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Abstract: The fretting fatigue performance of laminated, unidirectional (UD), pin-loaded, carbon
fibre-reinforced polymer (CFRP) straps that can be used as bridge hanger cables was investigated
at a sustained service temperature of 60 ◦C. The aim of this paper is to elucidate the influence of
the slightly elevated service temperature on the tensile fatigue performance of CFRP straps. First,
steady state thermal tests at ambient temperature and at 60 ◦C are presented, in order to establish
the behaviour of the straps at these temperatures. These results indicated that the static tensile
performance of the straps is not affected by the increase in temperature. Subsequently, nine upper
stress levels (USLs) between 650 and 1400 Mpa were chosen in order to establish the S–N curve at
60 ◦C (frequency 10 Hz; R = 0.1) and a comparison with an existing S–N curve at ambient temperature
was made. In general, the straps fatigue limit was slightly decreased by temperature, up to 750 Mpa
USL, while, for the higher USLs, the straps performed slightly better as compared with the S–N curve
at ambient temperature.

Keywords: unidirectional (UD) composite straps; pin-loaded; fatigue performance; S–N curve;
service temperature; carbon fibre-reinforced polymer (CFRP) straps

1. Introduction

The use of carbon fibre-reinforced polymers (CFRPs) is well established in applications
where high strength and rigidity, low weight, and durability are important, e.g., in the
aerospace, automotive, renewable energy, and civil construction sectors [1,2]. It is, thus,
not a surprise that, since their first use in the 1970s, their production growth has continued
to increase, by around 12% per year, with an annual CFRP production of around 105 tons
per year [3]. Regarding construction applications, CFRP materials have been widely
used in structural strengthening for more than two decades and are also increasingly
being implemented as reinforcement or entirely composite members (i.e., girders) in new-
build structural engineering applications [1,4,5]. CFRP tensile elements, in the form of
unidirectional straps, have also been introduced in bridge construction; examples include a
three-span footbridge in Cuenca, Spain [6], in which pin-loaded CFRP straps with stainless-
steel ring terminations are used in a stressed-ribbon bridge form, and a footbridge at Empa
(Dübendorf, Switzerland) [7], in which pin-loaded non-laminated CFRP straps are used to
prestress a timber bridge deck in a bowstring arch typology. Further examples of structures
implementing CFRP tensile elements can be found in a detailed review by Liu et al. [8].

A recent milestone regarding the application of composite elements in bridge construc-
tion is the world’s first railway (tram) bridge, in which the deck suspension relies entirely
on CFRP hangers (see Figure 1); this was completed in 2020, in Stuttgart, Germany [9]. The
hangers, in this case, are pin-loaded laminated CFRP straps, wound around titanium eye
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connectors and connected to the bridge arch in a network-tied configuration. In addition to
the well-known superior non-corroding nature and durability of CFRP, Meier et al. [9] have
reported that—in this arrangement—the smaller cross-section and reduced self-weight
of the CFRP hangers also resulted in beneficial dynamic characteristics guarding against
wind-induced vibration. They also demonstrated significant cost savings and lower CO2
emissions, in a life cycle assessment, when compared with conventional flat steel hangers.

Figure 1. Network arch bridge with inclined CFRP cables, reprinted from ref. [9], reproduced with
permission by Prof. Urs Meier.

Despite the fact that a small but significant number of structures relying on CFRP
tensile elements have been realized to date, there remains a paucity of information on
the laminated, pin-loaded CFRP straps used in the above case study, and particularly
with respect to their fatigue performance when subjected to high (tensile) fatigue loads
combined with a fretting process due to pin-loading at the straps’ ends. In the absence of
sufficient data and design guidance, the design of such structures must be based on single-
case approvals by the responsible authorities, supported by bespoke full-scale testing of
the innovative CFRP elements under investigation; a description of such a procedure for
the hangers of a bridge is shown in Figure 1 and given in [9].

Although CFRP materials generally exhibit comparatively good performance with
respect to fatigue loading [1,10] (and, indeed, the specific hanger design in the single-case
approval testing of [9] showed excellent fatigue endurance in large-scale testing), the
damage mechanisms and fretting phenomena that limit the fatigue performance of pin-
loaded CFRP tensile elements remain poorly understood and require further investigation.
This is reflected in [9], where CFRP straps’ remnant tensile strength was reduced by up
to 30% after fretting at 4.2 Hz and more than 11 million loading cycles—noting that a
realistic load frequency is no more than 0.003 Hz. This corresponds to a service life of about
100 years.

1.1. Fretting Fatigue in UD CFRP Elements

Observations from static tension tests of conventional, laminated unidirectional (UD)
CFRP specimens have shown that their first failure involves intralaminar crack formation
in the matrix between the fibres, followed by propagation [11] starting at a so-called ‘kink’
in the strain versus strain diagram (Figure 2).

