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Abstract: This study is focused on the mechanical properties and service life (safety) evaluation
of hybrid adhesive bonds with shaped overlapping geometry (wavy-lap) and 100% natural cotton
fabric used as reinforcement under cyclic loading using various intensities. Cyclic loading were
implemented between 5–50% (267–2674 N) and 5–70% (267–3743 N) from the maximum strength
(5347 N) measured by static tensile test. The adhesive bonds were loaded by 1000 cycles. The test
results demonstrated a positive influence of the used reinforcement on the mechanical properties,
especially during the cyclic loading. The adhesive bonds Tera-Flat withstood the cyclic load inten-
sity from 5–70% (267–3743 N). The shaped overlapping geometry (wavy-lap bond) did not have
any positive influence on the mechanical performance, and only the composite adhesive bonds
Erik-WH1 and Tera-WH1 withstood the complete 1000 cycles with cyclic loading values between
5–50% (267–2674 N). The SEM analysis results demonstrated a positive influence on the fabric
surface by treatment with 10% NaOH aqueous solution. The unwanted compounds (lignin) were
removed. Furthermore, a good wettability has been demonstrated by the bonded matrix material.
The SEM analysis also demonstrated micro-cracks formation, with subsequent delamination of the
matrix/reinforcement interface caused by cyclic loading. The experimental research was conducted
for the analysis of hybrid adhesive bonds using curved/wavy overlapping during both static and
cyclic loading.

Keywords: quasi-static test; cyclic fatigue; wavy-lap bond; natural cotton fabric; polymer composite;
mechanical properties; service life; safety; SEM

1. Introduction

Adhesive bonding technology represents one of the most promising methods of
material bonding. This technology finds its application in automotive, aviation, and elec-
trotechnical industries [1,2]. The dynamic development of adhesive bonding technology is
demonstrated by the wider possibilities offered by this process as compared to the conven-
tional technologies of bonding materials (welding, soldering, etc.). Significant advantages
are observed as compared to conventional technologies in a wide spectrum of bonding
materials, along with lower component costs and lower labor requirements [3]. Adhesive
technology could also fulfill supporting roles, such as sealing, clamping, and securing [4,5].
Currently, there are plenty of research opportunities dealing with adhesive bonding. Their
aim is to improve the efficiency of using such material under loading conditions. The
majority of research deals with the static strength of adhesive bonds [6–8]. The mechanical
properties of adhesive bonds could be influenced by physical and chemical factors (wettabil-
ity, adhesion and cohesion, aging, and environmental degradation) [4,9,10], technological
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factors (roughness and structure of bonded surface and filler material) [11–13], and con-
structional factors (overlapping length and geometry and type of applied load) [14–18].
The resulting performance of the adhesive bond is governed by the synergy of these factors,
i.e., the effect of their mutual interaction [19].

Shaped overlapping geometry is one of the factors that could positively influence the
adhesive bond strength and the internal stress [20,21]. Another reason for using shaped
overlapping geometry is to address a more complex constructional requirement of the
adhesive systems when non-flat-lap bonds are used. Many researchers have dealt with
shaped overlapping geometry. Zeng and Sun [22] came up with a solution of wavy-lap
bonds and detected an increase in shear strength as compared to flat-lap bonds during a
static test. Ávila and Bueno [23] conducted a similar experiment and detected an increase
of 41% in shear strength under the static test. Müller [24] tested the influence of various
adhesive types on the strength of wavy-lap bonds. A number of researchers are devoted
to modification of various types of wavy-lap bonds. Jaiswal et al. [25] tested adhesive
bonds with teeth of different depth created on the lap surface to increase the static tensile
strength. Haghpanah et al. [26] tested adhesive bonds with different adherend geometry
using positive and negative teeth. Razavi et al. [27] dealt with sinusoidal geometry of
adherend lapping in their research.

The wettability of natural fiber reinforcement is a significant factor influencing its
bonding properties. Deteriorated wettability (adhesion) of natural-fiber-based reinforce-
ments, which usually decreases the shear strength of adhesive bonds, leads to significant
disadvantages for their use in the polymer composites [28–32]. Deteriorated wettability of
such natural fiber surfaces could be minimized by chemical treatment in aqueous solution
of NaOH, plasma treatment of its surface, or by other methods. [33]. Alkali treatment with
NaOH solution improves the surface structure of the reinforcement. The improvement is
caused by removal of unwanted layers, e.g., lignin, oils, and fats, from the reinforcement
fiber surface [34–36]. The surface treatment leads to improvement of interaction at the
interphase boundary, i.e., on the interface of the natural reinforcement and matrix [37]. It
leads to improvement of mechanical properties, especially the shear strength of adhesive
bonds [19,35,38].

