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Abstract: The purpose of this study was to compare the strength of the bond between resin and
glass cloth for various composites (laminates) and its dependence on utilized soldering pad surface
finishes. Moreover, the impact of surface finish application on the thermomechanical properties of the
composites was evaluated. Three different laminates with various thermal endurances were included
in the study. Soldering pads were covered with OSP and HASL surface finishes. The strength of the
cohesion of the resin upper layer was examined utilizing a newly established method designed for
pulling tests. Experiments studying the bond strength were performed at a selection of laminate
temperatures. Changes in thermomechanical behavior were observed by thermomechanical and
dynamic mechanical analyses. The results confirmed the influence of the type of laminate and used
surface finish on bond strength. In particular, permanent polymer degradation caused by thermal
shock during HASL application was observed in the least thermally resistant laminate. A response to
thermal shock was detected in thermomechanical properties of other laminates as well, but it does
not seem to be permanent.

Keywords: resin; glass cloth; substrate; glass transition temperature; surface finish; pad cratering;
thermal resistance

1. Introduction

The interconnection of electrical components through printed circuit boards (PCBs)
has been conducted for several decades. In terms of continual development in the electron-
ics industry that allows placing electronic devices in areas with demanding conditions, the
properties of the materials used for PCB production must correlate with the requirements
of those devices. Therefore, the evaluation of the properties of commonly utilized materials
is important for confirming the compatibility for operation in a supposed environment. If
ordinary materials are not suitable, materials with enhanced parameters must be selected
for manufacturing. However, testing of materials with better properties should be carried
out to assess deployment with existing technology and other materials involved in PCBs.
Laminates for PCB manufacturing are composites, i.e., it is a system of filler (reinforce-
ment) and resin. A significant property to be tested is the temperature endurance of the
composite (usually called a substrate in the PCB industry) that is dominantly determined
by the resin. PCBs can be affected by high temperature during the soldering process and,
subsequently, by operating conditions that the device is subjected to. Unresolved thermal
compatibility may lead to a failure directly on the PCB and to a subsequent dysfunction of
the complete device.

Resins that are used for impregnating the filler consist of amorphous polymers. For
these polymers, glass transition temperature (Tg) is defined. Under Tg, the polymer is in
solid-state, but short-range interconnections break up by heating the material closer to Tg
temperature. Molecules of polymer with temperatures over Tg receive enough energy to
move freely around. It results in a rubbery state of the material including a change in the
physical properties such as the coefficient of thermal expansion (CTE), heat capacity, and
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mechanical properties [1,2]. CTE changes in the direction of the z-axis caused by crossing
Tg must be carefully monitored, because multiple soldering or thermal cycles with an
upper-temperature limit above the Tg raises the possibility of damaging the plated barrels
and vias [3]. Cracking is caused by considerable differences in the CTEs of copper and the
substrate in the vertical direction.

Epoxy resins are compounds comprising two or more epoxy groups. These groups
react with a wide range of curing agents [4]. Another aspect governing the Tg is the number
of epoxide groups in a polymer structure. In addition, additives, the rate of cross-linking
determined by the curing agent, and the curing conversion impact on the Tg value as
well as other properties and the resin’s performance [5–7]. Higher cross-link density is
responsible for an increase in temperature, chemical, and moisture resistance. On the other
hand, it also results in a less flexible and more brittle material. A typical range of Tg that can
be achieved for epoxy resin is 135–185 ◦C. Ehrler [8] compared the properties of two curing
agents used in FR4 laminates. The laminate with a phenol novolac curing system is more
suitable for higher thermal requirements than the dicyandiamide (DICY) hardener. Another
resin must be chosen in case of specialized higher temperature applications. For example,
bismaleimide triazine or polyimide resin produces high-Tg laminates. The possibility of a
fall in Tg as a consequence of thermal degradation or moisture absorption must be taken
into account, too [9,10]. Applicable techniques for experimental Tg determination are
thermomechanical analysis (TMA), dynamic mechanical analysis (DMA), or differential
scanning calorimetry (DSC). The two former methods were also used in this study.