As the specimens are loaded along their fibre direction, the failure mode evolves to
sudden fibre breakages. This failure mode is triggered by matrix failure and interfacial
fibre–matrix debonding, parallel to the fibre direction [11]. The damage mechanisms of
tension–tension fatigue tested UD specimens are similar to those observed in static tensile
tests, however the final failure modes can be different, i.e., typically of a less explosive
nature. Reifsnider [12] notes that fatigue damage is a cycle-dependent degradation of
internal integrity, and that it can be considered as a chain of events usually of accumulative
nature. These damage events include inelastic deformation (i.e., viscoelastic behaviour),
microcracking and/or debonding of the matrix and its fibres (reinforcement), delamination
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of adjacent plies, and combinations of these events. During cyclic loading in the fibre
direction, transverse cracks appear and intensify as the number of cycles increases until fibre
breakage that consequently leads to fracture of the UD plies [13]. In his work, Reifsnider [13]
also outlined the basic parameters that can affect the fatigue life of CFRP members, such as
the mean stress óm (or strain
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Figure 2. Typical stress vs. strain curve for a CFRP specimen.

Other researchers have also identified these parameters, along with the main damage
modes experienced during fatigue, namely: matrix cracking, fibre–matrix debonding,
delamination, and fibre fracture [14,15]. Hahn [16] noted that cracks in tensile fatigue
would naturally appear first in the plies whose fibre direction is normal to the loading
direction. Hahn also stressed that matrix fatigue cracks in UD plies could grow much longer
in distance and could even reach the specimens’ grip regions. Other studies also support a
hypothesis that multiple-matrix cracking usually initiates at locations of defect, such as
voids, areas of high fibre-volume fraction (intralaminar cracks) or resin-rich regions [17,18].
A collection of research studies on damage mechanisms in fatigue is given in [10,19]. This
fundamental work distinguishes fatigue damage in three distinct phases: (1) an initial
phase that corresponds to damage observed in quasi-static loading, i.e., matrix cracking;
(2) a second phase, in which damage grows, interacts, and stabilizes; and (3) a third phase,
in which damage combines at an accelerating rate that leads to final failure.

Talreja [20] has presented a consistent pattern of fatigue-life diagrams as an outcome
of multiple and continuous observations of the damage mechanisms of UD composites.
The damage mechanisms determining fatigue strength, according to Talreja [20] are shown
in Figure 3 and provide a more complete understanding of the damage evolution under
cycling loading, suggesting the existence of an endurance limit when the fatigue strain
of the UD composite is kept below the fatigue-limit strain of the polymer matrix (being
approximately 0.6% for an epoxy resin [17]). There is still debate in the composites engi-
neering community, however, as to the existence of a distinctive edge cycle number and a
respective fatigue endurance limit for UD FRP composites [21].

Three main regions are evident in Figure 3, each corresponding to one or more
fatigue-damage mechanisms: fibre fracture/interfacial debonding (Region I), matrix crack-
ing/interfacial shear failure (Region II), and the fatigue limit of the polymer matrix in
which cracks are arrested (Region III). Each damage mechanism is schematically illustrated
in Figure 4a–c. Similar fatigue failure mechanisms, and hence regions, are reported by
Dharan in a study of glass fibre-reinforced composites [22].
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Figure 3. Maximum strain vs. logarithmic number of cycles to failure, reprinted with permission
from ref. [20]. Copyright 1981 The Royal Society.

Figure 4. Fatigue damage mechanisms in UD composites under loading parallel to the fibre direction:
(a) fibre breakage/interfacial debonding; (b) matrix cracking; (c) interfacial shear failure, reprinted
with permission from ref. [20]. Copyright 1981 The Royal Society.

In summary, fatigue of an FRP composite laminate, on its own, is a complex phe-
nomenon, and, combined with fretting via pin-loading, becomes even more complex.
Fretting fatigue is a surface phenomenon and the fretting process itself involves the recip-
rocating motion of one contacting surface (or part of one surface) over another [23]. Each
fretting-fatigue problem is unique and has its own mechanics and mechanisms. A series of
tests in a study by Friedrich, Schulte, and Kutter [24–26], investigated the fretting-fatigue
phenomenon and observed how it affected the fatigue life of different types of composite
specimens. Their results indicated that the fatigue life of the specimens was increased
wherever 45◦ plies were used to protect the UD (0◦) plies against fretting, and whenever
the fretting-fatigue damage was concentrated towards the edge of the specimens. They
also reported different damage mechanisms, under fretting fatigue, for CFRP laminates,
such as wear, the thinning of the fibres, fibre fracture, and the cracking of fibre/matrix
interfaces. Cirino et al. [27] later showed that the abrasive wear behaviours of polymer
composite materials were affected by fibre orientation and that optimum wear resistance
occurred when the fibres were oriented normally to the sliding surface.

A recent study by Baschnagel et al. investigated the impact of fretting on fatigue
performance, specifically for UD CFRP-looped elements [28,29]. In their study, pin-loaded,
laminated CFRP straps were tested in tensile fretting fatigue at a frequency of 10 Hz and
stress ratio of 0.1, using a CFRP pin to anchor the straps. The straps used by Baschnagel et al.
represented scaled-down models of the actual bridge hangers of the network arch bridge
shown in Figure 1 (refer to [9]), and were compared against the tensile fatigue behaviours
of two full-scale straps that were part of the structural design-type approval procedure.