During application, the bonded materials are loaded, not only under static condition,
but also by cyclic loading. A number of studies have dealt with cyclic loading of different
intensities in the field of fiber–polymer composites [39,40]. With adhesive bonds, it cannot
be expected that quality will be preserved throughout their service life. Operating condi-
tions usually include the action of the cyclic loading, i.e., cyclic fatigue. Cyclic fatigue is
characterized by propagation of cracks inside of the adherend and subsequent permanent
damage to the adhesive bonds [41]. The process itself leads to relatively lower values
of cyclic loading due to delamination between adherend and bonded material, which
negatively influences the service life of the adhesive bonds [42]. The strength and fatigue
service life of adhesive bonds are even lower at smaller numbers of repeating cycles. The
tests of cyclic loading are essential for practical application of adhesive bonds [42–44].
The researchers demonstrated that the hybrid composite layer of adhesive bonding can
positively influence the mechanical properties and extend their service life under cyclic
loading [19,35,45].

The experimental research was mainly focused on the hybrid adhesive bonds with
shaped overlapping geometry (wavy-lap) and 100% natural cotton fabric as reinforcement.
Adhesive bonds were exposed to cyclic loading of various intensities, and the results
of mechanical properties and service life (safety) were evaluated. Cyclic loading (cyclic
fatigue) represents a common cause of failure in adhesive bonds due to delamination of
reinforcement and the matrix. Based on previous research to achieve optimum results for
mechanical properties and service life during cyclic loading, the bonding materials and
procedure were chosen. That included selection of 100% cotton fabric as reinforcement [19].
The previous studies have focused on flat geometries, while some of the real applications
are in the form of curved (wavy) shapes.
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The aim of this study’s research was to evaluate the influence of the shaped adherend
geometry (wavy-lap) and reinforcing natural cotton fabric with modified surface. 10%
aqueous solution of NaOH was used for pretreatment of the cotton fabrics. Mechanical
properties (tensile strength, deformation-strain, modulus of elasticity) and related service
life and safety of the hybrid adhesive bonds with composite layer of adhesive was evalu-
ated by cyclic loading of various intensities. Selected mechanical parameters provide an
overview of the behavior of adhesive bonds and cyclic loading to approximate realistic
loading conditions and their subsequent application.

2. Materials and Methods
2.1. Materials
2.1.1. Bonded Material (Adherend)

Structural carbon steel S235J0 (Ferona a.s., Prague, Czech Republic) with dimensions
1 mm thickness, 100 ± 0.25 mm length, and 25 ± 0.25 mm width was used as an adherend.
The adherend dimensions were established by the ČSN EN 1465 standard [46]. Basic
mechanical properties and indicative chemical composition are listed in Tables 1 and 2.

Table 1. Basic mechanical properties of the S235J0 steel at 20 ◦C temperature [47].

Tensile Strength 340–470 MPa

Yield strength 225–235 MPa

Elastic modulus 212 GPa

Elongation 24%

Table 2. Indicative chemical composition of S235J0 steel.

C (%) Mn (%) P (%) S (%) Cu (%) N (%) Fe (%)

≤0.19 ≤1.50 ≤0.04 ≤0.04 ≤0.60 ≤0.014 ≤99.55

The shaping of the adherends (height h of wavy-lap bonds) was achieved by using
a pressing form (Figure 1). The adherends were placed in a form, and by using 850 N (F)
force, the shaped geometry with different wave heights h1 = 2.43 ± 0.10 mm (marked as
WH1) and h2 = 4.82 ± 0.13 mm (marked as WH2) was obtained. The types of adherends
and principle of measurement for the height (h) of a wave are shown in Figure 2.
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The surface of the adherends was mechanically treated in a blasting cabin using abra-
sive Garnet MESH 80 and then chemically treated in an acetone bath just before bonding.
These methods for surface treatments were proven as optimal in terms of mechanical prop-
erties of adhesive bonds by several studies [45,48]. The roughness of adherends’ surfaces
were measured using profilometer Mitutoyo Surftest 301 (Mitutoyo Europe GmbH, Neuss,
Germany). Value Ra = 3.65 ± 0.12 µm and Rz = 11.19 ± 0.37 µm.