Warpage is an effect occurring when the PCB is exposed to thermal stress. Current
PCBs in mobile devices with complicated designs are prone to this adverse behavior.
Xia et al. [11] experimentally proved that twisting or bowing is more significant for thinner
PCBs. Warpage may be further aggravated by the release of residual stress induced in
the substrate during the lamination process [12]. Several other studies [13,14] focused on
modeling this issue in order to predict the warpage of PCBs. It helps to avoid connection
failure following re-design of a product. Moreover, in the case of a relatively larger
component with more soldered connections (e.g., ball grid array) that undergoes warpage
itself due to the fact of CTE mismatch of the component, mechanically weak solder joints
(called head-in-pillow) may occur [15]. Tearing off of the soldering pad from the substrate
may appear during soldering while the joint has already solidified and warping of the
assembly is still ongoing or at field conditions when CTE differences in the substrate and
mounted components raise the stress concentration [16,17]. This failure is known under
the term pad cratering.

Pad cratering evaluation has been a subject of many studies. A consequence of stress
concentration is crack initiation. Its propagation continues at the glass cloth and resin
interface, resulting in a separation of the copper pad out of the substrate. It is a critical
failure that cannot be reworked. Roggeman et al. [18] investigated the dependency of pad
cratering on filled and unfilled resin systems. The filled resin contains particles that reduce
the CTE in the z-direction, and according to the results in this study, they also inhibit crack
propagation and failure look. Compared to the number of loading cycles until the failure
occurs, the filled resin is better, but the average pull strength is higher for those unfilled.
In a filled system, the glass cloth is not visible after cratering because the crack does not
tend to propagate deep into the material. The same study further deals with the impact
of the pull rate, pull angle, amount of reflow cycles, and degradation mechanisms on pad
cratering. Godbole et al. [19] investigated the connection between the pad cratering and
the pad placement within the PCB together with the effect of reflow cycles and moisture
exposure. For pad cratering determination, three methods have been established, and they
are described in the IPC-9708 standard. These methods are ball shear, ball pull, and pin
pull testing depicted in Figure 1. They are presented in more detail in [20], including the
description of their benefits and drawbacks. Cia et al. [21] took advantage of the pin pull
method to evaluate pad cratering after multiple reflows and accelerated thermal cycling.
Susceptibility to pad cratering is influenced by the reflow profile peak temperature, and
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thermal aging plays an important role if the temperature is above Tg [22]. The possibility
of pad cratering is enhanced by inducing stress during the release of latent heat when
the solder solidifies, as Dušek and Rudajevová mentioned in their study [23]. Latent heat
locally raises the temperature under the pad and keeps the resin in a viscoelastic state,
while the surrounding PCB is under Tg and is already rigid.
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Copper pads intended for soldering tend to be covered by the combination of copper
oxides [24]. Surface finish utilization is practically unavoidable for preventing the reaction
of copper with oxygen in the air. Moreover, its utilization is supported by the fact that
current soldering pastes containing no-clean fluxes with low activity. Oxidized surface
causes insufficient solderability. The solder wetting without using very aggressive flux is
impossible in the case of exceeding oxide thickness threshold [25]. Surface finish influences
the reliability of solder joints [26–28]. Therefore, the selection must comply with the
following device operation. Surface finishes are deposited in various ways according to
the requirements of the material, ensuring protection.

Two surface finishes, HASL (hot air solder leveling) and OSP (organic surface preser-
vative), are presented in this study. Hot air solder leveling finish involves soaking the PCB
into the molten alloy. In an area of lead-free soldering, the PCB is exposed to 250 ◦C. In
addition, after taking out of the bath, the PCB undergoes a hot air knife in order to remove
excess solder and make the thickness more uniform [29]. An organic solder preservative is
deposited by immersing the PCB into liquid, or in horizontal conveyorized processing, the
board is sprayed. The properly cleaned PCB and micro-etched copper pads are exposed
to liquid consisting of an organic compound. The organic component is dissolved first in
water and organic acid. Then the PCB with OSP coating is left to dry under conditions
not exceeding 50 ◦C. The whole process is quite simple, and it does not affect the PCB in
terms of thermal shock, unlike HASL. The compatibility of OSP with lead-free soldering
is being solved by developing new substances, providing higher heat stability [30]. OSP
coating is cheaper and more planar than HASL. On the contrary, HASL is more resistant to
mechanical damages, moisture, and temperature and reduces storage demands.

