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Abstract: Literature has reported the successful use of 3D printed polyetheretherketone (PEEK) to
fabricate human body implants and oral prostheses. However, the current 3D printed PEEK (brown
color) cannot mimic the vivid color of oral tissues and thus cannot meet the esthetical need for dental
application. Therefore, titanium dioxide (TiO2) and ferric oxide (Fe2O3) were incorporated into PEEK
to prepare a series of tooth-color and gingival-color PEEK composites in this study. Through color
measurements and mechanical tests, the color value and mechanical performance of the 3D printed
PEEK composites were evaluated. In addition, duotone PEEK specimens were printed by a double
nozzle with an interface between tooth-color and gingival-color parts. The mechanical performance
of duotone PEEK with two different interfaces (horizontal and vertical) was investigated. With the
addition of TiO2 and Fe2O3, the colors of 3D printed PEEK composites become closer to that of dental
shade guides. 3D printed PEEK composites generally demonstrated superior tensile and flexural
properties and hence have great potential in the dental application. In addition, duotone 3D printed
PEEK with a horizontal interfacial orientation presented better mechanical performance than that
with a vertical one.

Keywords: polyetheretherketone (PEEK); mechanical performance; color measurement; dual-color
3D printing; prosthodontics

1. Introduction

Polyetheretherketone (PEEK) is a high-performance semi-crystalline polymer with
excellent biocompatibility and great processability [1]. PEEK possesses great potential
as oral prosthetic materials given its lightweight and lower modulus (3–4 GPa), which
makes it a suitable alternative for conventional Co-Cr alloy (230 GPa) and Ti (104 GPa) [2].
In recent decades, PEEK has been widely used to fabricate crowns and frameworks for
fixed and removable prostheses by using injection molding, milling, and 3D printing [3,4].
Despite the disadvantage of comprised esthetics, PEEK has great potential for further
modification of various properties [5–8]. Much research has been performed to investigate
the modified PEEK materials for enhanced performance [9]. By using compounding and
injection molding [10], Ma et al. reported preparation of HA/PEEK composites and the
enhanced osteogenesis acquired. Han et al. investigated the carbon fiber reinforced PEEK
(CFR-PEEK) composite fabricated by fused deposition modeling (FDM), and CFR-PEEK
revealed better mechanical strengths than the printed pure PEEK [8]. Another research
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introduced electrostatically bonded PEEK composites with increased mechanical properties
and osseointegration reported [11].

3D printing has a great ability to process thermoplastics such as PEEK, with high
production efficiency and low material waste compared to the traditional and subtractive
techniques [12]. Recent studies also proposed the dual-nozzle printing technology for 3D
printing of different materials [13], which could provide technical support for dual-color
3D printing of oral prosthetic materials with tooth-like and gingiva-like colors. Currently,
the application of 3D printed PEEK is relatively few, and dual-color printing of PEEK
has not been reported in dental applications. Several cases have reported the successful
use of 3D printed PEEK to fabricate implants, artificial ribs, and removable prosthesis
frameworks [12,14–16]. The limitation is that the 3D printed PEEK has a brown color,
which resulted in comprised esthetics and hence affects its wide application [17]. Chen et al.
reported the fabrication of a speech aid prosthesis using titanium dioxide (TiO2)/PEEK
framework with enhanced mechanical strength and improved esthetics. Removable dental
prostheses consist of tooth-color and gingival-color parts to mimic both hard and soft oral
tissues [18]. The single-color PEEK material, however, cannot imitate the tooth and gingival
colors at the same time [14]. Apart from compromised esthetics, the PEEK framework
requires subsequent laboratory procedures like casting and molding to make the definitive
prosthesis. Conventional fabrication procedures can be time-consuming and technology
demanding. Moreover, the binding interface between different parts cannot be eliminated
compared to that of one-piece printing by a double nozzle.

