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Abstract: The long-term mechanical properties of viscoelastic polymers are among their most impor-
tant aspects. In the present research, a machine learning approach was proposed for creep properties’
prediction of polyurethane elastomer considering the effect of creep time, creep temperature, creep
stress and the hardness of the material. The approaches are based on multilayer perceptron network,
random forest and support vector machine regression, respectively. While the genetic algorithm
and k-fold cross-validation were used to tune the hyper-parameters. The results showed that the
three models all proposed excellent fitting ability for the training set. Moreover, the three models
had different prediction capabilities for the testing set by focusing on various changing factors. The
correlation coefficient values between the predicted and experimental strains were larger than 0.913
(mostly larger than 0.998) on the testing set when choosing the reasonable model.

Keywords: creep behavior; polyurethane elastomer; time–strain curve; machine learning; genetic algorithm

1. Introduction

Polymers are widely used in traditional industry, agriculture and high and new
technology sectors due to their extensive sources, industrial maturity, and excellent prop-
erties (light weight, high strength, good toughness, etc.). Contemporary human life,
from groceries to space shuttles and rockets, is closely related to polymers. In recent
years, the service life of polymers has been required to be longer, even up to several
decades of applications, which makes the long-term mechanical properties of polymers a
hot research subject.

A polymer is a kind of substance with a polymer chain. The multiplicity, time depen-
dence and temperature dependence of molecular chain movement makes polymer a typical
viscoelastic material. Therefore, mechanical relaxation phenomena, such as the stress
relaxation, creep and recovery of polymer is shown to be significant, and its mechanical
behavior strongly depends on the time of exogenic force exertion [1]. The time dependence
of viscoelastic material’s mechanical behavior indicates that there is characteristic time in
the material [2]. The characteristic time is influenced by factors such as temperature [3],
stress [4], strain [5] and physical aging [6]. The relative research shown that temperature
could affect the characteristic time by changing the free volume of material [7]. For poly-
mers, the effect of changing the temperature scale and time scale on their macro viscoelastic
mechanical properties is equivalent [1]. Thus, the time–temperature superposition prin-
ciple (TTSP) was presented. According to TTSP, the long-term mechanical properties of
viscoelastic materials at lower temperatures can be obtained by shifting the short-term
experimental curve at higher temperatures along the logarithmic time axis [1,7]. However,
the time–stress superposition principle (TSSP) indicates that increasing the stress level
has a similar effect [4]. These superposition principles make it possible to accelerate the
characterization of the long-term mechanical properties of polymers [2].

Polyurethane elastomer (PUE) is an important type of polymer, which is made up
of hard segment and soft segment, arranged alternately. Including isocyanate and chain
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extenders, the hard segment presents in glass state at room temperature, and has a lower
glass transition temperature. However, the soft segment, polyol, presented in the hyper-
elastic state at room temperature. The segments mentioned above provide the solid and
elastic properties of the PUE [8]. Compared with the traditional rubber, PUE material
has the advantages of high strength, a large adjustable range of performance, excellent
wear resistance, oil resistance, ozone resistance, shock absorption, radiation resistance,
air permeability and repeatable processing. Furthermore, PUE has been widely used in
the automotive industry, bridge structures, marine structures as well as other important
industries and consumer goods sectors [9].

Although the development of the long-term mechanical experiment of polymer is a
direct method, it is also a simple and reliable way to verify the above superposition princi-
ples. However, the long-term mechanical experiment is much more time-consuming than
the conventional mechanical experiment. The experiment is more difficult as the means to
performing it are hard to obtain. Therefore, on the one hand, the superposition principles
should be further expanded and improved continuously. On the other hand, accurate and
efficient methods for the long-term mechanical properties of nonlinear viscoelastic material
prediction should be sought in the field of machine learning, which has been developing
rapidly in recent years. From this point of view, it has important theoretical significance
and value to comprehensively understand and grasp the long-term mechanical properties
of polymers, make full use of polymers and prevent accidents.