A distinction between OSP and HASL in the field of soldering and PCBs was de-
termined by several studies. Dušek et al. [31] detected stronger mechanical resistance of
soldered joints for HASL. In the work of Vasko et al. [32], HASL provided better wetta-
bility than OSP. The results showed stronger joints made on pads covered by HASL, too.
Reliability tests done by Zhou et al. [33] proved comparable results after thermal cycling
for both finishes and better endurance for OSP in the drop tests.

Within PCB testing, another strength of the interface is studied. Peel strength is
commonly performed to assess the bond between the resin and pressed conductive foil.
Peel strength is mainly given by the foil roughness [34,35]. Interesting research in terms of
our study was conducted by Liu et al. [36], who investigated the peel strength after thermal
shock inflicted on the copper-clad laminate. The study showed the negative repercussions
of the thermal shock on the adhesion of copper patterns to the substrate.

Our investigation focused on the evaluation of the thin resin layer adhesion beneath
the copper pattern to the reinforcement. The strength of this adhesion (in the article
called bond strength) is a crucial indicator for the formation of presented failure—pad
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cratering. As it was mentioned, there are no possibilities for repair. Therefore, there must
be a wide range of evaluating studies dealing with this failure. Then, during the PCB’s
design and material selection, the experience gained by the studies helps to avoid or
decrease the risk of tearing the pad out of the substrate. Resins used for the production
of the laminated composites have various thermal properties, and it is expected to have a
different response to thermal loads. To cover this concern, three laminates characterized
by diverse Tg values were chosen. Even though the two variants of epoxy resin were
subjected to similar evaluations, a comparison with polyimide resin and in relation to other
testing parameters has not been performed. Another concern appears as the resins do
not have the same adhesion to reinforcement. In addition, the bond might change after
thermal or mechanical stress. The bond strength of the soldering pad to the substrate has
not been deeply evaluated considering the surface finish. Further, an indicated issue was
tested directly under an elevated temperature, which gives importance to this study. A new
method was developed for the purposes of strength testing, which reduces the problems
related to failure mode recognition. The used method ensures detachment at the interface
of the resin and filler.

According to one method of surface finish application, the consequences left on the
laminate caused by this part of PCB fabrication should not be neglected. Adverse effects
in the form of deviations in thermal expansion, drops in Tg value, or changes in material
reaction thermomechanical loading ought to be checked. Changes in material behavior can
cause some of the negative difficulties described in the paragraphs above in the course of
soldering or consequent device operation. This relevant issue is not addressed in previous
studies. Hence, it was observed in more detail within this study.

2. Materials and Methods

Three types of laminates were selected based on their Tg value. A set of samples
included the basic variant of DICY-cured epoxy FR4 laminate (Tg1), which is still widely
utilized in consumer electronics. Phenolic-cured epoxy FR4 (Tg2) and polyimide G30 (Tg3)
resins in combination with glass cloth were further laminates involved in the evaluation.
This laminate was intended for high-temperature usage to ensure the required reliability.
The list of used materials is shown in Table 1. The testing boards made of listed laminates
were designed to contain the spacious circular soldering pad with a diameter of 5.5 mm.
The overall size (12.5 × 12.5 mm2) of one specimen (see Figure 2) was adjusted to fit the
size available in the tool. For each sample version, 15 pieces were assessed.

Table 1. Laminates used for the investigation.

Producer Type Grade Glass Transition Temperature Samples Marking

JIANGSU RODA ELECTRON
MATERIAL, Rudong, China RD140 FR4 135 ◦C Tg1

TECHNOLAM, Troisdorf, Germany NP-175F FR4 170 ◦C Tg2
Göttle Leiterplattentechnik,

Königsbrunn, Germany VT-901 G30 250 ◦C Tg3
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The tool for placing the sample as a part of the employed tensile testing machine
X250-3 (Testometric, Rochdale, Great Britain) is visible in Figure 3. As the previous section
suggests, HASL (H) and OSP (O) were chosen to assess if some finishes can make the bond
between the glass cloth and the thin layer of the resin under the soldering pad weaker,
thereby contributing to the pad cratering phenomenon.
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Figure 3. Sample fixed in the tool.