2.1.2. Matrix and Reinforcement

2 types of 100% natural cotton fabric were used as reinforcement. Their characteristics
are listed in Table 3.

Table 3. Reinforced fabric characteristics [46].

Fabric Geometry Areal
Density

Warp-Way Strength
(200 × 50 mm)

Weft-Way Strength
(200 × 50 mm)

g × m−2 N N

Tera Plain 290 950 900

Erik Plain 190 850 800

The surface of natural cotton fabric was alkali-treated before application of the adhe-
sive layer. Treating the surface leads to improvement of wettability and thus improves the
performance of the bond, mainly its strength [33,49,50]. The following steps were used for
the surface treatment:

1. Soaking the fabrics in hot water (100 ◦C) for removal of starch;
2. Rinsing with cold water for removal of residual impurity;
3. Soaking the fabrics in 10% NaOH solution for 30 min. Distilled water was used to

create the solution;
4. Repeated washing of the alkali-treated fabrics with cold water;
5. Drying the fabric in a laboratory oven at 105 ◦C temperature for 24 h [51].

Structural two-component epoxide resin CHS-Epoxy 324 (Epoxy 1200) (Havel Compos-
ites CZ s.r.o., Svésedlice, Czech Republic) with P11 hardener (Havel Composites CZ s.r.o.,
Svésedlice, Czech Republic) was used as a matrix (in weight ratio 100:7 according to the
manufacturer’s recommendation). According to the manufacturer, resin is suitable for
metal bonding [52].

2.1.3. Preparation of Adhesive Bonds

The research was based on modified norm ČSN EN 1465. The norm ČSN EN 1465
establishes the lapping length to be 12.5 ± 0.25 mm. The length of the lapping was
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based on shaped adherend geometry and was identical for all of the adhesive bond types
(29 ± 1.31 mm) so that the results could be compared. The bonds were loaded with 750 g
(7.4 N) weights and left to be hardened at 21 ± 2 ◦C laboratory temperature and 45 ± 7%
relative air humidity for 24 h. The adhesive layer thickness was measured using Gwyddion
software (version 2.49, David Nečas and Petr Klapetek, VUT Brno, Brno) from scanning
electron microscope (SEM) images. Type, shape, and adhesive layer thickness of the hybrid
adhesive bonds are listed in Table 4.

Table 4. Types, shape, and adhesive layer thickness of the hybrid adhesive bonds.

Bond Type Adherend Geometry (Shape) Adhesive Layer
Thickness (µm) Characteristics

Resin

Flat

33 ± 3
Adhesive bonds with pure
resin and flat shape, WH1

and WH2
WH1

WH2

Erik

Flat

432 ± 12

Adhesive bonds with
composite layer with Erik
fabric and flat shape, WH1

and WH2

WH1

WH2

Tera

Flat

614 ± 9

Adhesive bonds with
composite layer with Tera
fabric and flat shape, WH1

and WH2

WH1

WH2

2.2. Methods

The testing of mechanical properties was realized on a universal testing machine
LABTest 5.50 ST (LABORTECH s.r.o., Opava, Czech Republic) with measuring unit AST
KAF 50 kN (LABORTECH s.r.o., Opava, Czech Republic) and evaluation software Test
& Motion (version 4.5.0.15, LABORTECH s.r.o., Opava, Czech Republic) at 21 ± 1 ◦C
laboratory temperature and 44 ± 4% relative air humidity. The testing of mechanical
properties during cyclic loading, i.e., tensile strength and extension upon rupture, was
based on setting the standard value obtained during static tensile test (ČSN EN 1465)
consisting of 7 adhesive bonds marked as Resin-Flat with testing speed 0.6 mm × min−1.
The testing speed during static test was chosen on the basis of the ČSN EN 1465 standard,
which defines the test duration in the interval of 60 ± 2 s.

