
polymers

Article

Biocomposites of Low-Density Polyethylene Plus Wood Flour or
Flax Straw: Biodegradation Kinetics across Three Environments

Anna K. Zykova 1, Petr V. Pantyukhov 1,2, Elena E. Mastalygina 1,2 , Christian Chaverri-Ramos 3 ,
Svetlana G. Nikolaeva 3, Jose J. Saavedra-Arias 3 , Anatoly A. Popov 1,2, Sam E. Wortman 4 and
Matheus Poletto 5,*

����������
�������

Citation: Zykova, A.K.; Pantyukhov,

P.V.; Mastalygina, E.E.;

Chaverri-Ramos, C.; Nikolaeva, S.G.;

Saavedra-Arias, J.J.; Popov, A.A.;

Wortman, S.E.; Poletto, M.

Biocomposites of Low-Density

Polyethylene Plus Wood Flour or Flax

Straw: Biodegradation Kinetics across

Three Environments. Polymers 2021,

13, 2138. https://doi.org/10.3390/

polym13132138

Academic Editors: Vincenzo Fiore

and Fabrizio Sarasini

Received: 31 May 2021

Accepted: 23 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics of
Russian Academy of Sciences, Kosygina st. 4, 119334 Moscow, Russia; zykovaak@yandex.ru (A.K.Z.);
p.pantyukhov@gmail.com (P.V.P.); elena.mastalygina@gmail.com (E.E.M.); anatoly.popov@mail.ru (A.A.P.)

2 Laboratory “Advanced Composite Materials and Technologies”, Department of Innovative Materials and
Technologies, Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russia

3 Departamento de Física, Facultad de Ciencias Exactas y Naturales, Campus Omar Dengo,
Universidad Nacional, Calle 9, Avenidas 0 y 1, 40101 Heredia, Costa Rica; ccramos@una.ac.cr (C.C.-R.);
snikolaeva17@gmail.com (S.G.N.); jsaavedr@una.ac.cr (J.J.S.-A.)

4 Department of Agronomy and Horticulture, University of Nebraska–Lincoln, 279 Plant Sciences Hall,
Lincoln, NE 68583-0915, USA; swortman@unl.edu

5 Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), Exact Sciences and
Engineering, Central Campus, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Brazil

* Correspondence: mpolett1@ucs.br

Abstract: The purpose of this study was to assess the potential for biocomposite films to biodegrade
in diverse climatic environments. Biocomposite films based on polyethylene and 30 wt.% of two
lignocellulosic fillers (wood flour or flax straw) of different size fractions were prepared and studied.
The developed composite films were characterized by satisfactory mechanical properties that allows
the use of these materials for various applications. The biodegradability was evaluated in soil across
three environments: laboratory conditions, an open field in Russia, and an open field in Costa Rica.
All the samples lost weight and tensile strength during biodegradation tests, which was associated
with the physicochemical degradation of both the natural filler and the polymer matrix. The spectral
density of the band at 1463 cm−1 related to CH2-groups in polyethylene chains decreased in the
process of soil burial, which is evidence of polymer chain breakage with formation of CH3 end
groups. The degradation rate of most biocomposites after 20 months of the soil assays was greatest
in Costa Rica (20.8–30.9%), followed by laboratory conditions (16.0–23.3%), and lowest in Russia
(13.2–22.0%). The biocomposites with flax straw were more prone to biodegradation than those
with wood flour, which can be explained by the chemical composition of fillers and the shape of
filler particles. As the size fraction of filler particles increased, the biodegradation rate increased.
Large particles had higher bioavailability than small spherical ones, encapsulated by a polymer. The
prepared biocomposites have potential as an ecofriendly replacement for traditional polyolefins,
especially in warmer climates.

Keywords: low-density polyethylene; lignocellulosic fillers; wood flour; flax straw; biocompos-
ites; biodegradation

1. Introduction

Very much attention of scientists nowadays has been focused on the research and
development of new composites based on polymeric materials, which can be disposed in a
safe way (i.e., biocomposites). According to Brebu (2020) [1], environmental degradation
of polymeric materials is caused by a combination of physical, chemical, and biologi-
cal processes. Temperature (thermal degradation), air (oxidative degradation), moisture
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(hydrolytic degradation), microorganisms (biological degradation), light (photo degrada-
tion), high energy radiation (UV irradiation), chemical agents (chemical corrosion), and
mechanical stress are among the dominant factors.