Therefore, this study serves as a proof-of-concept and presents the preparation, dual-
nozzle printing, and performance evaluation of the dual-color PEEK composites. A series
of dual-color PEEK filaments were developed by incorporating various content of titanium
dioxide (TiO2) and ferric oxide (Fe2O3) into PEEK to alter the brown color to white and
pink [14]. Then, dual-color PEEK specimens were printed using a custom dual-nozzle
printer (Surgeon Pro; Shaanxi Jugao-AM Technology Co., Ltd., Xi’an, China) with optimized
printing parameters [19–21]. Furthermore, duotone PEEK specimens with different inter-
facial orientations were printed using dual-color PEEK filaments by a double nozzle [13].
All specimens were evaluated by observation and instrumental color measurements, and
the color difference was calculated according to the classical CIE76 formula [22]. In ad-
dition, mechanical performance of the standard test specimens was investigated using a
mechanical testing machine (MTS). Their tensile and flexural properties were analyzed and
compared with the frequently used dental polymethylmethacrylate (PMMA). In addition,
duotone specimens with different interfacial orientations were compared based on their
mechanical performance.

2. Materials and Methods
2.1. Materials Preparation

The PEEK powder (VICTREX, Lancashire, UK) was mixed with nano-titanium dioxide
(TiO2) and ferric oxide (Fe2O3) (YIPIN Bio-Tech Co., Ltd., Ningbo, China) in this study to
prepare a series of white and pink PEEK composites which imitate the colors of tooth and
gingiva, respectively. The PEEK composites were mixed (mix proportions shown in Table
1) by a V-type mixer at 50 rpm for 2 min and dried in an oven at 120 ◦C for 3 h before use.

Table 1. The mix proportions of PEEK composites.

Description PEEK (wt.%) TiO2 (wt.%) Fe2O3 (wt.%)

PEEK-D1 80% 20% 0%
PEEK-D2 90% 10% 0%
PEEK-D3 95% 5% 0%
PEEK-G1 79% 20% 1%
PEEK-G2 89% 10% 1%
PEEK-G3 99% 0% 1%
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The mixtures were then processed separately by a twin-screw extruder (YTG-20,
Shannxi Jugao-AM Technology Co., Ltd., Xi’an, China) to produce continuous filaments.
The filaments (1.7 mm diameter) were cooled to 50 ◦C and rolled onto a reel throughout
the extrusion process. Subsequently, all specimens were printed using the white (D1, D2,
D3) and pink filaments (G1, G2, G3), and the printing parameters were optimized (Table 2).

Table 2. Dual-nozzle 3D printing parameters.

Description Value

Nozzle diameter 0.4 mm
Nozzle temperature 420 ◦C

Nozzle pitch 87.5 mm
Bead width 0.36 mm

Layer thickness 0.1–0.2 mm
Printing speed 40 mm/s

Raster angle ±45◦

Ambient temperature RT
z-axis layer 0.2 mm

Infill percentage 100%

2.2. Color Evaluation

A Chroma Meter (TS7X, 3nh, Shenzhen, China) with the CIELAB color system was
used to evaluate the color of the 3D-printed PEEK. The CIELAB system is three-dimensional,
where a* axis is relative to the green (−) to red (+) opponent colors, b* axis represents the
blue (−) to yellow (+) opponents, and L* axis measures relative white (100) to black (0)
color. The disc-shaped specimens (5 per group) were printed using the prepared filaments
separately with a diameter of 15 mm and a thickness of 3 mm. Pure PEEK specimens were
printed using Jugao-MT45 PEEK filaments from the same company.

All specimens were polished by hand with 1500, 2400, and 3000 grit sandpapers
to smoothen the surface (STARCKE, Melle, Germany). The color measurements were
performed with a white as well as a black background and repeated for each sample to
measure the L, a*, and b* values (Table 1, Table 2). The white PEEK specimens (D1, D2,
D3) were compared to the VITA Classical shade guide (Vita Zahnfabrik, Bad Säckingen,
Germany) and pink specimens (G1, G2, G3) were compared to the Shofu gingiva shade
guides (Shofu Dental Corp., Fukuoka, Japan) and IPS ceramic gingiva shade guide (Ivoclar
Vivadent, Schaan, Liechtenstein) (Figure 1). The color difference (∆E*) was observed and
calculated according to the classical CIE76 formula [22]:

∆E* = [(∆L*2) + (∆a*2) + (∆b*2)]
1
2

(1)

2.3. Mechanical Evaluation

Mechanical properties of the 3D-printed PEEK were evaluated by tensile and flexural
tests using a testing machine (EXCEED E44, MTS, Eden Prairie, MN, USA) following the
manufacturer’s instruction. The specimens were designed using 3D computer-aided design
(CAD) software (Dassault Systèmes SOLIDWORKS Corp., Waltham, MA, USA) according
to ISO 527-2:2012 and ISO 604:2002 (Table 3) [23,24]. Standard specimens were printed
using each group of the PEEK filaments separately (Group D1–D3, G1–G3).