With the rapid development of machine learning technology, the artificial neural
network (ANN) and support vector machine (SVM) are gradually being used in artifi-
cial intelligence and pattern recognition, such as system identification [10], predictive
modeling [11], feedforward learning control [12] and fault diagnosis [13,14]. However,
the application of the machine learning method to predict the nonlinear properties of
materials is still in the initial stage. Based on the ANN, Rashidian and Hassanlourad [15]
presented a model to predict the mechanical behavior of different carbonate soils. By in-
putting relative density, axial strain, maximum void ratio, calcium carbonate content and
confining pressure, the deviatoric stress and volumetric strain at the end of each increment
could be predicted. The accuracy and reliability of this method were verified by compari-
son with the experimental results. Based on the uniaxial compression experimental data,
Shakiba et al. [16] developed the study of the relationship between the chemical composi-
tion, deformation variables and high-temperature flow behavior of Al–0.12Fe–0.1Si alloys
using ANN model with 20 neurons in a hidden layer. The k-fold cross-validation method
was used to evaluate the generalization capability of the model. Niu et al. [17] analyzed the
prediction of a common rail direct injection system (CRDI)-assisted marine diesel engine
using ANN and SVM methods. The taguchi orthogonal array was employed to obtain
the test data, and high-precision prediction based on a small amount of training data was
realized. The results show that the SVM model was well suited, while the ANN model
fell into local minimum and over fitting. Qi et al. [18] employed genetic programming for
the uniaxial compressive strength prediction of cemented paste backfill. The sampling
method, training set size and maximum tree depth of the genetic programming perfor-
mance was investigated. Using the relative variable frequency, partial dependence plots
and relative importance scores, the relative variable importance was analyzed. The R2 of
the testing set was larger than 0.8 after training. Rodriguez-Sanchez et al. [19] presented a
feedforward ANN that was trained with stress/strain data of a thermoplastic elastomer.
In contrast, five hyper-elastic models, the neural network model had the best accuracy
with a coefficient of determination R2 = 0.996 and 1% difference from the experimental
data. The ANN was combined with the nonlinear hyper-elastic finite element model to
simulate the temperature-dependent stress response of elastomer solids in their following
research [20]. Stoffel et al. [21] developed a series of ANN including a feedforward neural
network, radial basis function neural network and a deep convolutional neural network
to predict the structural deformations by comparison to experiments. Zhang et al. [22]
proposed an intelligent agent model, based on the random forest (RF) and particle opti-
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mization swarm methods, to predict the long-term settlement creep index. The datasets of
structural liquid limit, plasticity index, void ratio, clay content and creep index were col-
lected through literature review. The RF model was established. Using the particle swarm
optimization method and cross-validation method, the model was optimized. The results
indicated that the prediction error of this method was significantly lower than that of
existing empirical formulae. Then, the researchers developed a constitutive model for
soils by using pure mathematical skills through learning from raw data using the machine
learning method [23]. The research summarized the application of the machine learning
algorithm in soil constitutive model development. The results showed that the long short-
term memory neural network was most suitable for developing the constitutive model
of the soil.

Similarly, several kinds of research have been carried out in the polymers field using
machine learning techniques in recent years. According to the machine learning algo-
rithm, Mannodi-Kanakkithodi et al. [24] developed an on-demand property prediction
model to directly realize the design of polymers with given target properties using a
genetic algorithm to evolutionarily optimize polymer constituent blocks. Then, by com-
bining computations or experiments with machine learning techniques, they utilized a
first principles-generated dataset of the electronic and dielectric properties of a chemical
space of polymers to test different kinds of regression algorithms. Several possibilities
for the hyper-parameters have been explored, and the optimal strategies and parameters
for high-fidelity polymer dielectrics property prediction have been established [25]. Doan
Tran et al. [26] provided an overview of some of the critical technical aspects based on
the polymer genome machine learning method, including polymer data curation, repre-
sentation, learning algorithms, and prediction model usage. Furthermore, the remaining
challenges and possible future directions were discussed. Zhong et al. [27] built a long-term
creep behavior prediction model of PMI materials using the ANN technique. The effects of
different activation functions, hidden layer structures, and other super-parameters on the
prediction performance were investigated. The results suggested that the statistical value
of the correlation coefficient was greater than 0.995. Rahman et al. [28] developed a surro-
gate machine learning model trained with molecular dynamics models of functionalized
CNT-epoxy and the corresponding interfacial shear strength. Yildirim et al. [29] predicted
and compared perovskite solar cells performances, based on machine learning approaches,
with those developed WO3 and its composites. The results showed that the decision tree
model has a 0.9656 R2 score for the WO3-poly(3,4-ethylenedioxythiophene) and the ran-
dom forest model has 0.9976, 0.9968, 0.9772 R2 scores for the WO3-poly(N-methylaniline),
WO3-poly(2-fluoroaniline), and WO3-polyfuran, respectively. Yuan et al. [30] focused on
the incomplete database of The Membrane Society of Australasia, by imputing missing
values in the database using the machine learning method, which extended the potential
use of the database.

In this paper, the feasibility of the machine learning method to predict the compression
creep deformation of PUE with highly nonlinear properties was analyzed, when changing
the conditions of creep time, temperature, stress and hardness of the material. Based on
the experiment results, the multilayer perceptron (MLP) network, RF and SVM algorithms
of machine learning were used, combining the genetic algorithm and cross-validation,
the prediction model was established. The accuracy and stability of the model were studied
by comparing the performance of training set fitting and new condition prediction of
the three models. This paper opens up a new way to predict the long-term mechanical
properties of polymers through the machine learning method, which could reduce the
number of experiment working conditions as well as shorten the experiment period, and
provide an idea for the accelerated characterization of long-term mechanical properties of
materials, in addition to various superposition principles.
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2. Materials and Methods
2.1. Creep Experiment

A commercial high-performance PUE produced by the casting machine of Nanjing
Jinsanli Rubber & Plastic Co., Ltd. (Nanjing, China) was considered for a compression
creep experiment in this research.