The majority of the investigations are devoted to structure and properties of polymer
blends or composites based on environmentally friendly polymer matrices, such as poly-
lactide (PLA) [2,3], polyhydroxybutyrate (PHB) [4], polyhydroxybutyrate-co-polyvalerate
(PHB-V) [5], and poly-ε-caprolactone (PCL) [6]. However, there has been another approach
in order to overcome the biggest disadvantage of such matrices: very high cost. Some
researchers consider hybrid materials based on synthetic matrices such as low density
polyethylene (LDPE) [7,8], linear low density polyethylene (LLDPE) [9] and high density
polyethylene (HDPE) [10], isotactic polypropylene (iPP) [11], natural rubber [12], or ther-
moplastic starch (TPS) [13,14] with natural fillers. This concept has several advantages
including usage of agricultural and industrial waste as fillers, such as wood flour [15],
cellulose [16], flax straw [17], banana [18], hemp, kenaf, wheat [19], rice [20], corn fibers [21],
and marine residues of animal origin (e.g., chitin from shrimp shell) [3].

The effect of environmental conditions on biodegradation of polymeric materials
were under the discussion in several works. Abiotic (temperature, soil moisture, and
soil physical–chemical properties) and biotic (microbiome) environmental factors were
determined as the most dominant in the polymer biodegradation process [22–26]. Shabani
and colleagues (2015) [27] developed and conducted the theoretical experiment in order to
estimate the possibility of virgin LDPE biodegradation under the action of Aspergillus niger
fungi dependent on various climate factors and changes. According to their findings, the
most effective LDPE biodegradation occurs in several parts of the world, including south
western Russia, central and eastern Argentina, Uruguay, southern Brazil and eastern United
States [27]. The conclusions were made based on the forecasting computer model, which de-
termined the most favorable locations for A. niger growth over the next 90 years, taking into
account predicting algorithms of future climate changing [27]. Jakubowicz et al. (2006) [28]
explored the effect of air humidity, water, and compost environment on degradation rate. It
was concluded that moisture had a significant accelerating effect on the thermal oxidation
process. Possibly, this can be explained by hydrolysis of esters in the humid air.

Hoshino et al. (2010) [29] compared the biodegradation of several biodegradable
polymers, including poly-(3-hydroxybutylate-valerate) (PHB/V), poly-(ε-caprolactone)
(PCL), poly-(butylene succinate) (PBS), poly(butylene succinate and adipate) (PBSA), and
poly-lactide (PLA) dependent on climate conditions of Japan. Temperature was strongly
correlated with biodegradation of PHB/V, PCL, PBS, and PBSA, and precipitation was
correlated with biodegradation of PCL and PBSA. Soil moisture is likely a better predictor
of biodegradation given that rainfall can have negligible effects on soil moisture if the soil
is already at or near field capacity. There was also a correlation between biodegradation
and total soil nitrogen, but total carbon, pH, and texture were less significant. In this study,
we investigated the biodegradability of composites based on LDPE and plant-based fillers
including wood flour and flax straw. These biocomposites could have application as the
basis for agricultural mulching films, molded goods, or packaging for consumer goods.
This type of biocomposites has several advantages, including the low cost of production,
usage of standard equipment, and simplicity of processing. In addition, the byproducts
from agriculture, woodworking, textile, and food industries can be sourced locally and
inexpensively and used as fillers.

Data on the thermal, mechanical, and other properties of the initial biocomposites
were published earlier [30] and partly mentioned in the current study. It was reported
that the size of filler particles had an influence on the kinetics of oxidative degradation
and water absorption in biocomposites with FS. The primary aim of this investigation
was to compare biodegradation rates of biocomposites between two diverse locations
characterized by differences in climate and soil. This study also aims to evaluate how the
lignocellulosic filler type (wood flour or flax straw) and particle size are affected by climate
and soil conditions during biodegradation.
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2. Materials and Methods
2.1. Materials

Wood flour (WF) and oil flax straw (FS) used in this study were provided by Novotop
and Kostroma State University from Russia, respectively. Both fillers contain cellulose (WF
47%, FS 53%), lignin (WF 20%, FS 15%), hemicellulose (WF 32%, FS 11%), proteins (WF
0.3%, FS 6%), and fats (WF 0.4%, FS 3%) (Zykova et al., 2017).