Table 3. Mechanical tests and standard specimens.

Tests Size (mm) ISO

Tensile test 90.00 × 10.00 × 4.00 ISO 527-2:2012 [23]
Flexural test 80.00 × 10.00 × 4.00 ISO 178:2019 [24]
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giva Shade (Lichtenstein); (c) Shofu gingival shade guide (Japan). 
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Figure 1. Dental shade guides. (a) VITA classical shade guide (Germany); (b) IPS e.max Ceram
Gingiva Shade (Lichtenstein); (c) Shofu gingival shade guide (Japan).

In addition, duotone specimens consisting of white and pink parts were designed with
horizontal and vertical interfacial orientations (Figure 2), and these different interfacial
orientations could affect the tensile and flexural properties of the 3D-printed PEEK. Thus,
duotone tensile and flexural specimens (Group XY and Group Z) were printed with PEEK-
D1 and PEEK-G1 filaments by double nozzle simultaneously [13], which is illustrated in
Figure 3.
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Figure 3. Illustration of dual-nozzle printing of the duotone specimens using white and pink
polyetheretherketone (PEEK) filaments, simultaneously.

The specimens were polished and dried prior to testing, and 5 samples were selected
for each group (Group D1–D3, G1–G3, XY, and Z). Tensile tests were performed using
an MTS testing machine according to ISO 527-2:1993. Dumb-bell specimens with 90 mm
test length and 4 mm thickness were tested, and the span was 60 mm. Flexural tests were
performed using an MTS testing machine according to ISO 604:2002. Rectangular specimens
with 80 mm test length and 4 mm thickness were tested, and the span was 69 mm. The
tests were performed at 25 ◦C at constant speeds according to ISO standards, respectively.
Figure 4 shows the tensile and flexural specimens from each category described in Table
4, including white flexural specimens, pink tensile specimens, and duotone specimens.
Figure 5 shows the test equipment. The tensile and flexural properties of the specimens
were obtained from the stress–strain curves and compared with that of PMMA (HUGE,
Rizhao, China) by molding. Data for tensile and flexural strength and modulus are reported
as the mean ± standard deviation (n = 5) and analyzed with one-way ANOVA for multiple
comparisons using statistical software (IBM SPSS 25.0, IBM Corp, Armonk, NY, USA)
(a = 0.05).
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Figure 4. Standard test specimens. (a) Pink tensile specimens; (b) white flexural specimens; (c)
duotone tensile specimens with vertical interfacial orientations; (d) duotone flexural specimens with
horizontal interfacial orientations.
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Table 4. Groups in the mechanical tests and the filaments used.

Category Groups Filaments Filaments

White
Group D1 PEEK-D1 /
Group D2 PEEK-D2 /
Group D3 PEEK-D3 /

Pink
Group G1 / PEEK-G1
Group G2 / PEEK-G2
Group G3 / PEEK-G3

Duotone
Group XY PEEK-D1 PEEK-G1
Group Z PEEK-D1 PEEK-G1
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Figure 5. Mechanical testing using an MTS testing machine.

3. Results
3.1. Filament Preparation

Nano TiO2 and Fe2O3 are incorporated as functional fillers into pure PEEK by blending,
and through Fused Filament Fabrication (FFF), a series of dual-color filaments with a
diameter of 1.7 mm were fabricated. The filaments are divided into two categories with
three tooth-like colors (PEEK D1-D3) and three gingiva-like colors (PEEK G1–G3), each
as described in Table 1. Six groups of filaments were rolled onto the reels, respectively
(Figure 6), and ready for use in 3D printing.
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Figure 6. A series of dual-color PEEK filaments. From left to right: PEEK filaments with tooth-like
colors (PEEK D1, D2, D3), pure PEEK filaments for contrast, and PEEK filaments with gingiva-like
colors (PEEK G1, G2, G3).

