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Abstract: Polylactic acid (PLA) was melt-blended with epoxy resin to study the effects of the reaction
on the mechanical and thermal properties of the PLA. The addition of 0.5% (wt/wt) epoxy to PLA
increased the maximum tensile strength of PLA (57.5 MPa) to 67 MPa, whereas the 20% epoxy
improved the elongation at break to 12%, due to crosslinking caused by the epoxy reaction. The
morphology of the PLA/epoxy blends showed epoxy nanoparticle dispersion in the PLA matrix that
presented a smooth fracture surface with a high epoxy content. The glass transition temperature
of PLA decreased with an increasing epoxy content owing to the partial miscibility between PLA
and the epoxy resin. The Vicat softening temperature of the PLA was 59 ◦C and increased to 64.6 ◦C
for 0.5% epoxy. NMR confirmed the reaction between the -COOH groups of PLA and the epoxy
groups of the epoxy resin. This reaction, and partial miscibility of the PLA/epoxy blend, improved
the interfacial crosslinking, morphology, thermal properties, and mechanical properties of the blends.

Keywords: toughness; thermal properties; interfacial crosslink; reaction

1. Introduction

Biodegradable polymers have attracted considerable attention in recent years owing to
their environmental effects. Petroleum plastics are being replaced by renewable, eco-friendly
materials. Biodegradable polymers, such as PLA [1], polybutylene succinate (PBS) [2],
thermoplastic starch (TPS) [3], starch [4], polysaccharides [5], carboxymethyl bacterial cellu-
lose [6], and pectin [7,8] have been widely studied. PLA is an eco-friendly polymer as it is
synthesized using lactic acid extracted from natural sources. PLA is a typical biodegradable
plastic [9] that can be used to replace commercial single-use plastics [10,11]. PLA is one of
most promising candidates to replace petroleum plastic as the monomers are produced from
renewable feedstock. PLA is synthesized from lactic acid using ring opening polymerization,
polycondensation, and enzymatic polymerization [12]. PLA is a thermoplastic material,
with high-mechanical properties, biodegradability, biocompatibility, and transparency. How-
ever, PLA has disadvantages such as brittleness, heat resistance, and barrier properties [13].
Property improvement of PLA has been investigated by several researchers [14–16]. Several
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studies have investigated the improvement of PLA brittleness and flexibility [14]. Polymer
blending and co-polymerization are two methods that can be used to improve polymer me-
chanical properties [17,18]. Notably, PLA has been previously reported as a coating material
to improve mechanical properties and water resistance of TPS [19].

Epoxy resin is a reactive polymer that contains epoxide groups in the structure, which
are used to crosslink with variant functional groups such as amides and carboxylic [20].
Bisphenol A based epoxy resin is the common epoxy resin, which is derived by the reaction
of thiol, alcohols, and amines with epichlorohydrin [20]. Epoxy resin is a substance that
is used to improve PLA owing to its increased toughness, low shrinkage, corrosion resis-
tance, and improved heat resistance [21–24]. Epoxy resins have epoxy groups that react
with amines [25], carboxylic acids, and hydroxyl groups [26]. Epoxy interacts with some
thermoplastics, such as polycarbonate [27], polyamine [28], and PLA [29]. Epoxy resin
acts as a bridge to connect the polymer on both reactive sides, thus allowing the epoxy to
bind different polymers [26]. In addition, chemical reactions influence the morphology,
melting, and crystallization behaviors that lead to property changes [10]. Nevertheless, a
high amount of epoxy resin creates a highly networked structure, resulting in a thermoset
polymer. Incorporation of epoxy resin into PLA increased molecular weight, and net-
worked and branched structures which slowed down the hydrolytic degradation of PLA by
approximately 130% compared to pure PLA [30]. Epoxy resin was used as a compatibilizer
to improve compatibility of the PLA/polyamide blend [31]. Reactive blending of epoxy
resin and PLA increased mechanical properties, melt strength, torque, toughness, and melt
viscosity, but decreased crystallinity of PLA [32,33]. These improvements were due to a
reaction between -COOH end groups of PLA and epoxy groups of epoxy resin [32,33].
However, the reaction mechanism, plasticizing effect, and morphology of epoxy resin
blending with PLA have not been reported.