Traditional PUE material can be used for a long time under 80 ◦C, and its short-term
service temperature is a maximum of 120 ◦C. It can be found that such low-temperature
resistance limits its application. In this study, the polyurethane elastomer synthesized by
4,4′-methylenedianilin (MDI), polyether polyols, trihydroxymethylpropane crosslinking
chain extender and auxiliaries were considered, which could improve the thermal sta-
bility and mechanical properties. The hardness of PUE was controlled by adjusting the
component content.

The cylindrical specimens with 12.5 mm diameter and 6.5 mm thickness were made
by mold casting process, as shown in Figure 1. Each type of specimen was made of the
same batch of raw materials and production, to ensure that the thermal and mechanical
properties of specimens were consistent. The hyper-elastic properties of PUE were first
proposed using a universal mechanical testing machine and other equipment. Three
parallel experiments were conducted for each kind of hardness. The results are shown in
Table 1.

Figure 1. The material and specimens of PUE.

Table 1. The hyper-elastic properties of PUE.

Hardness (HA) 70 80 90

Linear elastic modulus (MPa) 15.87 36.26 55.14
Hardening stress (MPa) 9.15 21.05 30.81

Hardening strain 0.39 0.41 0.42

The universal testing machine with calorstat was used to implement the compression
creep experiment, as shown in Figure 2. The hardness of PUE, creep stress, creep tempera-
ture and creep time were considered as the research parameters. The hardness of PUE was
70 HA, 80 HA and 90 HA. The creep stress was 0.5 MPa, 1.0 MPa, 1.5 MPa, 2.0 MPa, 2.5 MPa
and 3.0 MPa. The creep temperature was 20 ◦C, 40 ◦C, 65 ◦C and 90 ◦C. The standard creep
time of the experiment was set to 4 h. The strain–time curve was obtained according to the
compression creep experiment, as shown from Figures 3–5.

Figure 2. The universal mechanical testing machine with calorstat.
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Figure 3. The strain–time creep curve of 70 HA PUE: (a) 20 ◦C; (b) 40 ◦C; (c) 65 ◦C; and (d) 90 ◦C.
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Figure 4. The strain–time creep curve of 80 HA PUE: (a) 20 ◦C; (b) 40 ◦C; (c) 65 ◦C; and (d) 90 ◦C.
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Figure 5. The strain–time creep curve of 90 HA PUE: (a) 20 ◦C; (b) 40 ◦C; (c) 65 ◦C; and (d) 90 ◦C.

The creep properties of the PUE material can be obtained by the equation:

εt = εe + εc (1)

where εt refers to total strain, εe refers to elastic strain and εc refers to creep strain. The re-
sults were shown from Tables 2 to 4 by calculation. It could be seen that the creep strain εc
of PUE increased with the increase in creep stress and temperature at the same creep time.
In the variable region of this research, the effect of creep stress was more significant.

Table 2. Compression creep properties of 70 HA PUE.

Creep Stress (MPa) 0.5 1.0 1.5 2.0 2.5 3.0

εe (%) 1.513 3.003 4.471 5.917 7.342 8.746
20 ◦C εt (%) 2.074 3.868 5.705 7.681 9.692 11.771

εc (%) 0.561 0.865 1.234 1.764 2.350 3.025

εe (%) 1.818 3.613 5.376 7.107 8.808 10.390
40 ◦C εt (%) 2.387 4.482 6.608 8.859 11.131 13.457

εc (%) 0.569 0.869 1.232 1.752 2.323 3.067

εe (%) 2.258 4.484 6.652 8.761 10.843 12.714
65 ◦C εt (%) 2.834 5.356 7.887 10.521 13.153 15.801

εc (%) 0.576 0.872 1.235 1.760 2.310 3.087

εe (%) 3.165 6.249 9.218 12.051 14.818 17.856
90 ◦C εt (%) 3.746 7.125 10.46 13.828 17.144 20.968

εc (%) 0.581 0.876 1.242 1.777 2.326 3.112
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Table 3. Compression creep properties of 80 HA PUE.

Creep Stress (MPa) 0.5 1.0 1.5 2.0 2.5 3.0

εe (%) 1.019 2.028 3.027 4.016 4.995 5.964
20 ◦C εt (%) 1.328 2.525 3.721 4.968 6.247 7.605

εc (%) 0.309 0.497 0.694 0.952 1.252 1.641

εe (%) 1.193 2.382 3.557 4.718 5.855 6.979
40 ◦C εt (%) 1.512 2.887 4.257 5.673 7.116 8.632

εc (%) 0.319 0.505 0.700 0.955 1.261 1.653

εe (%) 1.444 2.887 4.309 5.701 7.062 8.405
65 ◦C εt (%) 1.772 3.399 5.013 6.665 8.337 10.072

εc (%) 0.328 0.512 0.704 0.964 1.275 1.667

εe (%) 1.904 3.801 5.653 7.459 9.221 10.940
90 ◦C εt (%) 2.240 4.319 6.367 8.436 10.507 12.622

εc (%) 0.336 0.518 0.714 0.977 1.286 1.682

Table 4. Compression creep properties of 90 HA PUE.