Low-density polyethylene (LDPE 15803-020, MFI/190 ◦C/2.16 kg = 2 g/10 min, den-
sity = 0.92 g/cm3, Tm = 108 ◦C, χ = 26%) was supplied by Kazanorgsintez (Kazan, Russia).

2.2. Composite Preparation

FS stems were stripped of seeds. Both WF and FS were dried in air-circulating oven
LOIP LF-120/300-VS2 (Saint Petersburg, Russia) at 105 ◦C for 3 h. Then, they were crushed
by a rotary mill Vilitek DM-6 (Moscow, Russia) and filtered through a sieve set Matest
A059-02KIT (Arcore, Italy) and laboratory sieves with a mesh of 80, 140, and 200 microns.
Four fractions of each filler were collected from the sieves for the further work (0–80,
80–140, 140–200, and 0–200 µm).

The mixing of the polymers with the fillers was performed with 70% wt. of LDPE
and 30 wt.% of filler (WF or FS). Plasti Brabender Plasti-Corder Lab-Station (Duisburg,
Germany) with twin screw cam mixer was employed for making composites. The mixing
temperature was 140 ◦C, and screw speed was 30 rpm. Then, the obtained pieces of
composites were pressed for 3 min by a hydraulic press VNIR PRG-1–10 (Moscow, Russia)
under the pressure of 7 kN with the plates heated to 135 ◦C. In order to form a fine
crystalline structure, the obtained hot films were immediately immersed to the cool (10 ◦C)
water. As a result, round films with the diameter of 70 mm and thickness of 150–200 µm
were obtained to be used in biodegradation test.

2.3. Measurements

The biodegradation tests were carried out in a natural field soil and a soil mix (ASTM
D 5988-12). The soil mix included equal parts of sand, horse manure, and garden soil,
consistent with an approach previously used [7,8]. The soil mix was held for 2 months at
20 ± 3 ◦C with humidity maintained at 70% by watering and stirring. The film samples
were placed vertically in the soil (30 cm depth) and carried out for 20 months with periodical
inspections. Differences in appearance, mass, chemical composition, and degradation of
the composites were analyzed.

Biodegradation was assessed in three different environments including:

1. Prepared soil mix under laboratory conditions (constant temperature (23 ± 3 ◦C) and
constant humidity (60%)).

2. Prepared soil mix under ambient field environmental conditions in Moscow region,
(Kubinka, Moscow region, Russia). A natural soil layer was removed (depth of 30 cm)
and replaced with the prepared soil mix. There was no barrier between natural soil
and the prepared soil mix.

3. Natural soil (not prepared soil mix) under ambient field environmental conditions in
an experimental field at the Universidad Nacional (Heredia, Costa Rica) [30].

Moscow region has continental climate with expressed differences in temperature
between summers and winters. The average annual temperature is +6 ◦C, but in February
it is −12 ◦C and in July +20 ◦C. About 650 mm of atmospheric precipitation falls in Moscow
region per year.

Heredia has a tropical savanna climate. The differences in the temperature between
seasons are not clearly expressed (annual average temperature is +22 ◦C), but the precip-
itation has significant differences between dry winter and humid summer. The annual
atmospheric precipitation is about 2000 mm.

The prepared soil mix (used in the laboratory conditions and field in Moscow region)
and the natural Costa Rican soil were analyzed for chemical properties (Table 1). The soil
mix was characterized by greater organic matter (138 g kg−1) and nitrate (728 mg kg−1)
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compared to the Costa Rican field soil (total organic C = 33.4 g kg−1; nitrate = 2 mg kg−1),
and pH was similar between them (prepared soil mix = 6.5; Costa Rica soil = 6.2).

Table 1. Chemical properties of soil analyzed from Russia and Costa Rica.