SEM images of the full-scale straps revealed carbon fibre thinning and fibre–matrix
debris agglomerating in the vertex area of the straps after failure [29]. Also, in [29] scans
showed that the fretting products on the pin looked similar to those described in [28],
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in that mostly short, broken fibres and resin particles were attached to their surface; the
fretting products of the model straps were mainly small carbon particles. The damage
modes reported were delamination that initiated at the end of the straps’ overlap and
progressed towards the curved (pin) area, followed by fibre fracture. The final failure of
the straps was explosive and sudden and was initiated at the onset of the straps’ curvature
through a combination of a longitudinal tensile and bending stress peaks, a compression
transverse to the fibre direction, and high shear stresses [28,29]. It is worth mentioning that,
for the scaled-down straps in [29], an inclusion of a sacrificial ±45◦ twill ply on their inner
surfaces, at their curvatures (i.e., in contact with the loading pin), was also investigated.
This did not, however, seem to affect the fretting-fatigue performance of the model straps
or their failure modes; this being in contrast to the findings of Friedrich et al. [24–26]
regarding the fretting behaviour of flat CFRP plate specimens with protective ±45◦ plies.

1.2. Effects of Temperature in Fatigue Performance

In fatigue tests by Baschnagel et al. [28,29], temperature development was monitored
at the surface of straps in the pin-loaded region (at the vertex). Recordings of peak
temperatures of up to 65 ◦C for the small-scale model straps, and up to 80 ◦C for the full-
scale straps were reported. This temperature increase resulted from heat, due to friction,
dissipated between the strap and the contacting pin [28,29], and molecular friction within
the cyclically loaded material under high load and frequency [10,30]. Heat dissipation from
fatigue loading is known to affect the endurance of FRP composites if the temperature rises
near to (or indeed above) the glass transition temperature, Tg, of the polymer matrix [10,31].
However, in the case of Baschnagel et al.’s CFRP straps, this was not considered critical,
since the recorded temperatures were well below the glass transition temperature of the
particular epoxy resin used (Tg = 140 ◦C) [28,29]. Furthermore, these (relatively high)
observed temperature rises were a consequence of the high frequencies (4.2 Hz to 10 Hz)
adopted for accelerated fatigue testing in the laboratory, representing the whole lifespan of
their bridge hangers [9,29]; these are not expected to be critical for the typical frequencies
of real railway traffic loading, which are lower than 0.1 Hz [9]. It is worth noting that ISO
13,003 [32] recommends a maximum temperature increase of 10 ◦C for the fatigue testing
of FRP composites.

Apart from heat building up due to the fretting fatigue phenomena at CFRP hanger
connections, bridge elements in service are also subjected to temperature variations due to
environmental effects, such as changes in the shade air temperature and solar radiation [33].
Therefore, a question that naturally arises is if and how the fretting fatigue performance
of CFRP straps is affected at sustained service temperatures, since previous studies have
only been performed at a controlled laboratory ambient temperature. Design codes [33,34]
specify maximum uniform (effective) temperatures for calculating thermal actions in bridge
superstructures that can be up to 16 ◦C higher than the maximum shade air temperature,
depending on the type of construction (steel, concrete, and composite steel/concrete bridge
decks). Furthermore, to account for adverse loading effects from thermal actions, Eurocode
1 specifies an additional temperature difference between the deck and suspension cables of
10 and 20 ◦C for light- and dark-coloured surfaces, respectively [33]. This means that, for
specific climatic regions and bridge deck types, the maximum design service temperature
of the hanger may exceed 70 ◦C.

To the best knowledge of the authors, no published data exist regarding the experi-
enced service temperatures in CFRP bridge cables exposed to seasonal and daily tempera-
ture variations and solar irradiation (in any jurisdiction). However, significant temperature
rises have been previously documented from long-term monitoring of strengthened bridge
decks with externally bonded CFRP plates [35]. In a study of reinforced concrete cantilever
slabs that were strengthened at their top surface with bonded CFRP strips, Czaderski
et al. measured adhesive (bond line) temperatures up to 48.9 ◦C under direct sun exposure
during hot summer days in Dübendorf, Switzerland (a difference of up to approximately
15 ◦C from shade air temperature) [35]. In this case, the CFRP strips were somewhat
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protected from UV radiation and humidity with a light-grey polyurethane coating. At the
same time, Czaderski et al. measured temperatures in slabs where the CFRP strips were
covered by an asphalt layer (i.e., a dark surface absorbing heat under direct sun exposure);
peak temperatures measured at the surface of the asphalt were 60 ◦C (up to 25 ◦C more
than the shade air temperature).

Although the exact heat transfer phenomena may be somewhat different in these
cases, compared with CFRP hangers under direct sun exposure and ambient temperature
fluctuations, these measurements are still indicative and highlight the importance of
considering sustained service temperature in the mechanical performance of these elements.
This paper aims, therefore, to provide insights into the tensile fretting-fatigue performance
of laminated, pin-loaded UD CFRP straps at elevated service temperatures.

A sustained temperature of 60 ◦C was selected, based on the above discussion, as a
realistic average elevated temperature for the worst-case scenario of hot summer days. This
temperature was also indicated by a panel of experts for the certification type approval
of CFRP strap hangers for a new network-tied arch railway bridge that is currently in
the planning/tendering phase for the Oder river crossing in Küstrin, Germany [36]. The
S–N curve of small-scale straps is established herein at 60 ◦C and is compared with the
corresponding results from tests performed at ambient temperature (in a laboratory). In
addition, steady state thermal tests were performed at 24 and at 60 ◦C, to better understand
and quantify the behaviour of the straps as temperature increases. The failure modes and
the variation of the straps’ cross-section are also discussed.