The maximum average load of 5347 ± 157 N (average value from 7 Resin-Flat adhesive
bonds) was obtained. Cyclic loading (quasi-static test) consisted of 1000 cycles with testing
speed 6 mm × min−1 within the limits of 5%, 50% and 70% of maximum load. The lower
limit was 5% = 267 N and the upper limit was 50% and 70% from the maximum load,
i.e., 50% = 2674 N and 70% = 3743 N. The testing speed during the cyclic test was chosen
based on the characteristics of cyclic loading, which often results in sharp fluctuations in
its intensity. For this reason, the test speed was higher than for static tests. The time delay
between lower and upper limit was set for 0.5 s. When 1000 cycles were finished, a static
tensile test automatically followed and ran until complete failure of adhesive bond with
0.6 mm × min−1 speed. Static test was only realized if 1000 cycles were finished. If they
were not, the test was concluded. Every testing sequence consisted of 7 testing samples.

The analysis of variance was used to evaluate the executed experiments, i.e., ANOVA-F
test in STATISTICA 12 (version 12, StatSoft CR, Prague, Czech Republic) program. The
Resin-Flat was set as the reference. The statistical dependency of 0.05 limit (95% con-
fidence interval) between average and each experiment variant was evaluated. The
null hypothesis H0 presents a statistically insignificant difference between measured data
(p > 0.05). Alternative hypothesis H1 rejects null hypothesis H0 and presents statistically
significant difference between measured data (p < 0.05).

Hybrid layer of adhesive bonds was evaluated using scanning electron microscope
MIRA 3 TESCAN GMX SE (Tescan Brno s.r.o., Brno, Czech Republic). The interaction at
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interphase boundary between reinforcement/matrix and adherend/composite layer was
evaluated. Samples were coated with gold using Quorum Q150R ES (Tescan Brno s.r.o.,
Brno, Czech Republic) device for the microscopy.

3. Results and Discussion

Strength of adhesive bonds depends on many factors. An important factor is the
overlapping length, i.e., the area that conveys adhesion stress. It is not possible to apply a
random amount of adhesive layer during practical application. This restriction is due to
the increasing weight, constructional limitations, and shape complexity of the final prod-
uct. This study focuses on surface modification before adhesive bonding using forming,
specifically, adherend forming using a specific angle. Eventually, a wavy profile forming
on the surface helped the wetting of adhesive become more efficient [24,53–58]. The wavy
geometrical shape of a bonded surface usually had a positive effect on the tensile strength
of adhesive bonds [24,53–58]. However, the results did not demonstrate a significant in-
fluence of geometry of adhesive bonded surface by using two types of bonded material.
A significant improvement was observed by using reinforcing cotton fabric in the hybrid
adhesive layer. This was demonstrated by an increase in service life of the adhesive bond
during low-cycle fatigue, an essential aspect for adhesive bond application.

Adhesive bonds were initially evaluated by static tensile test. The mechanical prop-
erties of adhesive bonds (Resin, Erik, and Tera) and different lapping construction (Flat,
WH1, and WH2) under static tests are listed in Table 5. The influence of the shape change
along with the reinforcement fabrics on mechanical properties is described based on their
dependency in Figures 3–5 where the data are compared to the result of Resin-Flat bonds.

Table 5. Results of static tensile tests of adhesive bonds and statistical evaluation of data (p-value).