3.2. Color Analysis
3.2.1. Results of Color Changes

With addition of TiO2, the color of 3D printed PEEK could be altered from brown to
toothlike colors (Figure 7) and becomes closer to the dental shade guide. With addition
of TiO2 and/or Fe2O3, the color of 3D printed PEEK could be altered from brown to pink
(Figure 8) and become closer to the gingiva shade guide.
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Fe2O3/PEEK); (c) G2 (10% TiO2/1% Fe2O3/PEEK); (d) G3 (1% Fe2O3/PEEK).

3.2.2. Color Coordinates and Color Differences

Table 5 shows the color coordinates of white PEEK specimens (D1–D3), VITA A1-
A3 shade, and pure PEEK. Table 6 shows the color coordinates of pink PEEK specimens
(G1–G3), gingiva shade guides, and pure PEEK for contrast. The color difference was
calculated based on the color coordinates of each category, which were consistent with
visual evaluation. Figure 9 shows the results of the color difference between D1–D3 and
VITA A1, and the ∆E* values varied from 5.87 (D1) to 7.92 (D3) which were smaller than
the 17.36 of pure PEEK. Figure 10 shows the results of the color difference between G1–G3
and Shofu G1. The ∆E* values varied from 14.14 (G1) to 10.94 (G3) and were smaller than
the 19.79 of pure PEEK. When compared to ceramic gingiva shade, G1 and G2 were close
to Ceram-GZL, and G3 was close to Ceram-G4 with ∆E* values of 8.73, 5.85, and 7.73.

Table 5. Color coordinates of VITA A1–A3 and white PEEK specimens.

Groups L* a* b*

VITA-A1 79.57 −1.61 13.05
VITA-A2 76.04 −0.08 16.73
VITA-A3 75.36 1.36 19.61

D1 86.34 1.28 10.14
D2 84.91 0.98 9.70
D3 83.29 1.79 10.05

PEEK 63.42 4.17 15.70

Table 6. Color coordinates of gingiva shade guide and pink PEEK specimens.

Groups L* a* b*

Shofu-GL 52.83 13.48 1.81
Shofu-GM 50.56 13.74 3.06
Shofu-GD 44.14 12.21 3.55

Ceram-GZL 61.95 18.78 15.83
Ceram-G4 51.54 17.41 11.28

G1 65.18 16.11 8.17
G2 61.01 18.83 10.06
G3 45.26 18.70 7.73

PEEK 63.42 4.17 15.70
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3.3. Mechanical Properties
3.3.1. Tensile Performance

The mechanical properties of the 3D printed PEEK were characterized using tensile
and flexural mechanical performance, which was generally better compared to PMMA.
Tensile strengths of the PEEK specimens ranged between 62.74 and 94.17 MPa (Figure
11). Group D3 had the lowest strength of 62.74 MPa, while D2 had higher strength than
expected. Group G1–G3 that contained 1 wt.% Fe2O3 exhibited superior tensile strength
with no statistical difference observed. Group Z was not statistically different from other
superior groups (D1–D2, G1–G3). Group XY had a significantly lower strength than Group
Z and is likely a consequence of the vertical interface between the pink and white parts.



Polymers 2021, 13, 1949 9 of 13Polymers 2021, 13, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 11. Mean and standard deviations of tensile strength of 3D-printed PEEK. *p < 0.05. 

Tensile moduli of the PEEK specimens ranged between 2727 and 4751 MPa (Figure 
12). Group G1 had the highest tensile modulus of 4750.93 ± 153.33 MPa and pink speci-
mens that contained more fillers exhibited higher tensile modulus. Group D3 and G3 ex-
hibited inferior tensile modulus compared to the remaining groups and is likely due to 
the much lower content of fillers. The tensile modulus did not significantly differ between 
Group D1 (20 wt.%) and D2 (10 wt.%). Group XY was not statistically different from 
Group Z, although the interfacial orientations were different. 