2. Material, Strap Manufacture and Experimental Set-Up
2.1. Materials

Titanium pins and CFRP straps were the main components used in the present study. The
material of the straps, which was in the form of a continuous unidirectional carbon prepreg
tape (carbon fibres: IMS60 E13 24K 830tex [37]; epoxy resin: XB 3515/Aradur® 5021 [38]),
and the titanium pins (Ti-6Al-4V, Grade 5 [39]) were supplied by CarboLink AG, Fehraltorf,
Switzerland. Table 1 summarizes the main material properties of both components.

Table 1. Material properties of the UD prepreg tape and the titanium pins.

IMS60 E13 24K 830tex [37]
Density (g/cm3): 1.79

tensile strength (Mpa): 5600
Young’s modulus (GPa): 290

Epoxy Resin XB 3515/Aradur® 5021 [38]
density (g/cm3): 1.17

tensile strength (Mpa): 60 ± 1.43
Young’s modulus (GPa): 2.62 ± 0.033

Titanium Ti-6Al-4V (Grade 5), (STA) [39]
density (g/cm3): 4.43

tensile strength -Yield (Mpa): 1790
Young’s modulus (GPa): 114

2.2. Material Characterization

In this section the characterization of the composite material of the straps is presented.
The fibre (Vf), resin (Vr), and void (Vv) contents of the UD CFRP straps were determined
via sulphuric acid digestion according to Method B of BS EN 2564:2018 [40]. Three samples
extracted from the straight shaft length of five different straps were tested under a fume
hood. Each sample was placed separately in a beaker with concentrated sulphuric acid
(50 mL/sample) and heated, using hot plates, up to 160 ◦C (black coloration of the sulphuric
acid indicated that the resin had started to break down). Subsequently, the samples were left
to cool and, once at room temperature, a hydrogen peroxide solution (30 mL/sample) was
slowly added, and the samples were once again heated to 160 ◦C, until the solution became
clear and fibres rose to the surface. The beakers were then removed from the hot plates
and left to cool. Finally, the contents of each beaker were filtered through a sintered glass
crucible, washed with distilled water, left to dry at 100 ◦C overnight in an electric oven and
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weighed to a 0.1mg precision scale. The density of each sample was determined according
to the immersion method (Method A) of ISO 1183-1:2019 standard [41] using the OhausTM

Density Determination kit manual. All samples were weighed using an Ohaus Adventurer
AX324 (Ohaus Europe GmbH, Nänikon, Switzerland) analytical balance (0.1 mg precision)
in a stable lab temperature of 23 ◦C. The fibre, resin, and void contents, as well as the
density of the samples, are given in Table 2.

Table 2. Fibre, resin and void volume contents, and density of the composite samples obtained
through the chemical digestion process.

Sample ρc (g/cm3) Vf (%) Vr (%) Vv (%)

1 1.562 64.99 34.08 0.94
2 1.566 75.05 19.03 5.92
3 1.519 63.57 32.57 3.86

Average 1.55 67.87 28.56 3.57
St. Deviation ±0.03 ±6.26 ±8.29 ±2.50

An average Vf, Vr and Vv of 67.87 ± 6.26%, 28.56 ± 8.29% and 3.57 ± 2.50% were found
through the chemical digestion procedure, respectively. Similarly, the average density was
estimated to be 1.55 ± 0.03 g/cm3. The overall results are in good agreement with the fibre
volume range that the supplier provided (60–65%).

The glass transition temperature (Tg) was obtained through dynamic mechanical
thermal analysis (DMTA). Four samples were analysed with DMTA using a three-point-
bending (3PB) mode and imposed frequency f = 10 Hz with a thermal analyzer EPLEXOR
500 (Gabo Qualimeter GmbH, Ahlden/Aller, Germany). The temperature range for the
DMTA tests was between –30 and 170 ◦C, with a heating rate of 2 ◦C/min. ‘Method B’,
according to ISO standard 6721 [42], was followed to obtain the Tg values, in this case by
taking the peak value of the loss factor, tanδ. In Figure 5, the DMTA traces are presented and
the peak value of the loss factor for each sample is indicated with an “x”. It is noteworthy
that the Tg onset, which is estimated by the intercept of the tangents below Tg, appears
at slightly lower temperatures, between 130 and 140 ◦C. The average Tg value at peak
tanδ for the four DMTA traces was 149.2 ± 1.4 ◦C, which is in agreement with previous
measurements in [43], and within the anticipated range of 140 ◦C, which is suggested in
the datasheet of the hot melt epoxy used herein [38]. Thus, the behaviour of the straps is
expected to be rather elastic, as indicated in Figure 5, where the storage modulus and tanδ
traces show that, at 60 ◦C, the viscous part of the material response is negligible.

Figure 5. Normalized storage modulus vs. temperature (◦C) (left); loss factor, tanδ (right). All
samples -3PB mode.
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2.3. Strap Manufacturing

The straps were manufactured by winding the continuous UD carbon prepreg tape
around an aluminium mould that was then fully enclosed/compacted by aluminium
clamps. At the extremities of the carbon tape an additional ±45◦ carbon twill ply was
placed to aid in preventing delamination of the start/end points of the straps. Between the
prepreg tape and the clamps a silicon tape was placed to aid in the demoulding process.
The main body of the mould consisted of two types of segments: one that was 20 mm in
height and enclosed by the prepreg tape, and one that was 22 mm in height, providing
lateral support. The segments were placed next to each other, alternately, beginning and
ending with the taller one, and three M8 bolts (fasteners) kept the assembled segments
together. The assembled mould, with its main components labelled, is shown in Figure 6.