Soil Property Russian Soil Mix Costa Rica Field Soil

Organic matter (g kg−1) 138 -
Organic carbon (g kg−1) - 33.4

pH (1:1 soil:water) 6.5 6.2
Organic nitrogen (g kg−1) - 2.8

Nitrate (mg kg−1) 728 1.6
Ammonium (mg kg−1) 21 3.6
Phosphorus (mg kg−1) 421 8
Potassium (mg kg−1) 856 417

Optical microscopy (Carl Zeiss Axio Imager Z2M with AxioVision ver. 4.7.1, magnifi-
cation 50× and 200× in transmitted and reflected light) was employed to find differences
between initial samples and the same samples after soil immersion for 20 months.

Mechanical properties of materials before and after burial were investigated according
to ISO 527–1:2012 via universal testing machine Devotrans DVT GP UG (Istanbul, Turkey).
The samples were stretched to failure at a temperature of (22 ± 2) ◦C, and crosshead
velocity was 0.25 mm/min. The dimensions of the samples: 70 mm × 10 mm × 0.15 mm,
effective length—40 mm. The data for 7 samples were averaged. Differences among means
were determined using 95% confidence intervals.

Chemical properties of materials before and after burial were studied on a FT-IR spec-
trometer Perkin Elmer Spectrum 100 (Waltham, MA, USA) at a temperature of (22 ± 2) ◦C
in the range of wave numbers 4600 ≤ ν ≤ 650 cm−1 by a method of frustrated total internal
reflection. Intensities of several peaks referring to polymer oxidation process (i.e., carbonyl
group), microbiological colonization, and polymer degradation were determined, and its
dynamics during biodegradation tests were detected.

All laboratory tests were carried out using scientific equipment at the Center of Shared
Usage «New Materials and Technologies» at Emanuel Institute of Biochemical Physics and
Joint Research Center at Plekhanov Russian University of Economics.

3. Results

The initial color of composites with WF was darker than FS (Figure 1), and both
composites became darker after soil burial. The samples after soil burial in Costa Rica
had mechanical damage likely due to disturbance from plant roots, insects, and animals
(Figure 2). Filler particles (wood flour and flax) near the material surface vanished during
soil burial leaving only a spongious polyethylene layer. Film samples of biocomposites
with fraction 0–80 µm exhibited a visibly smoother surface both before and after soil burial.
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Figure 2. Photographs of damaged of (a) 70LDPE-30WF_80-140, (b) 70LDPE-30FS_140-200, (c)
70LDPE-30FS_0-200, and (d) 70LDPE-30WF_0-200 samples after 20 months of biodegradation in
Costa Rica.

The trends of degradation tests in different climatic conditions were partly discussed
earlier [30]. The weight loss was greater for FS composites than that of the WF composites
(Table 2). The biodegradation rate in Costa Rica soil and field conditions was greater than
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in Russia field conditions with prepared soil mix (Table 2). The enhanced biodegradation
rate of composites in Costa Rica can be associated with the higher temperature and hu-
midity than the others ambient tested. In addition, the dependence of weight loss on the
filler fraction was found. The larger the filler particles were, the faster the weight loss
during biodegradation was. The complex fractions (0–200 µm) of WF composites lost even
more weight than the biggest fraction (140–200 µm). However, the FS complex fractions
demonstrated the average value between all the fractions. Samples buried in Costa Rica
had many holes, cracks, and torn edges, which suggests plant roots and soil meso- and
macro-fauna could have contributed to physical degradation (Figure 2).

Table 2. Weight loss of biocomposites in different climatic conditions.

Climatic
Conditions

Time of Exposition,
Months

Weight Loss, %

70 LDPE/30 WF 70 LDPE/30 FS

0–80 80–140 140–200 0–200 0–80 80–140 140–200 0–200

Laboratory
conditions

0.5 0 0.2 0.8 1.3 4.8 7.2 8.61 6.2
2 0.7 2.8 6.7 8.6 14.2 16.6 17.60 14.8
4 4.2 8.0 12.2 12.9 16.6 18.8 19.94 17.4
6 7.7 11.0 14.7 15.5 17.8 19.9 21.20 18.5
8 11.4 13.6 16.6 17.6 18.8 20.8 22.04 19.4

10 13.1 14.6 17.3 18.7 18.8 21.0 22.38 19.8
12 13.3 14.9 17.5 19.0 18.8 20.9 22.38 19.3
14 15.2 16.3 18.2 20.1 19.2 21.5 23.05 20.1
16 15.5 16.5 18.7 20.4 19.4 21.5 23.14 20.2
20 16.0 16.9 19.2 21.1 19.7 21.7 23.30 20.7

