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Abstract: A new rigid tricyanate ester consisting of seven conjugated aromatic units is synthesized,
and its structure is confirmed by X-ray analysis. This ester undergoes thermally stimulated polymer-
ization in a liquid state. Conventional and temperature-modulated differential scanning calorimetry
techniques are employed to study the polymerization kinetics. A transition of polymerization from a
kinetic- to a diffusion-controlled regime is detected. Kinetic analysis is performed by combining iso-
conversional and model-based computations. It demonstrates that polymerization in the kinetically
controlled regime of the present monomer can be described as a quasi-single-step, auto-catalytic,
process. The diffusion contribution is parameterized by the Fournier model. Kinetic analysis is com-
plemented by characterization of thermal properties of the corresponding polymerization product by
means of thermogravimetric and thermomechanical analyses. Overall, the obtained experimental
results are consistent with our hypothesis about the relation between the rigidity and functionality of
the cyanate ester monomer, on the one hand, and its reactivity and glass transition temperature of
the corresponding polymer, on the other hand.

Keywords: cyanate esters; polymerization kinetics; vitrification; diffusion control; thermal analysis;
isoconversional kinetic analysis

1. Introduction

Unique mechanical, thermal, and electric properties of cyanate resins make them irre-
placeable for electronic, military, and aerospace industries [1–4]. Maintaining the progress
in creating high-performance cyanate resins with desired properties requires an under-
standing of fundamental relationships between the structure of the initial monomer, its
reactivity, and properties of the final polymeric materials [3,5–7]. Finding such relationships
is a non-trivial task because of the complex nature of the cyanate ester’s polymerization
process [5,8]. For example, the well-known (in physical organic chemistry) Hammet-type
correlations (i.e., the Hammet or Hammet–Taft equations), which describe electronic and
steric effects of substitutions on the reactivity of compounds, [9] are not valid for multi-step
processes because the rate constants of the individual reactions usually respond differently
to substitutions [10]. For this reason, the application of such correlations is problematic for
description of the cyanate esters reactivity. In addition, the reactivity of monomers in the
condensed states (i.e., melt or solid) is affected by intermolecular interactions [11], which
are not taken into account by the aforementioned equations. Furthermore, the kinetics of
polymerization can be convoluted by a transition from a kinetic- to diffusion-controlled
regime at later stages of the process [12], when the translational motion of the polymer
chains slows down due to increasing viscosity of the reaction mixture. This transition is
routinely linked to vitrification of the forming polymer. Therefore, one can expect that the
structural factors that slow down the segmental mobility (i.e., those that increase the glass
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transition temperature, Tg) should promote an earlier transition of the reaction kinetics to
the diffusion-controlled regime during polymerization. This idea is illustrated schemati-
cally in Figure 1, where two monomers possess similar reactivity (similar α–T curves) but
markedly different values for Tg. It is seen that polymerization of a monomer that yields
a polymer of larger Tg is accompanied by vitrification (intersection of the corresponding
α–T and Tg–α curves), whereas polymerization that yields a polymer of lower Tg does not
cause vitrification. The glass transition temperature of cross-linked polymers depends
on the cross-linking density [13,14], rigidity of the polymer network [15], and strength of
intermolecular interactions [16]. Of these factors, the cross-linking density has the most
straightforward effect that can be controlled in cyanate esters via the number of cyanate
groups. Therefore, we can assume that rigid cyanate esters with three (or more) cyanate
groups should yield polymers with larger Tg values and, thus, should be more prone to
transitioning to diffusion control during polymerization than dicyanate esters, especially
the non-rigid ones.
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Figure 1. Schematic illustration of the effect of the polymer Tg value on the reactivity of a monomer.
Dashed lines represent variation of Tg with conversion (α); solid lines represent α–T plot obtained at
the heating rate β.

Overall, our hypothesis is that polymerization of rigid n-functional cyanate esters
with n > 2 should be affected by vitrification as described above and result in a polymeric
product with a higher glass transition temperature than that of the cyanate esters of lower
functionality and higher molecular flexibility. This hypothesis is tested by synthesizing
a tricyanate ester based on a rigid triangular organic skeleton, which consists of seven
conjugated aromatic units, and subjecting it to thermal polymerization. The monomer
reactivity is probed by both conventional and temperature-modulated differential scanning
calorimetry (DSC). The observed polymerization kinetics are treated in the frameworks
of the isoconversional methodology [12]. The glass transition temperature and thermal
stability of the polymerization product are tested by means of thermomechanical analysis
and thermogravimetry, respectively, and compared with those of polymers obtained from
commercially available cyanate esters based on bis-phenols.