Figure 6. Mould, with features labelled.

The prepreg tape was wound around the mould six times (to achieve a 1 mm thick
strap) and once the winding was completed, a silicon tape was placed around it. Finally,
the clamps enclosed the prepreg/silicon tape and were tightened, to provide enough
pressure through the straps’ thickness during curing. The same mould geometry with
a slightly different clamping system has been previously used by Baschnagel et al. [28].
Once all five straps were manufactured and clamped, the assembled mould was placed
in an oven for curing. The curing cycle lasted for 3 h, since the straps first remained for
1 h at 120 ◦C followed by 2 h at 140 ◦C, following the guidance given in the manufac-
turer’s datasheet [38]. The bespoke titanium pins were made of Ti-6Al-4V alloy (Grade 5)
and were supplied in specified dimensions. An example of a finished strap is shown in
Figure 7, while the dimensions of the straps and the titanium pins used in this work are
given in Table 3.

Figure 7. Finished strap example.
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Table 3. Pin and strap dimensions (mm).

Titanium Pin

Length (mm) 63 ± 1
Diameter (mm) 20 ± 0.1

CFRP Strap

Shaft Length (mm)
Inner Radius (mm)

250
10

Width (mm) 12 ± 0.3
Thickness (mm) 1 ± 0.2

2.3.1. Cross-Section Variation/Dimensional Tolerance of Straps

After manufacturing, the width and thickness measurements for each strap were taken
prior to testing either in tension or in tension–tension fatigue. It was noted that there was
some variation between the measurements, and, in some cases, there were considerable
differences when compared with the nominal width and thickness (12 × 1 mm). To better
capture the variation of strap cross-section, five straps were cut at the centre and at the
vertex area, and six pieces per strap were examined under a microscope. In total, thirty high-
resolution cross-section images of the straps were obtained, which were then processed in a
Java image processing program, ImageJ [44]. The images were first converted to grayscale,
and the Region of Interest (RoI) tool was used to analyse the area and perimeter chosen by
the user. The resultant perimeter and area values obtained through ImageJ for each sample
are presented in Figures 8 and 9, respectively. The average grey threshold value used in
the image analyses was 200 ± 10. An example of an image analysis is given in Figure 10.

Figure 8. Perimeter values of each sample, after analysis in ImageJ.

Figure 9. Area values of each sample, after analysis in ImageJ.

The average area and perimeter values computed were 14.31 ± 1.21 mm2 and
28.10 ± 1.13 mm, respectively. When compared with the nominal (ideal) area (12 mm2),
it is evident that the computed area from the thirty samples is approximately 15% higher.
Similar observations can be made for the perimeter (nominal perimeter: 26 mm). This
is significant since cross-sectional variations could affect the geometric values later used
in fatigue performance calculations. For instance, the wavy and uneven perimeter of the
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straps suggest that during the curing cycle of the straps—where there is constant pressure
from the clamps—there is material run-off from one region to another. Thus, measurements
of the gross area of the straps can differ locally depending on where the micrometre is used
to measure the width and/or the thickness, resulting in a variation in the estimation of the
upper stress level.

Figure 10. (a): initial image. (b): grayscale inverted image. (c): shaded RoI. Example of a cross-section
of a strap used in our ImageJ analysis.

2.4. Experimental Set-Up

Two main set-ups, and hence two different machines, were used in this work, as the
elevated temperature static tests were performed at The University of Edinburgh (UK),
while the fatigue tests at sustained temperatures—and subsequent post-fatigue tensile
tests—were performed at Empa, Switzerland (refer to Figures 11 and 12). Regarding the
elevated temperature static tests, an Instron 600LX hydraulic universal testing machine with
an integrated environmental chamber was used (load capacity: 600kN, upper temperature
limit of chamber: 600 ◦C). This is, however, not a fatigue-rated machine. During the steady
state thermal (SS) tests, the strain and deformation fields (DIC RoI in Figure 11) of the
straps were obtained using digital image correlation (DIC) analysis with a Canon EOS
600D camera and a remote trigger timer at a sampling rate of 0.3Hz. The DIC data were
processed using Python and Matlab R2019b. Four type-K thermocouples were used to
monitor the temperature development: three inside the environmental chamber and one
outside. Thermocouples 1 and 2 were placed at the central region of the front and rear
(closest to heating elements) shaft length of the strap, respectively, while Thermocouple 3
was located at the vertex area of the strap. Thermocouple 4 was placed on the top pull rod
outside the environmental chamber. The test set-up is presented in Figure 11 and is the
same as the one used in [43]. The steady state thermal (SS) experiments involved two target
temperatures, namely 24 (ambient) and 60 ◦C. The choice of 60 ◦C as a target temperature
was based on the sustained service temperature at which the tension–tension fatigue tests
were performed. In the SS tests, the straps were loaded and kept at a constant tensile load
of 0.5kN under load hold mode, until the target temperature was reached. They remained
for 10 min more at the allocated temperature to ensure even temperature distribution in
the strap. Subsequently, the hold mode was changed to displacement control mode and
the straps were loaded until failure, with a displacement rate of 2 mm/min. Five tests per
target temperature (24 and 60 ◦C) were performed.
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Figure 11. Test set-up for SS tests, with details of thermocouples’ position in the chamber (bot-
tom right).