Creep Stress (MPa) 0.5 1.0 1.5 2.0 2.5 3.0

εe (%) 0.757 1.508 2.254 2.994 3.729 4.458
20 ◦C εt (%) 0.913 1.746 2.574 3.402 4.255 5.157

εc (%) 0.156 0.238 0.320 0.408 0.526 0.699

εe (%) 0.892 1.785 2.671 3.549 4.419 5.281
40 ◦C εt (%) 1.058 2.033 3.000 3.964 4.951 5.984

εc (%) 0.166 0.248 3.216 4.272 5.316 6.349

εe (%) 1.071 2.149 3.216 4.272 5.316 6.349
65 ◦C εt (%) 1.246 2.406 3.553 4.694 5.853 7.055

εc (%) 0.175 0.257 0.337 0.422 0.537 0.706

εe (%) 1.376 2.763 4.131 5.474 6.807 8.112
90 ◦C εt (%) 1.562 3.028 4.475 5.907 7.349 8.824

εc (%) 0.186 0.265 0.344 0.433 0.542 0.712

2.2. Data Acquisition and Processing
2.2.1. Input and Output Variables of the Model

The factors that affect the mechanical properties of polymer materials include time,
stress, strain rate, temperature, humidity, aging, and crystallinity. From the results of the
compression creep experiment mentioned in Section 2.1, creep stress and temperature
had more influence on the creep properties of PUE. In addition, due to the different
content of each component and their varying degree of crystallinity, when preparing the
PUE, the hardness variance affects the macroscopic creep behavior of the material on
the microscopic level. Therefore, the creep time xti, creep stress xst, temperature xte and
hardness of PUE xh were considered as the input variables x = [xti, xst, xte, xh]

T. The axial
strain of PUE was taken as the output variable. The range of input variables chosen from
the experiment conditions is shown in Table 5.

Table 5. Range of input variables.

Time (h) Stress (MPa) Temperature (◦C) Hardness (HA)

[0, 4] 0.5–3.0 20–90 70–90
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2.2.2. Data Analysis

After determining the input and output variables, the correlation between the variables
in the creep experiment results was analyzed, as shown in Figure 6.
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Figure 6. Correlation between the variables.

It could be seen that the correlation coefficients between the input variables in this
research were slim to zero, which means that the input variables were independent of
each other. While there were varying degrees of correlation between the input and output
variables. These results indicated that the input variables considered in this research are
reasonable with no redundancy, and the research on the machine learning prediction model
could be carried out on this basis.

2.2.3. Data Normalization

The range of input variables and strain results of the creep experiment showed that the
input and output variables were not in the same order of magnitude. However, multiple
machine learning methods, such as ANN, require that the weights and other parameters in
the model are parallel in order of magnitude. If the difference of input variables is large,
the input variables with a smaller order of magnitude will be covered by those with a
larger order of magnitude during the error propagation. Furthermore, the effect of each
input variable on the output cannot be rendered properly. Consequently, normalizing the
input and output variables is crucial before modeling.

In this research, the z-score method, which is commonly used alongside machine
learning, was considered to normalize the input and output variables, so that the mean
value of each variable equals 0 while the variance equals 1. The method can be expressed
as

x̂(n) =
x(n) − x̄

S
(2)

where x(n) are the original samples, n = 1, 2, · · · , N, and N is the number of samples, x̄ is
the mean value of samples, S is the variance of samples, x̂(n) are the normalized samples.
After normalization, the input variables can be expressed as x̂ = [x̂t, x̂st, x̂te, x̂h]

T, while the
output variables change to ŷ.

2.3. Machine Learning Prediction Algorithms
2.3.1. Multilayer Perceptron Network

MLP network is a typical ANN, which is a nonlinear complex network system com-
posed of a large number of “biological neurons”. As shown in Figure 7, a mathematical
model is used to describe the biological neural network structure, so that the intelligent
behavior to some extent can be simulated under the guidance of the algorithm. In this
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research, MLP based on the backpropagation algorithm is considered to train the prediction
model. It is composed of an input layer, an output layer and at least one hidden layer.
The training consists of two processes: signal forward propagation and error backpropaga-
tion. During the forward propagation, the input samples are transmitted from the input
layer to each hidden layer and output layer. Then, the backpropagation stage begins if the
output value is not equal to the real value. The error is allocated among all neural of the
hidden layer by transmitting the output error back, and the error of neurons in each layer
is obtained as the basis for optimizing the weights of neurons. The above processes are
repeated until the output error is acceptable or reaches the training iterations’ limitation.

Input layer Output layerHidden layer

Figure 7. The structure of MLP network.