Therefore, in this study, the effect of epoxy resin on PLA blending was investigated.
PLA was melt-blended with 0–20% epoxy at 170 ◦C for 10 min. Mechanical properties, mor-
phology, thermal properties, thermal stability, and the reaction mechanism were investigated.

2. Materials and Methods
2.1. Materials

Poly(lactic acid) (PLA) pellet (4032D, MW 100,000 g/mol, density 1.24 g/cc,
MFI = 7 g/10 min at 210 ◦C, NatureWorks LLC., Minnetonka, MN, USA) was purchased
from PTT Global Chemical Pub Co., Ltd., Bangkok, Thailand. Diglycidyl ether of bisphe-
nol A epoxy resin (grade 0302, liquid state) was purchased from EASY Resin Co., Ltd.,
Nonthaburi, Thailand.

2.2. Sample Preparation

PLA was blended with epoxy resin using a two-roll mill machine (Model PII140,
Pirom-Olarn, Bangkok, Thailand) at 170 ◦C for 10 min, and then compressed into sheets by
a hot compress at 170 ◦C for 10 min, followed by quenching at 10–25 ◦C. PLA was blended
with 0.5–20% (wt/wt), a monomer of epoxy resin without a hardener to study the effects of
the epoxy content. Code name and composition of the sample are shown in Table 1.

Table 1. Code name and composition of PLA and epoxy resin blend.

Sample PLA Epoxy Resin

PLA 100 0
PLA/epoxy0.5 99.5 0.5
PLA/epoxy1 99 1
PLA/epoxy2 98 2
PLA/epoxy5 95 5

PLA/epoxy10 90 10
PLA/epoxy20 80 20



Polymers 2021, 13, 2429 3 of 11

2.3. Tensile Properties

The tensile properties were measured following JISK-6251-7 using a tensile tester at a
crosshead speed of 10 mm/min with a gauge length of 10 mm. Bone-shaped specimens of
30 × 10 × 0.2 mm (length × width × thickness) were prepared using compression molding
at 170 ◦C for 5 min.

2.4. Scanning Electron Microscopy (SEM)

Morphologies of the blended samples were characterized using SEM (JSM-5910LV
JEOL Co., Ltd., Tokyo, Japan) at 15 kV. The samples were broken in liquid nitrogen,
followed by the coating of the fracture surface with a thin layer of gold using sputtering
(108 Auto/SE sputter coater, Cressington Co., Ltd., Watford, England).

2.5. Differential Scanning Calorimetry (DSC)

%Xc =

(
∆Hm − ∆Hc

H0
m

)
× 100 (1)

where ∆Hm and ∆Hc are the enthalpy of melting and cold crystallization, respectively. ∆H0
m

is the melting enthalpy of 100% PLA (93.7 J/g) [34].

2.6. Vicat Softening Temperature

The samples with dimensions of 10 mm × 10 mm × 3 mm (width × length × thickness)
were prepared using hot-compression molding at 170 ◦C for 5 min. The prepared samples
were then tested by increasing the temperature until the flattened needle penetrated 1 mm
into the surface using the ASTM D1525 standard. At least five specimens of each sample
were tested.

2.7. Nuclear Magnetic Resonance (NMR)

The spectra were acquired using NMR (NEOTM 500 MHz, Bruker Co., Ltd., Boston,
MA, USA). Samples were dissolved in a chloroform solvent (CDCL3) at 25 mg/mL before
observation. Analysis of NMR intensities via different statistical models was evaluated
using a custom-written Topspin 4.0.8 (Bruker BioSpin GmbH, Karlsruhe, Germany).

2.8. Statistical Analysis

The one-way ANOVA with the Statistical Package for the Social Sciences, SPSS Version
17 (SPSS, Armonk, NY, USA) was used to analyze the data. The differences found (p < 0.05)
were evaluated using Duncan’s test.