Figure 12. Test set-up for fatigue tests at service temperature (60 ◦C).

The fatigue tests at elevated service temperature (60 ◦C) were performed using an
Instron 1251 (load capacity: 250 kN) machine with a removable Instron (upper limit tem-
perature: 300 ◦C) environmental chamber under load control mode, as seen in Figure 12.
A frequency f = 10 Hz and a load ratio R = 0.1 were used in all tests. In addition, two type-K
thermocouples were used to monitor the temperature progression: one located at the apex
of the strap and one inserted in the centre of the pin, which was previously drilled (1 mm
hole) to accommodate the thermocouple. In all fatigue tests, the straps were loaded on
titanium pins, which were then placed in the pull rods inside the environmental chamber
(refer to Figure 12). Prior to fatigue testing, the temperature inside the oven would first
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reach the allocated 60 ◦C (±2 ◦C) and remain additionally for 10 min to make sure the
temperature across the strap was as even as possible. After 10 min had passed, the fatigue
test was started. Nine different upper stress levels (USL) were chosen, namely 650, 700, 750,
800, 850, 1000, 1150, 1300 and 1400 Mpa, and five tests per USL were performed in order to
establish an S–N curve at 60 ◦C (except for 1400 Mpa, at which two tests were performed
instead of five). The results are compared with the S–N curve at ambient temperature
previously reported by Baschnagel et al. [28]; this was obtained using a CFRP pin instead
of a titanium pin.

3. Results and Discussion
3.1. Steady State Thermal Tests Results

At both target temperatures of 24 and 60 ◦C, five tests were performed. The axial
force versus crosshead displacement is shown in Figures 13 and 14 at 24 ◦C and 60 ◦C,
respectively. The hold mode at 0.5 kN is excluded in Figure 14. At both temperatures, there
was initially delamination of the outer ply of the inner side of the straps at approximately
30–34 kN, which appears as the first ‘step’ in the figures below. The straps then, as the load
was increased, exhibited increasing fibre breakages, with the final failure being sudden and
explosive in nature.

Figure 13. Force (kN) vs. crosshead stroke (mm) at 24 ◦C.

Figure 14. Force (kN) vs. crosshead stroke (mm) at 60 ◦C.

The stress-versus-strain responses of the straps at 24 ◦C and 60 ◦C are shown in
Figures 15 and 16, respectively. In all the SS tests, the specimen-naming notation designates
SS as steady state thermal test, 24 or 60 as the target temperature, and 1 . . . 5 indicates the
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number of the strap tested. The jumps that appear in some DIC strains are attributed to
occasional broken fibres being present within the region of interest (indicated as DIC RoI
in Figure 11) and/or out-of-plane motion—due to partial delamination of the outermost
ply of the straps. Another reason might owe to the resolution of the camera (72 dpi), which,
in combination with material debris in and around the region of interest (RoI). led to the
“shaking” effect of the stress–strain curve.

Figure 15. Stress (Mpa) vs. strain (%) at 24 ◦C.

Figure 16. Stress (Mpa) vs. strain (%) at 60 ◦C.

The estimated mechanical properties of the straps tested at both target temperatures
are shown in Table 4. As it can be seen in Table 4, the increase in temperature from 24
to 60 ◦C did not seem to have any significant impact on the static tensile performance
of the straps. With respect to ultimate failure load (Fmax) and strength (UTS), the straps
seemed to exhibit a slightly (6%) improved performance at 60 ◦C compared with ambient
temperature. This small rise could be the result of the temperature rise, in that as the
temperature increased, it allowed for stress redistribution to occur, since the matrix was
more viscous due to reductions in stiffness of the epoxy with increased temperature. Such a
behaviour for polymer resins—in this case, epoxy—is anticipated as, at lower temperatures,
the matrix is totally brittle, while there is significant plastic deformation at 60 ◦C (matrix
softening) [45]. The secant modulus (E11) was calculated at 0.05–0.25% strain, with the
corresponding stresses calculated according to ISO 527-5 standard test method [46].
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Table 4. Estimated values of maximum force (Fmax), ultimate tensile strength (UTS) and longitudinal modulus (E11) for the
SS tests at 24 and 60 ◦C.

Temp. Property Test-1 Test-2 Test-3 Test-4 Test-5 Average St. Dev.

24 ◦C
Fmax (kN) 36.98 39.08 42.21 51.23 35.97 41.09 ± 6.15
UTS (Mpa) 1646.28 1726.35 1871.70 2191.81 1527.81 1792.79 ± 255.70
E11 (GPa) 203.44 122.31 236.92 241.06 215.26 203.80 ± 48.10

60 ◦C
Fmax (kN) 40.90 41.35 47.40 46.52 45.62 44.36 ± 3.02
UTS (Mpa) 1718.14 1778.53 2023.52 1980.85 1974.18 1895.05 ± 136.94
E11 (GPa) 199.23 176.52 234.91 225.04 160.09 199.16 ± 28.24

The resultant longitudinal modulus at 60 ◦C does not seem to be affected by the
increase of temperature at the SS tests and appears to display less scatter. Based on
observations from the SS tests presented in Table 4, it was expected that the straps in the
fatigue tests at 60 ◦C should exhibit similar performance as at 24 ◦C, provided that no
additional unforeseen damage mechanisms came into play during fatigue loading.