Open air,
Russia

6 6.2 7.2 8.2 9.2 10.2 11.2 12.2 13.2
10 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5
20 13.2 15.4 17.2 19.5 19.3 20.7 22.0 20.1

Open air,
Costa Rica

2 5.2 6.1 8.4 21.9 17.5 18.9 21.3 17.1
6 10.4 12.2 15.2 26.7 19.3 21.4 24.9 20.7

12 28.4 * 18.1 20.5 30.5 22.1 24.7 28.6 24.9
20 30.9 * 20.8 23.5 31.8 23.5 26.1 30.6 26.3

* Samples were physically damaged in soil.

The microphotographs of the samples after burial in soil are presented in Figure 3.
Cracks, caverns, and erosions were detected in all samples. The biodeterioration of the
filler particles was found in the majority of the samples, which provides the confirmation
of microbial colonization into the composite. In several samples, fungal hyphae formed
a transparent net of mycelium. The hyphae of fungi and humidity have the potential to
penetrate a composite and inflict great damage; in particular, the cellulose content of the
lignocellulosic filler is a source of nutrition for the microorganism [31,32].
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Figure 3. Microphotographs of (a) 70LDPE-30WF_140-200 Costa Rica, (b) 70LDPE-30WF_0-80
Costa Rica, (c) 70LDPE-30FS_0-80 Russia, and (d) 70LDPE-30WF_0-80 laboratory samples after
biodegradation test. Reflected light, magnification 200×.

All the mechanical properties of initial samples and samples after biodegradation
under three environments are collected and presented in Figure 4. The mechanical charac-
teristics of initial biocomposites are acceptable for the most part of possible applications.
After biodegradation, the tensile strength of all the composites decreased by an average of
25%, elongation at break increased by an average of 185%, and elasticity modulus decreased
by 55%, which can be associated with the biodegradation of lignocellulosic filler which
may contribute the reduce composite stiffness. The decrease in the elasticity modulus
and consequent increase in the elongation at break might be associated with the absorp-
tion of water by the lignocellulosic filler, due its hydrophilic nature, which contributes
to the biodegradation and plasticity of the composite [33]. The tensile strength of initial
biocomposites depends on the nature of the filler and its particle size. However, particle
size appears to be a more pronounced effect. The lower the particle size is, the higher the
tensile strength of biocomposites on its base is. Comparing the two fillers, there was no
obvious difference in the reduction of tensile strength after biodegradation. Significant
differences were not detected in the mechanical properties after biodegradation under
different environments. This can be explained by the fact that only the most defect-free
parts of the samples were cut away for the mechanical tests, and the environments differ
by the size and quantity of physical defects in the sample.
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Changes in chemical composition of the samples were analyzed by FTIR-spectroscopy
(ATR method). The FTIR spectra from the lignocellulosic fillers are previously pub-
lished [34]. FTIR spectra of LDPE/WF composites and LDPE/FS (initial samples and
samples after soil tests for 20 months) are shown in Figure 5a,b, respectively. All the spectra
were normalized by spectral intensity of the band at 2915 cm−1. Composites buried in
different soil conditions had different changes in chemical composition. FTIR-spectra of
initial LDPE/WF and LDPE/FS composites have an absorbance peak at 1030 cm−1, which
corresponds to the band of skeletal vibrations of C-O groups in cellulose. The broad peak
around 3500–4000 cm−1 is assigned to O-H stretching vibrations from -OH groups of ligno-
cellulosic substances. The absorption band observed at 1710 and 1740 cm−1 is indicative
of the presence of the lignin component in the filler. The spectra of all initial samples
have absorbance in the region of 1550–1650 cm−1 due to C=C vibrations in aromatic rings
of lignin.
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samples after soil tests for 20 months in laboratory conditions, in Russia, and in Costa Rica.