A novel approach for analysis was established to eliminate a majority of the aspects
influencing the strength of the bond between the resin and the glass cloth during the
mechanical test. The newly utilized method allows for focusing on the desired bond and
thereby material and technology comparisons. There are more possibilities of resin and
reinforcement suitable for substrate production and many other types of material inputs
(e.g., surface finish and solder mask) involved in PCB fabrication. These materials must be
applied on PCBs by a technological process that may be incompatible with the selected base
materials and erode the original properties. Further, this method can be adopted for various
mass soldering techniques used for surface mount technology (e.g., hot air, vapor phase, or
infrared soldering). It should be noted that utilizing soldering pads with a relatively large
area does not influence the mutual comparison of technology and material combinations.

A copper countersunk head rivet was mounted to transfer the tensile force to the
soldering pad (see Figure 4). Rivets were mounted to the soldering pads using the con-
ventional reflow method. At first, lead-free soldering paste SAC305 (Sn–3%Ag–0.5%Cu)
was applied on the soldering pads using stencil printing. After manual assembling of the
rivets, the PCBs were reflowed in a forced air convection oven Mistral 260 (Technoprint,
Ermelo, The Netherlands) with three temperature zones. The temperatures of the zones
were adjusted to create the temperature profile suitable for the chosen lead-free solder
paste (see Figure 5). Before every measuring test, the sample was attached to the tool in
that way to allow the pad to detach from the substrate freely. A rivet with a 3 mm diameter
was firmly fastened into the upper jaws of the deformation device before the test. The
speed of the upper jaw was set at 1 mm/min.

Tests were performed at ambient temperature (AT) and an elevated temperature (ET)
of 100 ◦C. The preheating of samples for purposes of testing at an elevated temperature
took place in an oven UN55 (Memmert, Schwabach, Germany). Preheating was used to
achieve a more uniform temperature at the samples. The preheating process lasted for
approximately 30 min. After, the sample was placed and fastened into the heated tool. The
heat of the tool was supplied by energy dissipation in two resistors connected in a series
to the voltage source. The temperature in the tool and on the sample was monitored by
thermocouples (type K) located in the tool directly under the sample.
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Measurements to determine the Tg and possible influence of the surface finish on the
behavior under thermal action were conducted on TMA Q400EM (TA Instruments, New
Castle, DE, USA) equipment. This apparatus served for both the TMA and DMA proce-
dures. During thermomechanical analysis, square-shaped samples with an edge length
of 8 mm and thickness of 1.5 mm were placed on the stage and heated to a temperature
that was approximately 40 ◦C above the transition temperature given by the datasheet.
The heating ramp was established at 5 ◦C/min. A nitrogen atmosphere was available
in the heating chamber. The Tg estimation was performed as Yong et al. [37] proposed.
Accordingly, analysis of the curve (temperature dependence of dimensional change) was
obtained by a sensitive probe while having plotted the first derivation of that dependency.
The first derivative of dimension change with respect to temperature helped to define the
onset and the end of glass transition. The sharpest dimension change identifies the onset,
thereby the lower temperature boundary. The peak or stabilization of the first derivation
points to the upper limit. The temperature closest to the midpoint of the stated temperature
interval was taken as the Tg.

The DMA measurements were performed using an aluminum fixture with supporting
rollers that formed a three-point bending system in conjunction with a flexural probe.
The rollers on which the samples were put were at a 10.16 mm distance from each other.
For DMA purposes, the delivered composite substrates with a thickness of 1.5 mm were
cut to obtain rectangular-shaped specimens with a width of 3 mm and length of 15 mm.
Temperature conditions during DMA were similar to the TMA measurements. The only
maximal temperature was adjusted to capture complete significant transitions of monitored
quantities. Modulated force amplitude was set to ±0.2 N that was applied to the sample at
a frequency of 1 Hz. The static force was 0.25 N. Each type of sample was analyzed three
times. One exemplary diagram is comprised in the results.
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The methodology of the study is presented in Figure 6. The procedure diagram
items are labeled to describe the motivation of the work steps. Details of several of the
motivations are explained in Table 2 which support the diagram.
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Table 2. Explanation of the main motivations.