3.2. Fatigue Tests Results

The main objective of the fatigue tests at a sustained service temperature of 60 ◦C was
to establish whether the straps’ fatigue life was affected by the elevated service temperature
condition. This outcome is illustrated in Figure 17, where the S–N curve at 60 ◦C is
compared with that determined for the same straps by Baschnagel and colleagues at
ambient temperature [28].

Figure 17. S–N curves with logarithmic best-fit (R2 = 0.93) at 60 ◦C and at 24 ◦C (reproduced with
permission from [28]). UTS values from SS tests at 60 ◦C (N = 1) are also included.

The S–N curve at 60 ◦C shows an improvement at USLs above 800 Mpa, with a small
decrease of the endurance limit (of around 50 Mpa) when compared with the S–N curve at
24 ◦C. The main difference between the strap/pin systems investigated here and in [28],
besides the temperature at which the tests were performed, is the pins’ material. In the
present work, titanium pins were used, while Baschnagel et al. used CFRP, pultruded pins.
The choice of titanium over CFRP pins was due to their increase in service temperature,
as having the adversely affects CFRP pins via extensive surface wear from the CFRP pins,
which can lead to premature failure of the straps. The material removal from the CFRP
pins was, at times, so intense that the pin was jammed at the grip region.

The straps that endured 3 and/or 11 million loading cycles were further tested in static
tensile tests to obtain their residual post-fatigue loading strength; the results are shown
in Figure 18, where the average and standard deviation values—where applicable—are
also presented.
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Figure 18. Average force (kN) vs. upper stress level (Mpa); post-fatigue.

The remnant strength of the straps at ambient temperature, at an upper stress level
(USL) of 650, 700 or 800 Mpa for 3 and/or 11 million loading cycles, is presented in Table 5.
Three straps at 700 Mpa, at both 3 and 11 million loading cycles, were tensile-tested post-
fatigue, while at a USL of 650 Mpa, four straps were tested after 3 and 11 million loading
cycles. At USL of 800 Mpa, only one strap was tested to assess the remnant strength after
3 million loading cycles, since the rest of the straps failed before 3 million cycles.

Table 5. Ultimate tensile strength (UTS in Mpa) with average and standard deviation values after
fatigue at 60 ◦C for USLs 650, 700 and 800 Mpa.

USL: 650 Mpa USL: 700 Mpa USL: 800 Mpa

3 MIL. 11 MIL. 3 MIL. 11 MIL. 3 MIL.
1489.8 1392.9 1705.2 1524.6 1565.4
1577.1 1580.8 1715.4 1424.8
1519.3 1672.6 1408.4 1672.9
1950.9 1719.5

Average 1634.3 1591.3 1609.6 1540.8 -
St. Dev. ±214.2 ±144.3 ±174.3 ±124.9 -

The results in Table 5 show that the straps exhibited a relative decrease in their UTS—
compared with the UTS at ambient temperature—after enduring either three or eleven
million loading cycles at a sustained air temperature of 60 ◦C. The average residual strength
(in percentage) compared with the ambient temperature UTS is shown in Table 6, and it is
clear that about 20% of tensile strength was lost after fretting fatigue at 60 ◦C.

Table 6. Average remnant strength of the straps at 650, 700 and 800 Mpa USL.

USL (Mpa) N (Million) UTSRemnant (%)

650
3 83.60 ± 12.60
11 83.35 ± 10.96

700
3 85.60 ± 8.99
11 84.21 ± 6.15

800 3 77.96

When compared with the remnant strength of the straps tested at ambient temperature
in [28], at a USL of 750 Mpa after 3 and 11 million loading cycles (straps B15 and R70
in [28]), it is evident that the temperature had an impact on the residual properties of
the straps. However, multiple factors can affect the straps’ fatigue performance, such as
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the variation in the cross-sectional area of the straps. The nominal area of the straps was
12 mm2 and was assumed to be flat. This, however, is not the case since there is a certain
waviness or uneven surface in the straps’ cross-section that when loaded on the pins might
not be fully in contact with them. In Figure 9, there is around 15% gross area difference
between the nominal area and the actual straps used in the tests.

The temperature development during the fatigue tests, at a sustained temperature
of 60 ◦C, was obtained at the straps’ apex and at the centre of the pins. More specifically,
the pins were drilled at the centre of their cross section to such a length that the tip of the
type-K thermocouple was located at the centre of the contact region between the pin and
the strap. Representative curves of the temperature development of the two thermocouples
used in the fatigue tests for USLs of 650, 700, 800 and 850 Mpa are shown in Figure 19.
It is evident that the constant air temperature of 60 ◦C during the fatigue tests did not
seem to affect the titanium pins, as seen in Figure 19 (top). On the other hand, the straps
seemed to experience, overall, a 5 ◦C gradual temperature increase at the strap’s apex
during the loading cycles, which, however, did not seem to influence either their fatigue
performance or their remnant strength (refer to Figure 18). The reason that the temperature
profiles do not all commence at 60 ◦C is that there was a ±2 ◦C deviation in the chamber’s
air temperature.

Figure 19. Temperature (◦C) vs. number of cycles (logN) at the pin’s centre (a) and at the strap’s apex
(b) for USLs between 650 and 850 Mpa.