Adhesive Bond
Static Test

Tensile Strength Strain Modulus of Elasticity

Shape MPa p-value % p-value MPa p-value

Resin
Flat 7.38 ± 0.22 - 14.30 ± 1.88 - 52.46 ± 6.65 -

WH1 3.91 ± 0.23 0.01 4.51 ± 0.73 0.01 88.96 ± 16.02 0.01

WH2 2.45 ± 0.13 0.01 3.92 ± 0.54 0.01 63.67 ± 8.14 0.01

Erik
Flat 6.53 ± 0.38 0.01 8.00 ± 1.59 0.01 83.68 ± 10.87 0.01

WH1 5.31 ± 0.29 0.01 6.27 ± 0.65 0.01 85.18 ± 5.29 0.01

WH2 2.99 ± 0.33 0.01 6.69 ± 3.12 0.01 52.48 ± 17.16 0.50

Tera
Flat 7.12 ± 0.74 0.22 12.03 ± 2.70 0.07 61.53 ± 10.43 0.06

WH1 4.30 ± 0.83 0.01 4.92 ± 0.91 0.01 87.61 ± 7.91 0.01

WH2 2.67 ± 0.43 0.01 7.16 ± 3.14 0.01 44.99 ± 19.14 0.19

The static tensile test results demonstrated a quite severe deformation, 14.3 ± 1.88%,
for the Resin-Flat adhesive bond, as shown in Table 5. The adhesive bond strength, however,
was the highest, 7.38 ± 0.22 MPa, among all tested samples. The change of geometry from
standard lapped bond Resin-Flat construction to shaped lapped bonds Resin-WH1 and
Resin-WH2 did not have a positive influence on the tensile strength during static tests. As
shown in Figure 3, the strength of Resin-WH1 decreased by 47% to 3.91 ± 0.23 MPa, and
that of Resin-WH2 decreased by 67% to 2.45 ± 0.13 MPa.

The tensile strength of Erik-Flat decreased slightly by 10% to 6.53 ± 0.38 MPa com-
pared to Resin-Flat. The strength in Erik-WH1 decreased by 28% to 5.31 ± 0.29 MPa. The
drop in this case is not as big as by Resin-WH1. The strength in Erik-WH2 decreased
by 60% to 2.99 ± 0.33 MPa. This drop was 7% lower in sample Resin-WH2. The results
clearly demonstrate that the Erik fabric positively influenced the tensile strength in samples
Erik-WH1 and WH2, as seen in Figure 3.
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The Tera-Flat achieved 7.12 ± 0.74 MPa strength during static loading, which is 3%
lower compared to Resin-Flat. It is, however, statistically insignificant. The strength in
Tera-WH1 decreased by 42% to 4.30 ± 0.83 MPa. This drop was 5% lower than sample
Resin-WH1. The strength in Tera-WH2 decreased by 64% to 2.67 ± 0.43 MPa, 3% lower
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than Resin-WH2. The results demonstrate that the Tera fabric slightly increased the tensile
strength of Tera-WH1 and Tera-WH2, as seen in Figure 3.

The static tensile test results demonstrated quite severe deformation (strain), 14.3 ± 1.88%,
in Resin-Flat, as seen in Figure 4 A severe deformation points to a rather low load-bearing
capacity of the bond. Previous research also shows that an adhesive bond with such severe
deformation cannot withstand cyclic loading [19]. This fact was proven by cyclic loading
in 5–50% (267–2674 N) and 5–70% (267–3743 N) intervals, where the adhesive bond with
pure resin did not withstand the load in any of the intervals. The fracture area showed
adhesive-cohesive structure. The endurance of the resin bond was not influenced by WH1
and WH2 modification. In sample Resin-WH1, the deformation decreased to 4.51 ± 0.73%,
as shown in Table 5. In Resin-WH2, the deformation again decreased to 3.92 ± 0.54%. Too-
moderate deformation with moderate strength shows low endurance of the bond during
cyclic loading [19]. That is why the adhesive joints did not withstand the cyclic loading.

Deformation in Erik-Flat positively decreased to 8 ± 1.59%. This drop defines an
increase in the bond rigidity while maintaining strength and thus improved endurance
during cyclic tests, as shown in Figures 3 and 4. The deformation in Erik-WH1 positively
decreased to 6.27 ± 0.65%. Even though the construction/geometry of the bond was
changed, the rigidity was preserved, resulting into endurance of the bond during cyclic
loading in a 5–50% interval. Erik-WH2 showed a higher deformation, 6.69 ± 3.12%,
associated with a lower strength, as shown in Figures 3 and 4. This demonstrates a lower
endurance under cyclic loading.

Similar deformation occurred in the case of Tera-Flat. The observed deformation was
12.03 ± 2.70%, which is lower only by 2.3% (statistically insignificant, p-value 0.22). This
small difference in deformation caused a sufficient increase in rigidity of the bond under
cyclic loading, in both 5–50% and 5–70% intervals. Deformation in Tera-WH1 positively
decreased to 4.92 ± 0.91%, maintaining optimal ratio between strength and deformation
and thus the rigidity of adhesive bond, as shown in Figures 3 and 4. Tera-WH2 showed
7.16 ± 3.14% deformation. That is a rather huge deformation associated with a lower
strength. That demonstrates a low endurance during cycling loading.