 
Figure 12. Mean and standard deviations of tensile modulus of 3D-printed PEEK. * p < 0.05. 

3.3.2. Flexural Performance 
Flexural strengths of the PEEK specimens ranged between 109 and 164.8 MPa (Figure 

13) and were significantly higher compared to that of PMMA. Group XY had the lowest 
flexural strength of 109.10 ± 3.61 MPa, and no statistical difference was found in the re-
maining groups. A possible reason could be that flexural strengths were more affected by 
the interfacial orientations, rather than the different content of fillers. 

 

Figure 11. Mean and standard deviations of tensile strength of 3D-printed PEEK. * p < 0.05.

Tensile moduli of the PEEK specimens ranged between 2727 and 4751 MPa (Figure 12).
Group G1 had the highest tensile modulus of 4750.93 ± 153.33 MPa and pink specimens
that contained more fillers exhibited higher tensile modulus. Group D3 and G3 exhibited
inferior tensile modulus compared to the remaining groups and is likely due to the much
lower content of fillers. The tensile modulus did not significantly differ between Group
D1 (20 wt.%) and D2 (10 wt.%). Group XY was not statistically different from Group Z,
although the interfacial orientations were different.
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3.3.2. Flexural Performance

Flexural strengths of the PEEK specimens ranged between 109 and 164.8 MPa (Figure 13)
and were significantly higher compared to that of PMMA. Group XY had the lowest flexural
strength of 109.10 ± 3.61 MPa, and no statistical difference was found in the remaining
groups. A possible reason could be that flexural strengths were more affected by the
interfacial orientations, rather than the different content of fillers.
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The flexural moduli of the PEEK specimens ranged between 4172 and 5740 MPa,
which were significantly higher compared to that of PMMA. (Figure 14). Group D1 had
the highest flexural modulus of 5740.20 ± 215.93 MPa and was not statistically different
from Group G1, XY, and Z, which also contained 20%wt TiO2. Group D2 and D3 exhibited
lower flexural modulus compared to D1 possibly because of the lower content of TiO2, and
no significant difference was observed between Group D2 (10wt.%) and D3 (5wt.%). The
pink specimens that contained higher content of fillers had a higher flexural modulus (G1
> G2 > G3).
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4. Discussion

Removable dental prostheses restore hard and soft tissues and could consist of tooth-
color and gingiva-color parts to ensure both function and esthetics [2,14]. Currently, only
a few commercial PEEK materials are available for molding and milling, which could
not meet the need for esthetical dental restoration as well as 3D dental printing [12].
3D printing is a kind of rapid formation (RP) technology, and it allows a customized
optimization of parameters, which can be essential for the dental industries [2]. PEEK, as a
thermoplastic biopolymer, possesses great thermal properties and biocompatibility, which
could be suitable for 3D dental printing [12]. This study presented here is an early attempt
to develop dual-color PEEK filaments for fabricating dental prostheses that consists of
tooth-color and gingiva-color parts. In this preliminary study, functional fillers (nano TiO2
and Fe2O3) are incorporated into pure PEEK to change the brown color of 3DP PEEK to
tooth-like and gingiva-like colors through Fused Filament Fabrication (FFF) [9]. Based on
the filaments, duotone PEEK specimens have been successfully printed using dual-nozzle
printing technology, which could provide technical support for future dual-color dental
printing. One-piece fabrication can eliminate the interface between different parts and
offers great efficiency and more comfort for patients compared to traditional procedures.
Li et al. reported the one-piece fabrication of removable partial dentures using PEEK by
milling, which showed satisfying fits [25]. This study indicates the promising application
of one-piece printing using dual-color PEEK, which reduces material waste and provides
improved esthetics compared to the one-piece milling. However, long-term data for the
dual-color PEEK are not yet available, and continued observation is necessary to further
verify the clinical outcomes. Moreover, the content of fillers and printing parameters can
be flexibly adjusted and thus the properties of the printed prostheses can be tailored by
further studies. The results of the color evaluation revealed that the novel PEEK composites
developed in this study were closer to dental shade guides compared to pure 3DP PEEK,
which provides improved esthetics for dental application. This proof of concept showed
that color modification of 3DP PEEK by blending and FFF can be effective [8,9,20], although
the colors obtained in this study are still limited compared to the dental shade guides.
More research is required to provide more color options for 3DP PEEK with greater variety
and different content of fillers and further improve the esthetics in the future.