An increase in the USL (i.e., 850 Mpa) does, however, affect the temperature progres-
sion of the straps, as there is a gradual and steady increase in temperature at a USL of
850 Mpa. The combination of increased USL and higher recorded temperatures at the apex
of the straps might have consequently led to the failure of the straps at an 850 Mpa USL.
This behaviour was also observed in [28], wherein a more sudden rise in temperature was
noted as the USL increased from 750 to 1100 Mpa.

3.3. Failure Modes

The SS tests at 24 and 60 ◦C demonstrated similar failure modes. In both cases, initial
delamination of the outer ply of the innermost layer of the straps was consistently the first
visual failure mode, as indicated with an arrow in Figure 20 (right). Following, visible
fibre breakages occurred and intensified as the load increased, a behaviour also reported
in [28,29]. The final failure of the straps was explosive and sudden in nature, and was
fibre-dominated. Such failure modes in UD CFRP specimens were previously reported
by Hamada et al. [47], who also noted that the fracture process in UD specimens depends
on the fibre–matrix interface and the brittleness of the epoxy resin. The initiation of the
fibre breakages occurred consistently at the vertex area (stress concentration region), which
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is indicated in Figure 20 with arrows on the right and a dashed circle on the left and is
consistent with respect to the failure mode observations made in [28].

Figure 20. Strap failure modes in SS tests at 24 (a) (left) and 60 ◦C (b) (right).

The straps tested for fatigue exhibited similar failure modes as the straps in the SS
tests as seen in Figure 21, particularly the straps at USLs of 1000 Mpa and higher. At
USLs between 1000 Mpa and 1400 Mpa, the amount of sustained tensile fatigue cycles
was lower than 44,800 and a visual analysis of the contact surface of the pin to the strap
showed clear signs of fretting, very similar to the ones described in [28]. This explains the
observed brittle failure at lower cycle numbers for these straps under higher USLs. For the
lower USLs, the influence of fretting on the amount of sustained tensile fatigue cycles was
less pronounced. Ultimate failure of the straps generally occurred as clean brittle breaks
(non-explosive) in the fatigue tests, as opposed to SS tests at 24 and 60 ◦C, where explosive
failure caused individual broken fibres to be scattered around the environmental chamber.

Figure 21. Failure mode of the straps in fatigue tests at a service temperature of 60 ◦C at (a) 1000 Mpa
USL, (b) between 1150-1300 Mpa USL, and (c) at 1400 Mpa USL.

In Figure 21, the main failure modes observed for the straps between 1000 and
1400 Mpa USL were delamination and fibre breakages/splitting at and around the vertex
area. There were no clear signs of the delamination propagating around the vertex area
and in-between the plies, which is observed in SS tests. The failure modes experienced by
the straps are in accordance with the failure modes reported by Talreja [20] that belong to
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Region I of the fatigue-life diagram (see Figure 3,4). In Figure 21 (middle), a longitudinal
split is also evident. Similar observations, regarding the fatigue failure modes of the CFRP
straps, were reported in [28].

4. Conclusions and Future Steps

The fatigue performance of laminated, pin-loaded CFRP straps exposed at a constant
air temperature of 60 ◦C—chosen so as to represent credible worst-case upper service
temperatures for pin-loaded straps used as hanger cables in bridge applications in Europe—
was assessed in this study. Initially, the fibre volume fraction (Vf) of the straps was obtained
through a standard acid digestion procedure and the glass transition temperature of the
straps’ material was estimated via dynamic mechanical thermal analysis (DMTA). The
DMTA results confirmed that the straps’ response remained essentially elastic at 60 ◦C.
Following, the CFRP straps were initially tensile tested at ambient (24 ◦C) and 60 ◦C steady
state conditions in order to obtain their mechanical properties. The increase in temperature
did not seem to particularly affect their tensile performance, as the straps exhibited slightly
higher ultimate tensile strength at 60 ◦C. A total number of 42 straps (12 mm width, 1 mm
thickness) were fatigue-tested at a load ratio R = 0.1 and a frequency f = 10 Hz up to three
million loading cycles in order to establish an S–N curve at 60 ◦C. The upper stress levels
(USL) were 650, 700, 750, 800, 850, 1000, 1150, 1300 and 1400 Mpa, and, at the lower stress
levels (650 and 700 Mpa), fatigue tests up to 11 million cycles were additionally performed.
The main conclusions that can be drawn from this study are:
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The static tensile performance of the straps was not affected by an increase in temper-
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The initial failure mode observed during the fatigue tests (for the straps that failed)
was initial delamination of the outer ply of the innermost layer of the strap, and
ultimate failure around the vertex area; it was not explosive in nature, however.
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The fatigue life of the straps was not affected by temperature at higher upper stress
levels, although it exhibited a slight decrease in the regime of 650–750 Mpa when
compared with the S–N curve derived from tests at ambient temperature.

The practical significance of the fatigue test results is very positive for the potential
use of CFRP straps as bridge cables or as reinforcement components at slightly elevated
service temperatures or in warm climates.

Future work should involve fatigue tests on full-scale straps at 60 ◦C and a comparison
of the results to the model straps presented herein. This comparison could also be useful to
observe whether there are differences in the results between the small and full scales. In
addition, further work should investigate the effects of thermal cycling on the fatigue life
of the straps. This is important, especially if the straps are intended to be used as bridge
hanger cables, where the seasonal temperature fluctuations and/or instantaneous drops
(e.g., sudden shading) can induce thermal stresses.
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