAl/PP nanocomposites and decreased
the melt viscosity. The integration of LDH resulted in the decrease in tensile strength, which
was more pronounced in the case of Fe-containing composites, emphasizing a catalytic
effect on degradation during processing. Such types of MgFeAl-LDH/PP nanocomposites
can be useful where faster degradation and recycling of polymer products are required,
such as in the packaging industry. From the SEM micrographs, it was also observed that
mixing was poor because of the agglomeration of MgFeAl-LDH, and organic modification
can be useful if these types of ternary metal LDHs must be used in higher amounts in PP
or other polymers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13193452/s1, Figure S1. TGA analysis of different LDH/PP nanocomposites in nitrogen
environment showing the effect of amount of Fe (a) 2.5% LDH (b) 5% LDH (c) 7.5% LDH; Figure S2.
TGA analysis of different LDH/PP nanocomposites in air environment showing the effect of amount
of Fe (a) 2.5% LDH (b) 5% LDH (c) 7.5% LDH.
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