After a recovered soil test under laboratory conditions, the intensity of peaks cor-
responding to functional groups of lignocellulosic components decreased. The spectral
density of band 1030 cm−1 significantly decreased after soil burial under lab conditions
compared to these bands for initial samples (Figure 6). This behavior may be attributed to
the chain scission of crystalline and amorphous cellulose chains during biodegradation [35].
From the FTIR spectra of composite samples after soil burial in Costa Rica, absorption band
1030 cm−1 grew compared to initial samples. This was most evident for the composites
with the smallest fraction of WF particles (LDPE/WF 0–80 µm). This composite had the
most intensive biofouling by fungal mycelium on the surface according to microscopy
analysis [36]. The band increases at 1030 cm−1 for the sample from Costa Rica can be
associated with the increase in chitin molecules contained in fungal cell walls [36].

According to biodegradability test results, LDPE as a part of LDPE/WF composites
underwent transformations of molecular structure. We observed a change in optical density
ratio of the peaks at 2915 cm−1 (CH asymmetrical stretching vibrations) and 1463 cm−1

(C-H scissoring bending vibrations) [37,38]. The band 1463 cm−1 assigns to quantity of CH2-
groups in polyethylene chains (Figure 6). The primary mechanism for the biodegradation
of high-molecular-weight polymer is the oxidation or hydrolysis by enzyme creating
functional groups that improve the hydrophilicity [39]. Consequently, the main chains of
polymer are degraded resulting in polymer of low molecular weight and more accessible
for further microbial assimilation [39].
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4. Discussion

The films of prepared biocomposites with the smallest fraction (0–80 µm) had a
smoother surface than the others. Small particles of the fillers were better encapsulated by
the LDPE polymer matrix than the larger ones; apparently, this inhibits the biodegradation
of composites with small particles (supporting results to follow). The darkening of the
samples after soil burial can be explained by several factors: blackening of filler particles;
refraction of rays in the holes and cracks in the biocomposite; diffusion of soil into the
formed cavities inside the biocomposite; and oxidation of the polymer matrix. The impor-
tance of temperature relative to soil nitrogen was further evidenced by differences between
Costa Rica and the laboratory environment; the temperature was greater and soil nitrate
was lower in Costa Rica compared to the lab, yet biodegradation was greater in Costa Rica
(Table 2).

The weight loss of FS composites was greater than that of the WF composites (Table 2).
This can be explained by both the chemical composition of fillers and the shape of filler
particles. Flax straw has greater cellulose, protein, and fat content compared to wood flour.
It was discovered that composites with bigger particles are more prone to biodegradation
than those with small particles perhaps because small particles are better encapsulated
by the synthetic polymer matrix. Moreover, bigger filler particles had a greater length-
to-diameter ratio and connected with each other forming a “net”, which allowed for the
penetration of microorganisms. This is consistent with previous work [7], where it was
found that as the length-to-diameter ratio of fillers increased, the weight loss rose.

The biodegradation process in Costa Rica was a lot quicker than in Russia (Table 2).
This is likely due to the warmer temperatures and greater precipitation in Costa Rica and
highlights the importance of weather relative to soil properties in predicting biodegradation
rates. Hoshino et al. (2001) [29] found strong correlations between soil temperature and
biodegradation of several biobased polymers, and soil nitrogen was also a strong predictor
of biodegradation. Kim et al. (2006) [35] also report that low soil temperature can promote
a slow rate of hydrolysis of lignocellulosic material filled in polymer composites. In this
study, biodegradation was greater in Costa Rica despite substantially lower soil nitrate
and organic matter, which suggests that the soil temperature and precipitation were more
important drivers of degradation.
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After biodegradation in Costa Rica, samples had many physical damages (Figure 2),
which is an important initial stage of biodegradation. Because of abiotic reactions (oxida-
tion, hydrolysis, photo, or thermal degradation) at the initial stage, polymer decreases its
molecular weight, the film sample becomes more fragile and brittle, and it falls apart. At
the second stage, biotic processes caused by microorganisms begin, up to full mineraliza-
tion [40].

According to the results of the mechanical assay of initial composites, the nature of the
filler has little effect on the tensile strength, but it depends on the particle size (Figure 4).
Elongation at break depends both on the filler nature and dispersivity. Apparently, small
particles interfere with the straightening of polyethylene macromolecules less than the
large ones. It is likely that more elongated particles of FS (L/D ratio of FS = 6.7, L/D
ratio of WF = 4.5) [41] inside randomly oriented films are more likely to interfere with the
straightening of polyethylene macromolecules.