3. Results and Discussion
3.1. Mechanical Properties

PLA was melt-blended with epoxy resin (0–20% w/w) to observe the effect of epoxy on
the mechanical properties of the blends. The stress–strain curve, maximum tensile strength,
and elongation at break are shown in Figure 1a,b. The maximum tensile strength of the
neat PLA was 57.5 MPa, and the addition of 0.5% epoxy enhanced the maximum tensile
strength to 66.9 MPa due to crosslinking caused by the epoxy reaction. Increasing the
epoxy content extended the elongation at break of the blends, as a high crosslinking inside
the PLA phase led to the formation of a network structure [35]. The Young’s modulus
of PLA was 2.3 GPa, while PLA blend with epoxy 0.5, 1, 2, 5, 10, and 20% were 1.6, 1.7,
1.5, 1.6, 1.2, and 1.5 GPa, respectively. The epoxy resin reduced Young’s modulus of PLA,
owing to the partial miscibility between PLA and the epoxy [24]. The high amount of
epoxy acted as a plasticizer for the PLA, thereby reducing Young’s modulus and maximum
tensile strength, and increasing the elongation at break, owing to its effect on the enhanced
distance between the PLA molecules [29].
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3.2. Morphology

Figure 2 shows the morphology of the PLA blend with 0.5–20% epoxy resin. The
PLA/epoxy0.5 blend exhibited small epoxy particles (~200 nm) dispersed in the PLA matrix.
Holes of the removed epoxy particles from the PLA matrix were also observed (Figure 2a).
The formation of epoxy nanoparticles indicated a high compatibility between PLA and the
epoxy. The PLA blend with 1–2% epoxy exhibited fine epoxy nanoparticles distributed in
the PLA matrix without the removal of the epoxy particles, whereas a high epoxy content
(5–20%) suggested nanoparticles that were smaller than those in the PLA/epoxy0.5 blend
with a smooth fracture surface. This can be attributed to the high interfacial adhesion
between PLA and the epoxy through the crosslinking interfacial reaction between PLA and
the epoxy [24]. The small sizes of the epoxy particles and high interfacial adhesion resulted
in the high transparency of the blend due to low light scattering [36].

3.3. Differential Scanning Calorimetry (DSC)

DSC curves were used to determine the effect of the epoxy resin on the thermal
properties of the PLA/epoxy blends. The Tg and Tm were measured during the second
heating scan. Figure 3 shows the DSC curves of the PLA, epoxy, and PLA blend with
0.5–20% epoxy. The Tg and Tm of PLA were 60 ◦C and 166 ◦C and tended to decrease with
increasing epoxy content owing to small crystal sizes [37] and partial miscibility between
the epoxy and PLA blends, respectively [38]. The decrease in Tg indicated that the epoxy
acts as a plasticizer for the PLA. Large exothermic peak of the PLA/epoxy blends indicated
to recrystallization during second heating scan of DSC measurement, which presented
large endothermic peak of recrystallization at 110–135 ◦C. This recrystallization was not
observed in pure PLA.
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The addition of the epoxy led to an increase in the chain length and reduced the
mobility of the PLA chain [39]. The PLA crosslinked structure prevented the formation
of inter- and intramolecular interactions of PLA crystallinity [40]; this resulted in the low
crystallinity (0.6–3.6%) of the blends. The epoxy reaction reduced the number of PLA chain
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terminals in the structure and prevented the formation of nuclei as well as the growth of
the crystals [29,41].

3.4. Vicat Softening Temperature (VST)

The VST test was used to determine the thermal stability based on the heat distortion
temperature. The VST of PLA and the PLA blend with 0.5–20% epoxy resin are depicted
in Figure 4. The VST of the neat PLA was 59 ◦C, and when 0.5–2% epoxy was added, the
VST showed an increasing trend to 64.6 ◦C. The VST of the PLA/epoxy20 was reduced to
55.7 ◦C. The increased VST of the PLA/epoxy2 blend was due to the network structure of
PLA, that was a result of the crosslinking reaction. Improvement of the VST due to internal
crosslinking has been previously reported [42]. The decreased VST in the PLA blend with
5–20% epoxy indicated an excessive amount of epoxy and the crosslinking density inside
PLA that reduced the crystal formation of the PLA. Thermal stability improvement due to
a crosslinking structure and crystal formation has been previously reported [43].
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3.5. Reaction Mechanism