The nonlinear properties of the PUE creep strain–time curve were considered to have
initially identified the main structural parameters range of the MLP network, as shown in
Table 6. The activation function can be expressed as

Logistic(z) =
1

1 + exp(−z)
(3)

Tanh(z) =
exp(z)− exp(−z)
exp(z) + exp(−z)

(4)

ReLU(z) =
{

z, z ≥ 0
0, z < 0

(5)

In order to avoid unnecessarily increasing the complexity of the model, the number
of the hidden layer is set to 1 or 2. The number of neurons is setting from 1 to 100.
The training method is selected from L-BFGS [31], SGD [32] and Adam [33]. Subsequently,
the MLP network prediction model of PUE creep properties is constructed by optimizing
the hyper-parameters of the model.

Table 6. The range of MLP network structure hyper-parameters.

Hyper-Parameters Range

Activation function Logistic, Tanh, Relu
Number of hidden layers 1–2

Number of hidden layer neurons 1–10
Training method L-BFGS, SGD, Adam

2.3.2. Random Forest

RF is a machine learning algorithm that integrates multiple decision trees based on the
idea of ensemble learning. Decision tree, the basic unit of RF, is a kind of tree-like structure
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with the function of data classification or regression. It is composed of an internal node, leaf
node and directed edge, as shown in Figure 8. For the regression problem, the predictive
value of each leaf node is the mean value of the training set elements’ output, which can be
expressed as

cm = AVG(yi | xi ∈ leafm) (6)

The leaf nodes represent the predicted value, and mean squared error (MSE) or mean
absolute error (MAE) is generally used as the criteria to feature and split.

Input

Output

DT1 DT2 DTn

……

Averging

Figure 8. The structure of RF model.

The main hyper-parameter range of RF was initially identified to include the maximum
depth of RF (max depth), the maximum number of decision trees in the RF (max DT),
the minimum number of samples at the leaf node (min samples leaf), and the minimum
number of samples required to split an internal node (min samples split), as shown in
Table 7. Subsequently, the RF prediction model of PUE creep properties is constructed by
optimizing the hyper-parameters of the model.

Table 7. The range of RF hyper-parameters.

Hyper-Parameters Range

max depth 1–20
max DT 1–1000

min samples leaf 1–10
min samples split 2–10

2.3.3. Support Vector Machine Regression

As one of the most common methods in the machine learning field, support vector
machine regression (SVR) has shown its unique advantages in solving the problems of
small sample, nonlinear and high-dimensional pattern recognition. SVR is developed
from the optimal classification surface of a linearly separable problem, using nonlinear
transformation defined by the inner product function to transform the sample input
space into another higher dimensional space, and then solving the generalized optimal
classification hyperplane. SVR mainly solves the finite sample problem and finds the best
compromise between the complexity and the learning ability of the model in order to
obtain the best generalization ability, as shown in Figure 9. The SVR method successfully
avoids the traditional process from induction to deduction and efficiently realizes the
“transductive inference” from training data to predicted data.
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Figure 9. The method of SVR.

The basic idea of nonlinear SVR is to map the data x to the Hilbert feature space using a
nonlinear mapping φ, then linear regression is carried out in this space. The kernel function
k
(

xi, xj
)
= φ(xi) · φ

(
xj
)

is used to realize the correspondence between the linear regression
of high-dimensional space to the nonlinear regression of low-dimensional space. The SVR
theory was widely introduced in formal research like Refs. [10,14], and a three-order RBF
kernel was considered in this study. The main hyper-parameter range of SVR was initially
identified to include C and gamma, as shown in Table 8.

Table 8. The range of SVR hyper-parameters.

Hyper-Parameters Range

C 1–5000
gamma [1× 10−5, 0.1]

2.3.4. The Adjustment and Validation of Hyper-Parameters

In this research, the k-fold cross-validation method was used to avoid overfitting.
The training set was randomly divided into k folds. The training set was composed
of k − 1 folds and the validation set was performed by the remaining fold. With vari-
ous subsets being used as the validation set, the training process was repeated k times.
The cross-validation error was obtained by averaging the MSE of k times. Then, the train-
ing accuracy of the model under the current hyper-parameters was represented. Ten-fold
cross-validation was considered according to the number of experiment samples in this
study, as shown in Figure 10.

……

ACC1 ACC2 ACC3 ACC10

Average ACC

Training set

Validation set

Figure 10. Te-fold cross-validation method.

The genetic algorithm was considered to optimize the hyper-parameters of the three
machine learning models. The genetic algorithm mainly used the law of the “survival
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of the fittest” in the process of biological evolution, imitating the genetic reproduction
mechanism. First, binary or other systems were used to code the individuals in the solution
space of the optimization problem. Then, genetic operations such as selection, crossover
and mutation are being carried out. By repeatedly and properly using the operators and
selection principles of genetic algorithms, the population can continuously reproduce from
parental generation to filial generation, which makes the adaptability of the population to
the environment increase continuously. Through the iterative method mentioned above, the
results with an optimal solution or better solution will be found from the new population.
The parameters of the genetic algorithm in this research are shown in Table 9.