Operation Motivation

Investigation of the effect of
surface finish

The impact of the technological process (surface finish application) on the laminate
evaluation is crucial.

Surface finish choice Two surface finishes were chosen regarding thermal circumstances during application.
HASL application is accompanied by thermal stress, whereas OSP is not.

Selection of laminates Various resins or their modifications have different thermal properties and adhesion to filler.

Bond strength assessment The strength of the adhesion of the soldering pad, specifically resin to filler, is significant in
relation to failure–pad cratering occurring on the PCBs.

Reflow soldering Except establishing the mechanical connection, the bond strength results respect the effect of
this treatment, which is an essential step in electronic assembly.

Preheating
Specimens tested at an elevated temperature were preheated to achieve an equal

temperature throughout the sample. Consequent mechanical tests performed at 100 ◦C
were realized in order to simulate field conditions.

Exposition to reflow
soldering conditions

It was included to verify the effect of surface application, i.e., comparison of slow and
rapid heating.

Thermomechanical analysis (TMA)
and dynamic mechanical

analysis (DMA)

Observation of material behavior in the surrounding of Tg and detection of Tg value
displacement. Assessment of material response during mechanical loading in conjunction

with temperature rise. More measurements cycles were conducted to determine the
response during soldering and, consequently, the effect of the thermal loading.

3. Results
3.1. Bond Strength Evaluation

The whole pulling process was recorded, and the maximum force for further evalua-
tion was consequently determined from the sampled data. The course of force allows for
definite detection of the highest force. Examples of pulling course are depicted in Figure 7.
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This course was typical for every sample. The detachment of the pad was accomplished at
one moment without any gradual tearing off.
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Figure 7. Dependency of pull force on the time.

The failure mode of the pulling test for each laminate is visible in the photo of tested
samples shown in Figure 8. The pads are completely torn from the substrate, and the
glass cloth is visible. An advantage of the used method was confirmed, because no part
of a specimen was destroyed in another area than was required. Thus, any destruction at
the interfaces of solder and pad, rivet and solder, nor breaking the rivet did not happen.
Obviously, thanks to its design and larger cross-sectional dimensions.
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The sample marking is explained in Figure 9. It corresponds with the bond strength’s
evaluation. The beginning of the marking without the abbreviation that follows the
underscore was used in the whole text.

Polymers 2021, 13, x FOR PEER REVIEW 9 of 18 
 

 

The sample marking is explained in Figure 9. It corresponds with the bond strength’s 
evaluation. The beginning of the marking without the abbreviation that follows the un-
derscore was used in the whole text. 

 
Figure 9. Explanation of the sample marking. 

The pulling test results summarized in the boxplots (see Figure 10) and in Table 3 
show the strong dependency of the bond strength on the resin type. Testing at ambient 
temperature, as reported in Figure 10a, points to a slight impact of surface finish on the 
studied issue for both versions of FR4 laminates. Despite the presumptions, pads with an 
HASL surface finish and the resin under them did not lose the rate of adhesion to glass 
reinforcement. Our tests showed a certain improvement in adhesion that could result 
from the softening of the resin during the surface finish application, because these resins 
have a Tg far below the temperature of solder bath. The thermal treatment provides the 
possibility for the resin to adhere better to the reinforcement. 