A series of PEEK specimens with different colors have been successfully 3D printed
with optimized parameters, which showed that these novel PEEK composites developed
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in this study are printable. Literature has reported a range of parameters for printing pure
PEEK [19], and the best prints were obtained with a typical nozzle diameter of 0.4 mm
and a layer thickness of 0.3 mm. Regarding the printing of other composite materials, a
larger nozzle diameter (1 mm) was reported to ensure the flow rate from the nozzle [26].
Considering the values used in the literature, the parameters were selected and optimized
in this study. The nozzle diameter was set at 0.4 mm to ensure the quality of prints, and the
flow from the nozzle was unobstructed with the nanofillers used in this study [20,27]. The
layer thickness varied from 0.1–0.2 mm to improve printing precision and reduce the void
formation between layers [20]. In addition, a nozzle temperature of 420 ◦C, as well as a
printing speed of 40 mm/s, was used considering the viscosity of the materials and the
influence on the strength of prints [28]. The key parameters employed in this study can be
further investigated to optimize the printing process.

Apart from the printability, it is worth noting that the PEEK composites had superior
mechanical properties compared to the pure PEEK in literature, which revealed the en-
hancements obtained with the addition of TiO2 and Fe2O3 fillers in this study. Compared
to rigid dental metals, the PEEK composites revealed closer tensile and flexural moduli to
that of dentin, which exhibited great potential for dental application. The tensile strength
reached around 90 MPa with incorporation of Fe2O3, higher than that of groups with
TiO2 addition only. The incorporation of the fillers also increased the flexural strength,
which reached above 160 MPa. The composites with higher content of fillers (5–20 wt.%
TiO2) generally showed a higher modulus, and the highest tensile modulus of 4.75 Gpa
and highest flexural modulus of 5.74 Gpa were obtained at 20 wt.%. As reported in the
literature, the best mechanical performance was also reached at 20 wt.% when incorporat-
ing calcium sulfate into PEEK [29]. Other studies suggested that PEEK/hydroxyapatite
composites could be enhanced at 15–30 wt.%, and moving above 20–30 wt.% could result in
decreased performance and poorer prints considering the viscosity of the composites [9,30].
Therefore, the content of fillers in this study was designed to range around 5–20 wt.%
under these considerations for appropriate printing process and performance. In addi-
tion, duotone specimens with a horizontal interfacial orientation generally revealed better
mechanical performance compared to that with a vertical interfacial orientation. More
research is required to investigate higher incorporation levels of fillers and further optimize
the printing process.

5. Conclusions

In this preliminary study, functional fillers were incorporated into the pure PEEK
to improve its esthetics for 3D dental printing. The color and mechanical performance
were investigated through color evaluation and mechanical tests. The conclusions are
summarized as follows:

(1) With addition of nano TiO2 and/or Fe2O3, white and pink PEEK filaments were
developed to imitate tooth and gingiva colors. Through visual evaluation and color
measurements, the color differences between the developed 3DP PEEK composites and
dental shade guides were smaller compared to the pure 3DP PEEK.

(2) The tensile and flexural performance of 3DP PEEK composites was generally better
than that of dental PMMA. 3DP PEEK composites had tensile and flexural moduli close to
that of dentin, which exhibited great potential for dental application.

(3) Duotone PEEK specimens were printed with G1 and D1 PEEK filaments by double
nozzle simultaneously. The preliminary experiments are encouraging for application
in dental prostheses that consist of tooth-color and gingiva-color parts. The interfacial
orientations had a significant influence on the mechanical performance of duotone prints,
and duotone specimens with a horizontal interfacial orientation generally revealed better
mechanical performance compared to that with a vertical interfacial orientation.

(4) 3DP PEEK composites exhibited great potential for modification and for future
application in dentistry.
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