Table 9. The parameters of genetic algorithm.

Parameters Value

Number of chromosomes 1000
Number of generations 200

Genetic possibility Crossover (90%), mutation (1%)
Fitness function Correlation coefficient

Selection method Tournament (size = 3)

2.3.5. Evaluation Index

It is a typical regression problem to predict the creep properties of PUE. The evaluation
index of the machine learning model of the regression problem includes the MAE, root
mean square error (RMSE), correlation coefficient R and the coefficient of determination R2,
which can be expressed as

MAE =
1
N

N

∑
i=1
|(y∗i − ŷi)| (7)

RMSE =

√√√√ 1
N

N

∑
i=1

(
y∗i − ŷi

)2 (8)

R =
Cov(x, y)√

Var(x)Var(y)
(9)

R2 = 1− ∑i
(
y∗i − ŷi

)2

∑i
(
y∗i − ȳ

)2 (10)

where N is the number of samples, ŷi is the normalization value of the ith sample, y∗i is
the prediction value of the ith sample, and ȳ is the mean value of samples, Cov(x, y) is the
covariance, Var(x) is the variance. The four indicators mentioned above were considered
to evaluate the ability of the three machine learning models. PYTHON 3.7 was used to
build and train the machine learning models. The building method of prediction model in
this research is shown in Figure 11.

Creep 

experiment 

Data 

analysis
Data set

MLP

RF

SVR

Prediction 

creep 

experiment 

Fitting 

performance

Prediction 

performance

k-fold cross 

validation

Genetic 

algorithm

Optimization 

Figure 11. The scheme of building prediction model.
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3. Results and Discussion
3.1. Optimization Results of Hyper-Parameters

The cross-validation method and genetic algorithm mentioned in Section 2.3.4 were
used to optimize the hyper-parameters of the MLP, RF and SVR machine learning prediction
models. The results are shown as:

• MLP: activation function = logistic, number of hidden layers = 2, number of hidden
layer neurons = 8, training method = Adam;

• RF: max depth = 8, max DT = 513; min samples leaf = 9; min samples split = 7;
• SVR: C = 4298, gamma = 7.2× 10−4.

To verify the fitting and prediction performance of the model hyper-parameters
above, the creep master curve data of PMI material in Ref. [27] were used for comparison.
The creep curves at three temperatures were set to be the training set, and the creep
curve at the other temperature was set to be the prediction set, respectively. Furthermore,
100 training groups were carried out. The results are shown in Figure 12.
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Figure 12. Comparison of the fitting and prediction performance with the results obtained from
Ref. [27].

The lines refer to the master curve processed by the test, Ref. [27], the model of present
work, while the shaded area refers to the envelope range of the prediction after 100 training
groups of Ref. [27]. It can be seen that the three machine learning models with optimized
hyper-parameters have good fitting and prediction performance for the creep curve of
materials and can be used for the creep performance prediction. Then, the strain–time
curves of PUE creep predicted by the three machine learning methods mentioned above
are shown in the next subsection. The overall trend, fitting performance of the training set
and prediction performance of the prediction set were analyzed in detail.

3.2. Comparison of Fitting Performance of Training Set

Six compression creep working conditions of PUE were obtained by orthogonal ex-
perimental design method, as shown in Table 10. The fitting performance of the three
machine learning methods was obtained through the contrast of model and the experimen-
tal strain–time creep curve, as shown in Figure 13. The index of fitting accuracy is shown
in Table 11.

The fitting curve of the MLP model was basically consistent with the experiment
curve under working conditions 1, 5 and 6. The fitting accuracy under working condition 4
was slightly decreased. The coefficient of determination R2 was 0.7443 and 0.9059 under
conditions 2 and 3, respectively, which means that the fitting curve had a large deviation.
The RF model had an excellent fitting performance under all six working conditions.
The coefficient of determination R2 was larger than 0.997, which showed the best accuracy
among the three methods. The fitting curve of the SVR model was basically consistent with
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the experiment curve under working conditions 1, 4, 5 and 6. The fitting accuracy under
working condition 2 was slightly decreased. The coefficient of determination R2 was 0.5632,
which is the lowest fitting accuracy of the three models.

Table 10. The creep working conditions for fitting.

Working Conditions Hardness (HA) Creep Stress (MPa) Temperature (◦C) Creep Time (h)

1 70 2.5 65 4
2 90 1.0 90 4
3 80 0.5 40 4
4 90 1.5 40 4
5 70 2.0 20 4
6 80 3.0 20 4
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Figure 13. The fitting performance of each working condition: (a) Working Condition 1; (b) Working Condition 2; (c) Working
Condition 3; (d) Working Condition 4; (e) Working Condition 5; (f) Working Condition 6.
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Table 11. The training performance of three machine learning models.