Figure 5 shows the modulus of elasticity in the bonded samples. The Resin-Flat
bond exhibited a modulus of 52.46 ± 6.65 MPa. The modulus in the Erik-Flat bond in-
creased to 83.68 ± 10.87 MPa. In the case of the Tera-Flat bond, the modulus increased to
61.53 ± 10.43 MPa. The Erik-Flat and Tera-Flat samples showed higher modulus of elastic-
ity and thus improved performance under cyclic loading. The Resin-WH1 bond showed a
modulus of 88.96 ± 16.02 MPa, while the Erik-WH1 bond showed 85.18 ± 5.29 MPa and
Tera-WH1 showed 87.61 ± 7.91 MPa. In the case of wavy-shaped bond WH1, there was an
increase in the modulus of elasticity. The Resin-WH2 bond exhibited a lower modulus of
63.67 ± 8.14 MPa. Erik-WH2 bond showed a modulus of 52.48 ± 17.16 MPa, and Tera-WH2
showed 44.99 ± 19.14 MPa. Wavy-shaped bond WH2 exhibited a lower modulus compared
to WH1, which would affect endurance and fatigue properties under cyclic loading.

The results of cyclic mechanical tests of adhesive bonds with reinforcing fabrics Tera
and Eric with different bond shapes are listed in Table 6. The results of the static tests
showed that Resin-Flat, WH1, and WH2 did not withstand any intensity of cyclic loading.
Wave-shaped geometries of Resin-WH1 and WH2 did not affect mechanical properties
during static test positively enough to be able to resist the cyclic loading. As a result,
neither of the shaped adhesive bonds with pure resin performed well during the cyclic
loading in 5–50% (267–2674 N) and 5–70% (267–3743 N) intervals.

Erik-Flat withstood cyclic loading in the 5–50% interval with a moderate increase
in strength to 7.13 ± 0.52 MPa, as shown in Figure 6. The deformation increased to
12.97 ± 4.06% at the same time, as shown in Figure 7. The increased deformation leads to
endurance of the bond during cyclic loading. The bond did not reach the parameters high
enough to withstand 5–70% load.
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Table 6. Results of cyclic tensile tests of adhesive bonds in the load intervals 5–50% and 5–70%.

Adhesive Bond

Cyclic Test (5–50%) Cyclic Test (5–70%)

Tensile
Strength Strain

Finished Test
Samples

(1000 cycles)

Tensile
Strength Strain

Finished Test
Samples

(1000 cycles)

Shape MPa % MPa %

Resin
Flat - - 0/7 - - 0/7

WH1 - - 0/7 - - 0/7

WH2 - - 0/7 - - 0/7

Erik
Flat 7.13 ± 0.52 12.97 ± 4.06 7/7 - - 3/7

WH1 5.29 ± 0.32 5.99 ± 0.80 7/7 - - 0/7

WH2 - - 0/7 - - 0/7

Tera
Flat 7.45 ± 0.01 14.15 ± 2.82 7/7 7.49 ± 0.29 14.76 ± 2.41 7/7

WH1 5.66 ± 0.40 6.79 ± 0.58 7/7 - - 0/7

WH2 - - 0/7 - - 0/7
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Figure 6. Evaluation of the tensile strength of the adhesive bonds under static loading and cyclic loading in the load
intervals 5–50% and 5–70%.

Erik-WH1 showed strength (5.29 ± 0.32 MPa) and did not change significantly as
compared to static tensile strength, as shown in Figure 6. Deformation also did not show
significant changes (5.99 ± 0.80 MPa), as shown in Figure 7. Parameters were sufficient
to withstand 5–50% load, but they were not sufficient to withstand 5–70% load. Due
to lower strength and higher deformation, the adhesive bonds did not pass the cyclic
loading. Both Tera-Flat and Tera-WH1 showed enhanced tensile strength during cyclic
loading, along with reduced deformation. This shows a self-reinforcing effect, as shown in
Figures 6 and 7.

Tera-Flat exhibited 7.45 ± 0.01 MPa strength and 14.15 ± 2.82% deformation during
5–50% cyclic loading. It was even higher during 5–70% cyclic loading. The strength
of 7.49 ± 0.29 MPa together with 14.76 ± 2.41% deformation was observed. Strength
of sample Tera-WH1 increased to 5.66 ± 0.40 MPa together with the deformation of
6.79 ± 0.58%. The bond did not withstand 5–70% cyclic loading. Tera-WH2 did not
withstand any cyclic loading.
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It is evident from Table 6 that the Erik and Tera reinforcements positively influenced
the service life and therefore the safety of the adhesive bonds, especially for the bonds
marked as Flat and WH1, which correspond with the modulus of elasticity results. Similar
results, showing an increase in the service life and safety of the adhesive bonds under
cyclic loading by the formation of a composite adhesive layer, have been found by other
studies [35,59,60].