  Tg1O  Tg1H  Tg2O  Tg2H  Tg3O  Tg3H  

  
(a) (b) 

Figure 10. Pulling test results: (a) at ambient temperature; (b) at elevated temperature (100 °C). 
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The pulling test results summarized in the boxplots (see Figure 10) and in Table 3
show the strong dependency of the bond strength on the resin type. Testing at ambient
temperature, as reported in Figure 10a, points to a slight impact of surface finish on the
studied issue for both versions of FR4 laminates. Despite the presumptions, pads with an
HASL surface finish and the resin under them did not lose the rate of adhesion to glass
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reinforcement. Our tests showed a certain improvement in adhesion that could result from
the softening of the resin during the surface finish application, because these resins have a
Tg far below the temperature of solder bath. The thermal treatment provides the possibility
for the resin to adhere better to the reinforcement.
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Minimum (N) 471.7 365.1 357.8 431.5 305.9 401.5 336.5 375.1 403.6 433.5 403.7 441.3
Maximum (N) 614.0 503.5 461.8 565.8 441.8 566.5 543.9 486.9 551.5 573.6 513.7 569.5

SD (N) 44.4 47.1 32.6 39.9 49.7 60.0 66.7 31.6 51.4 46.3 41.4 44.6
Bond strength (N/mm2) 22.8 18.2 17.2 21.3 16.2 20.7 18.8 18.6 20.0 20.6 19.3 21.3

The ability of the surface finish to influence the bond between the resin and glass cloth
was detected to a greater extent for the laminate with the highest Tg. It was found that the
resin where soldering pads had an HASL surface finish had a smaller bond strength by
3.2 N/mm2 on average than those with OSP.

As to testing at an elevated temperature, it can be stated that the distinctions in bond
strength among the used laminates diminished. The effect of the surface finish persisted,
but the test proved worse resin cohesion to glass cloth for HASL in the case of FR4 laminates.
In particular, FR4 with a lower Tg indicated a noticeable difference. In contrast to the
testing at 25 ◦C, the G30 substrate with OSP became prone to pad cratering than pads
covered by an HASL surface finish, but the difference in average force values was not
so evident.

The bar chart in Figure 11 offers a clearer comparison of average bond strength values
between testing at room (blue bars) and elevated temperature (red bars). These values were
calculated by dividing the mean value by the surface of the soldering pad. Error bars were
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derived from standard deviation. The higher testing temperature significantly affected the
bond strength in specimens made of low-Tg FR4, G30 with HASL, and high-Tg FR4 covered
by OSP. It was confirmed that the decrease in bond strength during testing at 100 ◦C for the
least thermally resistant material, but Tg1O was affected very little. Laminates for thermal
application behaved the opposite way when all the specimens showed higher strength
even though the differences were almost negligible for Tg1O, Tg2H, and Tg3O. The PCB
supplier declared the manufacturing (temperature and pressure during copper cladding)
in accordance with the recommendations of the laminate producer. In connection with
this fact, another question arose as to whether the optimizing procedure parameters of the
pressing process may reveal whether the studied strength of adhesion can be improved.
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The lower bond strength attained for the phenolic-cured substrate was consistent with
the results obtained by Ahmad et al. [38]. Their study dealt with pull strength associated
with pad cratering contained DICY and phenolic-cured laminates, too. Tests within the
study revealed an approximately 50% smaller pull strength for the phenolic-cured material.
The results relating to epoxy resins and surface finish may be roughly compared with [39],
which dealt with a similar issue. Interlaminar strength in the epoxy resin and glass fiber
system was assessed but differed in thermal shock caused not by fast heating but rapid
cooling down of the heated samples. Nevertheless, the insignificant influence of this
thermal load was likewise discovered.

The outcome of testing at an elevated temperature can be compared with the research
conducted by Roggeman and Jones [40]. Laminates based on epoxy resin reported a
moderate drop of pad strength when tested at 65 ◦C. Here, a discrepancy with our results
obtained for high-Tg epoxy laminate might be registered, because we measured higher
values when testing at 100 ◦C.

3.2. Analysis of Thermomechanical Properties

Observation of material mechanical properties during the heating cycle was the
second part of this paper. It must be noted that at first, all thermomechanical analyses
were conducted using the substrate that had not passed the reflow soldering or had not
been exposed to higher temperatures after delivering the produced PCB samples. After
performing these analyses and based on the results, both the TMA and DMA of the Tg1
specimens were carried out after exposure to the reflow profile shown in Figure 5. Each
sample was analyzed in three cycles, but sometimes, only two cycles are included in graphs
when the third cycle did not differ significantly from the second one.