Working Conditions Model MAE RMSE R R2

MLP 1.860× 10−4 3.518× 10−4 0.9892 0.9783
1 RF 1.492× 10−5 1.086× 10−4 0.9990 0.9979

SVR 3.000× 10−4 3.923× 10−4 0.9925 0.9730

MLP 1.056× 10−4 1.192× 10−4 0.9810 0.7443
2 RF 2.275× 10−6 1.207× 10−5 0.9987 0.9974

SVR 4.178× 10−5 4.692× 10−5 0.9945 0.9604

MLP 8.710× 10−5 9.563× 10−5 0.9848 0.9059
3 RF 2.075× 10−6 1.585× 10−5 0.9987 0.9974

SVR 1.966× 10−4 2.060× 10−4 0.9946 0.5632

MLP 4.720× 10−5 6.440× 10−5 0.9890 0.9595
4 RF 2.225× 10−6 1.585× 10−5 0.9988 0.9975

SVR 2.405× 10−5 3.606× 10−5 0.9939 0.9873

MLP 1.372× 10−4 2.884× 10−4 0.9879 0.9758
5 RF 1.075× 10−5 8.598× 10−5 0.9989 0.9978

SVR 1.080× 10−4 2.419× 10−4 0.9927 0.9830

MLP 1.273× 10−4 2.724× 10−4 0.9874 0.9743
6 RF 1.065× 10−5 7.987× 10−5 0.9989 0.9978

SVR 7.692× 10−5 2.156× 10−4 0.9928 0.9839

By analyzing the fitting performance of the three models for the training set, it could
be seen that the overall fitting performance of the RF model was the best. The accuracy
of MLP and SVR models was sufficient in most working conditions, while numerical and
trend distortion existed in some working conditions. In order to avoid the overfitting of
current machine learning models, the prediction performance of PUE compression creeps
under new working conditions was considered in Section 3.3.

3.3. Comparison of Prediction Performance.

Using the orthogonal experimental design method, the working conditions for ma-
chine learning prediction were designed by changing the experimental conditions in
Table 10, as shown in Table 12. The changed conditions were written in bold. In this
research, six prediction conditions were considered to carry out the compression creep
experiment of PUE, and the prediction results of three machine learning models are shown
in Figure 14. The prediction accuracy is shown in Table 13. The generalization ability
of three prediction models was analyzed by changing the creep time, creep temperature,
hardness of PUE and creep stress.

3.3.1. Creep Time

According to the prediction results of working condition 1 shown in Figure 14a, when
predicting 8 h creep properties of PUE, the prediction properties of 4 h prior were much
better than 4 h later, due to the 4 h creep training set of models. In the interval of 4 h–8 h:
there was a cross between the strain growth of the MLP model and the experiment curve,
and the strain growth rate of prediction was higher than that of the experiment; the strain
growth rate of RF model prediction was closest to that of the experiment, while the overall
strain value was slightly smaller; the trend of SVR prediction was quite different from
the experiment.

As mentioned in working condition 1 of Table 13, the evaluation index MAE, RMSE
and R2 of the MLP model were better, while the evaluation index R of the RF model was
better. The evaluation index of SVR was the worst among the three models. Therefore,
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the MLP and RF machine learning models have a better prediction ability than the SVR
model in the working conditions of extending creep time.

Table 12. The creep working conditions for prediction.

Working Conditions Hardness (HA) Creep Stress (MPa) Temperature (◦C) Creep Time (h)

1 70 2.5 65 8
2 90 1.0 30 4
3 80 0.5 50 4
4 85 1.5 40 4
5 70 1.25 20 4
6 80 2.75 20 4
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Figure 14. The prediction performance of each working condition: (a)Working Condition 1; (b)Working Condition 2;
(c)Working Condition 3; (d)Working Condition 4; (e)Working Condition 5; (f)Working Condition 6.
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Table 13. The generalization ability of three machine learning models.