2. Materials and Methods

Dichloromethane (>99%, EKOS-1, Moscow, Russia), toluene (99.5%, EKOS-1, Moscow,
Russia), acetone (>98%, Chimmed, Moscow, Russia), SiCl4 (99%, Sigma Aldrich, Saint
Louis, MO, USA), tetrakis(triphenylphosphine)-palladium(0) (99%, Sigma Aldrich, Saint
Louis, MO, USA), K2CO3 (>98%, EKOS-1, Moscow, Russia), n-butyllithium (2.5 M solu-
tion in hexane, Acros Organics, Waltham, MA, USA), triisopropyl borate (98+%, Acros
Organics, Waltham, MA, USA), 4-bromanisole (>99%, Sigma Aldrich, Saint Louis, MO,
USA), boron tribromide (99+%, Acros Organics, Waltham, MA, USA), triethylamine (>99%,
Fisher Chemical, Moscow, Russia), cyanogen bromide (97%, Acros Organics, Waltham, MA,
USA), Na2SO4 (anhydrous, >99.5%, Chimmed, Moscow, Russia), K2CO3 (98%, Chimmed,
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Moscow, Russia), 4-bromacetophenone (98+%, Acros Organics, Waltham, MA, USA), and
SiO2 (60 Å, Machery-Nagel, Duren, Germany) were purchased and used without additional
purification. High-performance liquid chromatography (HPLC) analysis indicated that the
synthesized monomer was more than 99% pure. The 96% ethanol was distilled consecu-
tively over CaO and CaH2 to produce absolute ethanol. Arium mini instrument (Sartorius,
Goettingen, Germany) was used to generate deionized water (18.2 MΩ). Figure 2 schemati-
cally presents how the target cyanate ester was synthesized. The above synthetic approach
follows the well-documented strategy [17–20] for obtaining cyanate esters, including those
produced industrially.
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Figure 2. Schematic representation of the target cyanate ester 6 synthesis.

Compounds 2–5 were synthesized according to known synthetic protocols described
in [17–19].

1,3,5-tris-[4-(4-cyanatophenyl)phenyl]benzene (6). Cyanogene bromide (0.84 g,
7.85 mmol) and 1,3,5-tris [4-(4-hydroxyphenyl)phenyl]benzene (5) (0.51 g, 0.876 mmol)
were mixed in anhydrous acetone and stirred at –30 ◦C; triethylamine (1.09 mL, 7.88 mmol)
was dissolved in acetone and added dropwise to the aforementioned cooled mixture.
Then, the reaction mixture was stirred at room temperature for 20 min, and white pre-
cipitate of triethylammonium salt was filtered off. Filtrate of the reaction mixture was
evaporated. Dichloromethane was added to the residue, which was then washed with
deionized water and dried over anhydrous sodium sulfate (Na2SO4). Silica gel column
chromatography (dichloromethane eluent) was employed to purify the crude product.
After removing the solvent, white crystals were obtained. Yield 71%. Melting point (DSC,
10 K/min): 273 ◦C. IR (cm−1): 2234, 2264 (-OCN functional group). 1H NMR (CDCl3):
δ (ppm) 7.26–7.60 (12H, m, AA’BB’ spin system), 7.54–7.69 (12H, m, AA’BB’ spin sys-
tem), 7.74 (3 H, s). 13C NMR (CDCl3): δ (ppm) 108.75 (C7), 152.36, 141.85, 140.53, 139.59,
138.63, 129.02, 127.97, 127.66, 125.23, 121.07, 115.78. Crystal Data for C46H29Cl2N3O3
(M = 742.62 g/mol): triclinic, space group P-1 (no. 2), a = 10.3354(2) Å, b = 11.4326(2) Å,
c = 15.9093(2) Å, α = 107.324(2)◦, β = 99.5630(10)◦, γ = 94.157(2)◦, V = 1754.72(5) Å3, Z = 2,
T = 99.8(8) K, µ(Cu Kα) = 2.059 mm−1, Dcalc = 1.406 g/cm3, 21,578 reflections measured
(5.936◦ ≤ 2Θ ≤ 153.09◦), and 7081 unique (Rint = 0.0389, Rsigma = 0.0396), which were used
in all calculations. The final R1 was 0.0650 (I > 2σ(I)), and wR2 was 0.2107 (all data). The
CCDC number was 2077466.
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Methods for determination of structure and purity of target monomer. A Rigaku
XtaLab Synergy S instrument with a HyPix detector and a PhotonJet microfocus X-ray
tube using Cu Kα (1.54184 Å) radiation was utilized to collect single crystal X-ray data for
the monomer at low temperature. The CrysAlisPro data reduction package was used to
index and integrate the images. Systematic errors and absorption were corrected using
the ABSPACK module. The space group determination was accomplished with the GRAL
module. The structure was solved with the aid of SHELXT. A refinement was carried out by
a full-matrix least-squares analysis on F2 using SHELXL [21,22]. Non-hydrogen atoms were
anisotropically refined. The hydrogen atoms were placed in the calculated positions and
refined as riding atoms. The Mercury 4.1 program was used to generate the figures [23].
The target cyanate ester was crystallized from a dichloromethane–hexane mixture. A
Dionex Ultimate 3000 chromatograph equipped with a UV detector (254 nm) and Dionex
Acclaim 120 chromatographic column (C18-bonded silica, 5 µm, 120 Å, 4.6 mm × 250 mm)
was employed to conduct HPLC analysis. The eluent was an acetonitrile–deionized water
mixture (85 to 15 vol.%) that was introduced at a flow rate of 1 mL min−1. A Bruker
AVANCE III NMR spectrometer operating at 600.13 MHz was used for the 1H and 13C
analyses. A Bruker Vertex 70 FTIR spectrometer was utilized to record IR spectra.