The curves that are depicted in Figure 12 were obtained for the FR4 substrate with
lower Tg. Shape undulation of laminate with an OSP finish is observable in the glass
transition surrounding, especially during the first heating cycle. The gradual curing
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process and stress release of the laminate were detected by the following measurements
of the same sample. This observation is in accordance with the findings in the literature
conducted by Rudajevová and Dušek [41]. A new outcome can be found for the impact
that causes the application of an HASL surface finish from a thermomechanical point
of view. The thermal shock caused by dipping the board into the molten solder had an
adverse effect on the non-fully cured substrate. Even though a specific curing process can
be observed for Tg1H, it did not lead to possible improvements in the Tg value, and the
magnitude remained diminished. A method of Tg derivation described previously was
observable in the TMA figures, and Tg values derived from those curves are summed up
in Table 4. The values in the table are stated as an average of the given measurement cycles
(second or third).
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Table 4. Glass transition temperatures (expressed in Celsius) determined by TMA.

Tg1 Tg1_After Reflow Tg2 Tg3

HASL OSP HASL OSP HASL OSP HASL OSP

116.2 127.9 115.5 123.4 177.1 176.7 228.8 221.4

Samples that underwent the reflow process showed this treatment to serve for their
curing. It can especially be seen in Figure 12d. A throb of the first cycle curve was not
so enormous as it is in Figure 12b. The curves must have shifted in the y-axis; hence,
three y-axes were utilized to make them visible and compare their shapes. It can be said
that the changes in the shape by performing more cycles were negligible. Using TMA in
the case of samples that had been subjected to HASL application and consequent reflow
cycle led to the detection of an irreversible decrease in Tg.

Detections obtained by TMA were confirmed by conducting DMA measurements.
Considering the monitored dynamic properties of Tg1O, subsequent curing of the resin
was noticed. It resulted in the delay of the storage modulus decrease during the second
cycle. Storage modulus fall takes place at a higher temperature, while Tg given by the
loss modulus peaks remained unchanged. The results shown in Figure 13a verify the
premature softening of the Tg1H samples at approximately 85 ◦C during the first heating.
In the second run, a slight shift of the softening point at approximately 5 ◦C was observed.
In addition, the decline in the point of storage modulus was related to the ability of
the material to withstand mechanical stress without deformation. The residual of the
proposed Tg can be recognized in recorded storage or loss modulus. It may indicate that
the degradation of the polymer resin had not influenced the whole volume of the substrate.
The board was dipped in the solder bath for few seconds; therefore, the warm-up was not
passed into the resin located further away from the surface.

Disruption of cross-linking is a probable reason for the detected dissimilar and wavy
peaks of loss modulus. Although Margem et al. [42] tested epoxy matrix using different
curing agents, insufficient cross-linking rates lead to the occurrence of the same phenomena
in DMA results. Polanský et al. [9] studied the effect of thermal influence with a longer
duration and achieved double peaks explained by degradation of inner structure, changes
in material surface profile, and the appearance of delamination.

Diagrams of DMA (eventually TMA measurements) for samples that went through the
soldering oven evidently testify that a slow increase in temperature to 250 ◦C did not have
a lasting impact on the thermomechanical properties. Laminate with OSP did not report
any breaking changes in material behavior, only some slight post-curing consequences
influencing the laminate were observed. Mostly, the second heating cycles of both finishes
were connected with the lower absolute values of storage modulus in the glassy area.
This means the lower stiffness of the laminate is associated with the higher energy stored
by the system. Another reason for the varying storage modulus was the strength of the
adhesion between the fiber and the matrix within the composite as Keusch and Haessler [43]
researched in their work.