Working Conditions Model MAE RMSE R R2

MLP 1.233× 10−3 2.033× 10−3 0.8424 0.6663
1 RF 2.110× 10−3 2.692× 10−3 0.9132 0.4151

SVR 2.339× 10−3 4.20× 10−3 0.5260 -0.4251

MLP 1.294× 10−4 1.374× 10−4 0.9851 0.7058
2 RF 3.807× 10−5 4.139× 10−54 0.9987 0.9733

SVR 1.486× 10−4 1.516× 10−4 0.9939 0.6416

MLP 9.292× 10−5 1.073× 10−4 0.9877 0.8994
3 RF 4.115× 10−5 4.874× 10−5 0.9986 0.9792

SVR 1.417× 10−4 1.612× 10−4 0.9941 0.7730

MLP 1.588× 10−4 1.839× 10−4 0.9892 0.8921
4 RF 3.263× 10−4 3.468× 10−4 0.9988 0.6163

SVR 3.123× 10−4 3.223× 10−4 0.9938 0.6688

MLP 4.144× 10−4 4.378× 10−4 0.9885 0.8759
5 RF 9.956× 10−4 1.044× 10−3 0.9989 0.2946

SVR 2.189× 10−4 2.857× 10−4 0.9936 0.9471

MLP 7.816× 10−4 8.142× 10−4 0.9876 0.7726
6 RF 1.005× 10−3 1.066× 10−3 0.9988 0.6103

SVR 3.272× 10−4 4.215× 10−4 0.9931 0.9391

3.3.2. Creep Temperature

According to prediction results of working conditions 2 and 3 shown in Figure 14b,c,
when predicting the creep properties of PUE in the range of 20 ◦C–90 ◦C, using the three
machine learning models: the prediction creep curves of the RF model were the closest to
the experiment curves; the prediction curves of the MLP model under two temperatures
were both higher than the experiment curves, and the overall trend was nearly the same,
while the prediction accuracy was worse than that of the RF model; the prediction ability
of the SVR model represented instability, and the bug contrast of experiment curves,
the prediction curve was higher under 30 ◦C and lower under 50 ◦C, which had the worst
overall trend among the three models.

As mentioned in working conditions 2 and 3 of Table 13, the four evaluation indexes of
the RF model were the best, which means the prediction accuracy was the best. The MAE,
RMSE and R2 of the MLP model were better than that of the SVR model, while the
evaluation index R of the SVR model was better. Therefore, the main priority of machine
learning methods under the working conditions of the changing creep temperature of PUE
was RF.

3.3.3. Hardness of PUE

According to prediction results of working condition 4 shown in Figure 14d, when
predicting creep properties of PUE by changing the hardness: the prediction creep curves
of the MLP model were the closest to the experiment curves, and the trend was nearly
the same, which indicates the highest prediction accuracy; the prediction curves of the RF
model had the nearest overall trend with the experiment curve, while the curve value was
higher than that of the experiment, and the accuracy was worse than the MLP model. The
overall trend of the SVR model was the worst among the three models, and the curve value
was lower than that of the experiment.

As mentioned in working condition 4 of Table 13, the evaluation index MAE, RMSE
and R2 of the MLP model were the best, while the evaluation index R of the RF model
was the best. Therefore, the main priority of the machine learning methods in the working
conditions of changing the hardness of PUE was MLP.
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3.3.4. Creep Stress

According to the prediction results of working conditions 5 and 6 shown in Figure 14e,f,
when changing the creep stress of PUE: the prediction creep curves of the SVR model were
the closest to the experiment curves, and MLP model came second. The overall trend of
creep curves predicted by the three models was all close to the experiment curve.

As mentioned in working conditions 5 and 6 of Table 13, the evaluation index MAE,
RMSE and R2 of the SVR model were the best, while the evaluation index R of the RF
model was the best. Therefore, the main priority of the machine learning methods in the
working conditions of changing the creep stress was SVR.

3.4. Limitations

Although a new idea was put forward for the prediction of compression creep proper-
ties of polymer materials, the author thinks that the current research still has the follow-
ing limitations:

• The experimental working conditions considered were few and the total dataset was
relatively small. The accuracy and reliability of the machine learning models such as
MPL, RF and SVR would be enhanced under a larger dataset;

• Only four creep relative variables including creep time, temperature, hardness of the
material and creep stress were considered. However, the creep properties of polymer
materials are more complicated. Therefore, more variables should be involved in the
subsequent research to further optimize the prediction model;

• Due to the inconsistency of the specimen’s size, thermal properties of material and
experiment error, the inherent laws of the samples under different working conditions
were weakened, while the nonlinear properties were further intensified. The train-
ing difficulty of the prediction model was increased and the prediction accuracy
was reduced.

4. Conclusions

In this research, a series of machine learning methods (based on MLP, RF and SVR)
was used to predict the compressive creep deformation of PUE materials. Considering
the variables of creep time, creep temperature, hardness of the material and creep stress,
the compression creeps experiment of the PUE specimen was carried out. The genetic
algorithm and k-fold cross-validation method were used to optimize the hyper-parameters
of the model, and the fitting accuracy of the model in the training set and the prediction
ability under new working conditions were verified. According to the results, the following
conclusions could be obtained:

• The creep properties of PUE was closely related to creep time, creep temperature,
creep stress and hardness, which showed strong nonlinear characteristics;

• The optimization method by combining genetic algorithm and k-fold cross-validation
to the machine learning model’s hyper-parameters could effectively improve the
fitting accuracy in the training set;

• The generalization ability of the MLP model was better when changing the creep time
and hardness of the material while changing the creep temperature and creep stress
was relatively poor;

• The generalization ability of the RF model was better when changing the creep time,
creep temperature and hardness of material, while changing the creep stress was
relatively poor;

• The generalization ability of the SVR model was better when changing the creep stress
while changing the creep time, creep temperature and hardness of material were
relatively poor;

• The method described in this research was the application case of machine learning
technology in the field of mechanical response analysis, which could provide a new
research idea for the accelerated representation of long-term mechanical properties
of polymers.
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