Thermal analysis. A heat flux DSC 3+ (Mettler-Toledo) was employed to run calorimet-
ric measurements. Temperature, heat flow, and tau-lag calibrations were conducted with
the aid of in and Zn standards. The runs were performed under an 80 mL min−1 flow of Ar.
The samples were placed into 40 µL aluminum pans closed with pierced lids and heated at
the rates 5, 10, 15, and 20 ◦C min−1. Prior to the DSC measurements, dichloromethane was
removed from the monomer crystals by heating in argon flow for 8 h at 80 ◦C, i.e., at ~40 ◦C
above the boiling temperature of dichloromethane. The mass of the cyanate ester sample
used was ~1 mg. The mass of the samples upon completion of the measurements decreased
by a little over 1%. Temperature-modulated DSC (TMDSC) measurements were conducted
by heating at 1 ◦C min−1 from ambient temperature to 400 ◦C. The linear temperature
ramp was overlaid with stochastic temperature oscillations, with periods ranging from
15 to 30 s and the amplitude maintained at 0.5 ◦C. A Netzsch STA 449 F1 Jupiter thermal
analyzer was employed for thermogravimetric analysis (TGA). The analysis was carried
out by a heating of ~10 mg sample from 40 to 1000 ◦C under 75 mL min−1 argon flow.
Thermomechanical analysis (TMA) was performed on a TMA 403 F1 Hyperion (Netzsch,
Selb, Germany) dilatometer in a penetration mode. The sample was heated at 5 ◦C min−1

from 25 to 550 ◦C under nitrogen flow with an applied force of 2 N.

3. Computations

Kinetic analysis was performed in accordance with the recommendations of the
ICTAC Kinetic Committee [24]. The dependence of the effective activation energy, Eα,
on conversion was determined by means of the flexible integral isoconversional method
of Vyazovkin. The extents of conversion, α, were determined as the partial areas of the
DSC peaks associated with polymerization of the cyanate ester. The Vyazovkin method
eliminates a systematic error in Eα that arises when Eα varies significantly with α [25]. This
error is eliminated thanks to the flexible integration that presumes the constancy of Eα only
within a very narrow integration range, ∆α = 0.01. For each ∆α, Eα is found by minimizing
the following function:

Ψ(Eα) =
p

∑
i=1

p

∑
j 6=i

J[Eα, Ti(tα)]

J
[
Eα, Tj(tα)

] (1)

where

J[Eα, Ti(tα)] ≡
tα∫

tα−∆α

exp
[
−Eα

RTi(t)

]
dt (2)

and p is the number of the temperature programs, T(t). The trapezoid rule was used to
evaluate the integral. A minimum of Equation (1) was found by the COBYLA non-gradient
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method from the NLopt library. The uncertainties in the Eα values were determined by
means of a statistical procedure explained elsewhere [26].