The effect of HASL application on the Tg2H (high Tg FR4 substrate) was demonstrated
because it reduces internal stress and improves the curing rate (see Figure 14a). Deviation
in the Tg region was less noticeable, and the curve of the first measurement was closer to
the course achieved during the second heating run. A fall in Tg by 2 ◦C was found, but
it was not statistically significant as in the case of Tg1H (low Tg FR4 substrate). On the
other hand, DMA measurement brought the ascertainment that the laminate temporarily
reported a higher storage modulus, and then its decline followed as is visible in Figure 14b.
However, by heating the sample, this property disappeared. In the second cycle, the storage
modulus met a typical shape comparable to the substrate with soldering pads covered by
OSP, but the storage modulus remained high. The change in interface bonding can explain
this finding. The storage modulus of the second analysis testified that there was no impact
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on the Tg value, too. The bend in the storage modulus (second cycles) suggests a Tg value
of approximately 175 ◦C, which supports the TMA results.
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TMA analysis revealed distinctive expansion behavior in the first heating cycle com-
pared to the second one. Except for the undulation of the curves during the first cycles,
particularly the HASL specimens exhibited higher CTEs in the glassy state. The thermo-
mechanical performance of both specimen types became nearly the same in the second
measurement run. Further, the curve bend was not as striking as it was typical for the
previous laminates. Hence, inaccuracy in Tg determination may occur. Regardless of this
fact, the Tg was almost independent on the surface finish, and the values increased by
undergoing the thermal treatment under the conditions of the TMA measurements as can
be seen in Figure 15. The Tg for Tg3H was detected to be higher by 3.5% on average, which
can be found to be relatively insignificant. However, noticeably lower values than those
declared in the datasheet must be considered for a potential application.
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Both G30 laminates using HASL and OSP showed changes in the storage modulus
(see Figure 16), thus the mechanical properties comparing the first and second cycles. An
increase in the storage modulus and extension of its glassy state in the OSP specimen may
denote an improvement in the interface between the filler and the reinforcement. A low
diminishing of the peak magnitude of tan δ correlated with this statement. Generally, it
was found that the Tg3 laminate had the lowest tan δ magnitudes, which means smaller
energy dissipation options. Storage modulus curves or optionally the peaks of the loss
modulus suggest the Tg values were under 250 ◦C as the TMA results also indicated.
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4. Conclusions

We evaluated the strength of the bond between the glass cloth and selected resins. A
new testing approach was used considering reflow soldering. Our results revealed the
dependence of adhesion on the resin type. Furthermore, the role of surface finish on bond
strength was demonstrated. However, the bond strengthening or weakening rate depended
on the resin. The same material combinations were tested at an elevated temperature of
100 ◦C. It was proved that the resin with the lowest Tg tended to lose adhesion to glass
cloth. The bond strength in other assessed laminates did not show a higher tendency to
become weaker when tested at 100 ◦C. Actually, in all cases, a higher force necessary for
detaching the testing pad was measured. Simultaneously, the differences among the sample
types were significantly smaller for testing at elevated temperatures. The best resistance to
tearing the pad from the substrate was detected for the sample marked as Tg1H—laminate
containing the resin with the glass transition temperature of 135 ◦C (according to the
datasheet) and HASL finish. The evaluation at 100 ◦C revealed the strongest bond for the
sample marked as Tg3O—G30 laminate on which the pads were protected by OSP.

The second part of the study utilized a thermomechanical analyzer to establish mate-
rial behavior changes in consideration of the surface finish. The TMA and DMA results
were included. In the matter of used surface finish, conventional substrate (marked as
Tg1) was highly impacted by HASL application resulting in permanent degradation of
the laminate. Both methods also indicated the decline of Tg. Specifically, the Tg shift to
a lower magnitude derived by TMA was almost 10 ◦C. A direct effect of thermal shock
caused by the application of HASL finish was confirmed. As the testing of the same
laminates after simulating the reflow process (i.e., the gradual heating of the laminate to
temperature reaching 250 ◦C and subsequent measuring of the laminate with OSP surface
finish) showed observable Tg movement to a lower magnitude but not as significant as the
difference between sample Tg1O (with OPS surface finish) and Tg1H (with HASL surface
finish) before reflow.

Composites with higher temperature resistance did not undergo permanent deviations
in the thermomechanical performance regarding the border between the glassy and rubbery
region. The post-curing internal process leading to stabilization of the material in the
vicinity of Tg as well as stress relief were detected for these laminated composites, too.
Moreover, laminates covered by HASL tended to a transient increase in stiffness. That
effect vanished, because second cycles reported common diagrams of storage modulus.
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