After biodegradation, mechanical properties of all the biocomposites changed sig-
nificantly, they become more elastic but less durable. Results can be attributed to the
biodegradation of filler particles that interfered with the straightening of polyethylene
macromolecules at the elongation process. The biodegradation of some major components
presented in the lignocellulosic fillers used may contribute to this result. The biodegrad-
ability of lignin and cellulose results from the hydrolytic depolymerization of these major
lignocellulosic filler components to low-molecular-weight materials which then yield
monomeric units [35]. The biodegradability of cellulose possibly involves random chain
scission of the bonded β-1,4-glucosidic and that of lignin involves cleavage of the chains of
the phenyl propane units [35]. As a result, the biodegradation of filler particles result in
a more elastic composite, since lignocellulosic fillers are more rigid than polymer matrix
and also contribute to restricting the flow of polymer chain segments from the matrix [42].
Formed voids contribute to a decrease in the stiffness of the composite and an increase in its
elasticity. However, oxidation of the polymer matrix due to the action of microorganisms’
metabolites at the large composite surface area leads to a decrease in tensile strength. At
the same time, the oxidation of polyethylene should be accompanied by enhanced rigidity
and reduced elongation [8,43]; however, the effects of this process are less than the effects
of macromolecules’ straightening.

The decrease in band 1030 cm−1 (Figure 6) after the biodegradation test was attributed
to the destruction of WF compounds in the composites followed by the weight loss of the
samples. Samples with bigger fractions had fungal damages, concentrated in filler particles.
For the smallest fraction, a continuous network of mycelium was visible on the surface. It
is likely that the increased band at 1030 cm−1 is related to the increased number of C-O
groups in chitin molecules contained in fungal cell walls and consistent with previous
research [36]. An increase in spectral density of the band at 1645 cm−1 (corresponding to
N-H bending vibrations) indicates accumulation of proteinic materials [43] on the sample
surface, which also suggests materials biofouling. The same behavior was also verified by
Fabiyi et al. (2011) [37] in composites of HDPE/wood flour. In the process of soil burial,
the ratio of D1463/D2915 decreased, which is evidence of polymer chain breakage with
formation of CH3 end groups. The band intensity at wavenumber of 910 cm−1 increased
after soil burial in Costa Rica, which could be explained by a formation of C=C bonds in
the polymer chains.

Probably, the degradation of biocomposite materials begins from the adhesion of fungi
and bacteria on the surface of film sample [44,45]. Lignocellulosic filler particles nearby the
surface biodegrade first. Elongated particles with large diameters are more susceptible to
biodegradation than the small spherical ones, as represented by the degradation scheme
proposed in Figure 7.
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During the biodegradation of lignocellulose, the metabolites of microorganisms are
produced. Metabolites provoke the oxidative degradation of polymeric matrix, and then
the microbiological processes take place. Physical destruction caused by roots of plants,
insects, worms, animals, and temperature changes accelerates the degradation of polymer
matrix because of higher accessibility of filler particles for microorganisms. In warmer
climates, these processes are more intensive. The period of biodegradation of biocomposites
in warmer climate is less, and even biocomposite materials with polyethylene may be
biodegradable there. For that reason, the developed biocomposites may be positioned as
the ecofriendly replacement for traditional polyolefins in countries with warm climate.

5. Conclusions

Across diverse environments, the weight loss during soil burial of biocomposites
was greatest in Costa Rica, followed by laboratory conditions, and lowest in Russia. The
highest soil humidity in Costa Rica contributed to accelerating the biodegradation rate
due to the cellulose main chain scission. Therefore, the hyphae of fungi and humidity
could penetrate into the composite and inflict great damage to the samples tested. The
larger the size of particles in the biocomposite material was, the greater the weight loss rate
after biodegradation was. Destruction of the polymer matrix was shown by the reduced
ratio 1465/2915 cm−1 in IR spectra for all the samples after biodegradation. Tensile
strength and elasticity modulus of all the samples were reduced after soil burial. The
tested biocomposites demonstrated excellent potential for application in agricultural or
packaging industries as ecofriendly alternatives to polyethylene films, especially in warmer
climates where biodegradation rates may be higher.
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