Figure 5 shows the 13C NMR spectra of the PLA, epoxy, and the PLA/epoxy20 blend.
The epoxy showed peaks of -CH3 (bisphenol A) at 30.7, oxirane ring carbons at 43.9 and 49.7
ppm, and bisphenol A carbons at 41.2, 68.0, 113.6, 127.3, 143.1, and 156.0 ppm [44]. Neat
PLA showed peaks at 16.7 (-CH3), 69.1 (methylene carbon), and 169.70 ppm (-C=O) [45].
The 13C NMR spectra of the PLA/epoxy blends showed the characteristic peaks of PLA
and epoxy resin at the same position as that of neat epoxy and PLA. New peaks were
observed at 21 and 67 ppm, corresponding to C10 and C11, respectively. Figure 6 shows the
1H NMR spectra of PLA, epoxy, and the PLA/epoxy20 blend. Epoxy showed peaks -CH3
of bisphenol A at 1.6 ppm (b), -CH2 of oxirane ring at 2.6 and 2.8 ppm (c), -CH of oxirane
ring at 3.29 ppm (d), -CH2 at 3.9 and 4.29 ppm (e), and aromatic protons of bisphenol A at
6.8 and 7.1 ppm [44]. Neat PLA showed peaks at 1.6 (a,-CH3) and 5.1 ppm (b,-CH). The
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1H NMR spectra of the PLA/epoxy blend showed characteristic peaks of -CH3 (1.6) and
-CH (5.1) at the same position as that of neat PLA. Furthermore, the 1H epoxy peaks of
bisphenol A (1.6, 6.8, and 7.1) shifted to lower positions, while the peaks of the oxirane
ring (2.6, 2.8, 3.29, 3.9, and 4.29) shifted to higher positions. New peaks were observed at
2.57 and 3.40 which indicated H7 and H6, respectively. The shifting of bisphenol A and
the oxirane ring, and the appearance of two new peaks, confirmed the reaction between
PLA and the epoxy. This also suggested a reaction between the epoxy groups of the epoxy
resin and the -COOH end groups of PLA (Figure 6c). Previous studies have reported on
the reaction between epoxy groups and -COOH groups [46,47]. This reaction improved the
tensile properties, toughness, morphology, and thermal properties of PLA.
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4. Conclusions

Epoxy resin was successfully blended with PLA to improve the mechanical properties
and reaction mechanism of the blends. The maximum tensile strength of PLA was improved
from 57.5 MPa (neat PLA) to 66.9 MPa with 0.5% epoxy, whereas the elongation at break
showed a significant increase with 20% epoxy. Morphology of the PLA/epoxy blends
showed nanoparticles dispersed in the PLA matrix, while a smooth fracture surface of
the 5–10% PLA/epoxy blends was observed due to the high interfacial adhesion between
PLA and epoxy. The Tm and Tg of the PLA/epoxy blends decreased with increasing
epoxy content, owing to the nucleating effect of small epoxy particle sizes, and the partial
miscibility between PLA and epoxy acting as a plasticizer, respectively. The VST of PLA
increased with 2% epoxy, while an excessive amount of epoxy reduced the VST due to
reduced crystal formation. NMR results confirmed the reaction between the -COOH
groups of PLA and the epoxy groups of the epoxy resin. This reaction improved the
mechanical properties, toughness, morphology, and thermal properties of the blends,
additionally resulting in high optical transparency. The PLA/epoxy blends also contained
unreacted epoxy groups that could react with other reactive functional groups for reactive
blending as a compatibilizer. PLA/epoxy can be applied for packaging, medical, and
agriculture applications.
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PLA polylactic acid
PBS polybutylene succinate
TPS thermoplastic starch
SEM scanning electron microscopy
DSC differential scanning calorimetry
Tm melting temperature
Tg glass transition temperature
NMR nuclear magnetic resonance
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