Figure 8 demonstrates viscoelastic behavior (creep) of Erik-Flat and Erik-WH1 during
the 5–50% cyclic loading. It clearly shows continuous extension during cyclic loading
corresponding to continuous bond fatigue. The longer the extension, the sooner the bond
breaks and does not withstand the given number of cycles (1000 cycles). Figure 8 also
shows that Erik-WH1 suffered longer extension, which results in lower endurance of the
bond. Figure 9 demonstrates cyclic loading of Tera-Flat and Tera-WH1. The behavior is
similar to Erik-WH1 (Figure 8). Tera-Flat undergoes lower extension during the cyclic
loading, resulting in enhanced capacity for subsequent maximum load. Thanks to this
characteristic, Tera-Flat withstood the 5–70% cyclic load.
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during 5–50% cyclic load.

Figure 10A shows a microscopic view of the Erik cotton fabric that was used as rein-
forcement in an adhesive bond. Figure 10B,C show apparent details in microstructures of
Erik fabric before and after alkali treatments, respectively. By analyzing the scanning elec-
tron microscopy (SEM) images, it was proved that alkali treatment dissolves surface layers
of lignin from the cotton fibers in the fabric. The Figure 10C also shows no disintegration
of the fiber bundles caused by the NaOH solution treatment. Disintegration of the fibers
due to alkali treatment is negative [36,61] and may have a significant negative impact on
the mechanical properties of the fibers in the fabric [62–65].
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weft of Tera fabric bonded with the resin is visible. It shows the intimate interaction of 
resin and reinforcing fabric consisting of cotton fibers along warp and weft. Figures 12A–
C and 13A show good wettability of bonded material (adherent) with resin. Wettability 
defines the basic assumption of quality in adhesive bonds [66–68]. A detailed look at Fig-
ure 12C reveals a slight delamination at the adhesive layer and adherend boundary in 
identical adhesive bonds due to cyclic loading. Figure 12B shows obvious delamination 
due to cyclic loading in adhesive layer. Not only is the damage to adhesive layer visible, 

Figure 10. SEM images: (A): Cotton fabric Erik (MAG 150×); (B): Detailed look at the fabric—warp (cotton fiber) without
alkali treatment (MAG 5000×); (C): Detailed look at the fabric—warp (cotton fiber) with alkali treatment in 10% NaOH
solution for 30 min (MAG 5000×).

The cross-section of adhesive bonds presented in Figure 11 clearly shows the difference
between each tested variant of adhesive bonds. It also shows the arrangement of adherent
and adhesive layers in the bonded material. Adhesive layer in Figure 11A,B is composite,
consisting of reinforcing cotton fabric Erik/Tera and resin (structural two-component epox-
ide resin). Furthermore, it demonstrates that every variant of the experiment had a different
thickness of the adhesive layer, listed in Table 4. The cross-sections (Figure 11A,C) show
integrity of adhesive layer, which was not exposed to the cyclic loading, and Figure 11B
shows adhesive layer exposed to 1000 cycles in 5–50% intervals (267–2674 N).
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Figure 11. SEM images of samples cut through the adhesive bond: (A): cut through Tera-Flat, 0 cycles (MAG 150×),
(B): cut through Erik-WH1, 1000 cycles in interval 5–50% (267–2674 N) (MAG 150×), (C): cut through Resin-WH2, 0 cycles
(MAG 150×).

From the cross-section of the adhesive bond presented in Figure 12A, the warp and
weft of Tera fabric bonded with the resin is visible. It shows the intimate interaction of resin
and reinforcing fabric consisting of cotton fibers along warp and weft. Figure 12A–C and
Figure 13A show good wettability of bonded material (adherent) with resin. Wettability
defines the basic assumption of quality in adhesive bonds [66–68]. A detailed look at
Figure 12C reveals a slight delamination at the adhesive layer and adherend boundary in
identical adhesive bonds due to cyclic loading. Figure 12B shows obvious delamination
due to cyclic loading in adhesive layer. Not only is the damage to adhesive layer visible,
but it also shows damage to the bonded material. Delamination in any part of an adhesive
bond leads to the possibility of rupture and thus damaging the integrity of the adhesive
bond, leading to failure [69]. Research results reveal that Tera-Flat after treatment with
10% NaOH solution for 30 min demonstrates improved service life of adhesive bonds
through 1000 cycles in intervals 5–50% (267–2674 N) and also in 5–70% (267–3743 N), as
shown in Table 5.
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derstand the fatigue and service behavior. A number of investigations have been carried 
out regarding adhesive bonds with modified adherend shapes under static loading 
[26,70]. However, in practical applications, the cyclic loading of non-flat geometries is 
more relevant. The practical solutions involve several curved elements which undergo 
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in interval 5–70% (267–3743 N) (MAG 300×); (B): cross-section of Erik-WH1, 1000 cycles in interval 5–50% (267–2674 N)
(MAG 1500×); (C): cross-section of Tera-Flat, 1000 cycles in interval 5–70% (267–3743 N) (MAG 1500×).
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Figure 13. SEM images of cross-section of tested adhesive bond: (A): cross-section of Resin-Flat (MAG 5000×), (B): cross-
section of Erik-WH1, 1000 cycles in interval 5–50% (267–2674 N) (MAG 5000×), (C): cross-section of Tera-Flat, 1000 cycles in
interval 5–70% (267–3743 N) (MAG 5000×).

Results of the SEM cross-section analysis focused on evaluating adhesive bonds
exposed to dynamic loading during cyclic tests. The images demonstrated initiation of
micro-cracks in adhesive bond, which leads to delamination. Small cracks appeared inside
the adhesive layer (Figure 13C), as well as on the boundary between the adhesive layer
and bonded material (Figure 13B). Adhesive bonds that were not exposed to cyclic loading
showed no micro-cracks after SEM analysis.

The research involved cyclic tensile testing of wavy-shaped adhesive bonds to un-
derstand the fatigue and service behavior. A number of investigations have been carried
out regarding adhesive bonds with modified adherend shapes under static loading [26,70].
However, in practical applications, the cyclic loading of non-flat geometries is more rele-
vant. The practical solutions involve several curved elements which undergo cyclic loading
and deformation. Sometimes, there is the necessity to create shaped bonds, which reduces
the strength substantially. Extensive research needs to be carried out with several other
shapes to find practical solutions that suit the design requirements while exhibiting good
mechanical performance and service life.

4. Conclusions

Experimental results of wavy-lap bonds with natural cotton fabric reinforcement
under cyclic loading proved that:

• Wave-shaped bonds WH1 and WH2 reduced the overall strength of the resin under
static tests. For Resin-WH1, the strength decreased by 47% to 3.91 ± 0.23 MPa. For
Resin-WH2, the strength decreased by 67% to 2.45 ± 0.13 MPa. Resin-Flat, WH1, and
WH2 failed the cyclic tests.

• The reinforcing fabric has a positive effect on the mechanical performance of the
adhesive bonds. The reinforcing fabrics Erik and Tera did not increase the overall
strength of the bond but positively reduced the deformation of the bond and thus
increased the elastic modulus and service life of the adhesive bonds under cyclic
loading. Erik-Flat and Erik-WH1 passed the 5–50% (267–2674 N) cyclic tests. Tera-Flat
and WH1 also passed the 5–50% (267–2674 N) cyclic test. Tera-Flat further passed the
5–70% (267–3743 N) cyclic test.

• SEM analysis showed a positive effect of alkali treatment (10% aqueous NaOH solu-
tion) on the fabric surface. The unwanted layers of lignin, oils, and fats were removed.
The SEM analysis showed improved wettability of the reinforcing fabrics Erik and
Tera due to the alkali treatment with 10% NaOH solution. The SEM analysis also
showed the formation of micro-cracks with subsequent delamination due to cyclic
loading at the adhesive/adherend interface and at the matrix/reinforcement interface.
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• The results of this research demonstrate the ability of natural fabrics to act as rein-
forcement to increase the service life and safety of hybrid adhesive bonds under cyclic
loading. Hybrid adhesive bonds create an interesting alternative in the design of
adhesive bonding technology. The use of shaped design for the overlapped bonds is
an interesting area that needs to be studied further.
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