A dependence of the pre-exponential factor on conversion was estimated by substitut-
ing the values of Eα into the equation for the compensation effect:

ln Aα = a + bEα (3)

First, the a and b values were found by fitting the pairs of lnAi and Ei into Equation (3).
The lnAi and Ei pairs were determined by substituting different reaction models, fi(α), into
the linear form of the basic rate equation:

ln
(

dα

dt

)
− ln[ fi(α)] = ln Ai −

Ei
RT

(4)

Substitution of each fi(α) model into Equation (4) yielded a corresponding pair of lnAi
and Ei values. Overall, five pairs of lnAi and Ei were determined by using the model:

f (α) = αm(1− α)n (5)

With five different combinations of m and n (m = 1, n = 1; m = 0.5, n = 1; m = 1,
n = 0.5; m = 2, n = 1; m = 1, n = 2). This model was chosen because it imitates the
autocatalytic reaction kinetics typically observed for cyanate esters polymerization [3].
Moreover, this model is a part of the reaction model by Kamal [27] that has been used
broadly for parameterizing the kinetics of cyanate ester polymerization [28,29].

The experimentally found values of Eα and Aα were used to determine the numerical
form of the integral reaction model as follows:

g(α) = ∑
α

Aα J[Eα, Ti(tα)] (6)

4. Results and Discussion

Figure 3A presents the structure of the synthesized monomer as confirmed by X-ray
analysis. Crystallization of the target monomer from dichloromethane solution results in
the formation of the corresponding solvate containing dichloromethane molecules in the
crystalline lattice (Figure 3B).

Polymers 2021, 13, x FOR PEER REVIEW 5 of 13 
 

 

Ψ(𝐸ఈ) = ෍ ෍ 𝐽ሾ𝐸ఈ, 𝑇௜(𝑡ఈ)ሿ𝐽ൣ𝐸ఈ, 𝑇௝(𝑡ఈ)൧௣
௝ஷ௜

௣
௜ୀଵ      (1)

where 𝐽ሾ𝐸ఈ, 𝑇௜(𝑡ఈ)ሿ ≡ න exp ൤ −𝐸ఈ𝑅𝑇௜(𝑡)൨ 𝑑𝑡௧ഀ௧ഀష∆ഀ      (2)

and p is the number of the temperature programs, T(t). The trapezoid rule was used to 
evaluate the integral. A minimum of Equation (1) was found by the COBYLA non-
gradient method from the NLopt library. The uncertainties in the Eα values were 
determined by means of a statistical procedure explained elsewhere [26]. 

A dependence of the pre-exponential factor on conversion was estimated by 
substituting the values of Eα into the equation for the compensation effect: ln 𝐴ఈ = 𝑎 + 𝑏𝐸ఈ     (3) 

First, the a and b values were found by fitting the pairs of lnAi and Ei into Equation 
(3). The lnAi and Ei pairs were determined by substituting different reaction models, fi(α), 
into the linear form of the basic rate equation: ln ൬𝑑𝛼𝑑𝑡 ൰ − lnሾ𝑓௜(𝛼)ሿ = ln 𝐴௜ − 𝐸௜𝑅𝑇    (4) 

Substitution of each fi(α) model into Equation (4) yielded a corresponding pair of lnAi 
and Ei values. Overall, five pairs of lnAi and Ei were determined by using the model: 𝑓(𝛼) = 𝛼௠(1 − 𝛼)௡   (5) 

With five different combinations of m and n (m=1, n=1; m=0.5, n=1; m=1, n=0.5; m=2, 
n=1; m=1, n=2). This model was chosen because it imitates the autocatalytic reaction 
kinetics typically observed for cyanate esters polymerization [3]. Moreover, this model is 
a part of the reaction model by Kamal[27] that has been used broadly for parameterizing 
the kinetics of cyanate ester polymerization [28,29]. 

The experimentally found values of Eα and Aα were used to determine the numerical 
form of the integral reaction model as follows: 𝑔(𝛼) = ෍ 𝐴ఈ 𝐽ሾ𝐸ఈ, 𝑇௜(𝑡ఈ)ሿఈ     (6) 

4. Results and Discussion 
Figure 3A presents the structure of the synthesized monomer as confirmed by X-ray 

analysis. Crystallization of the target monomer from dichloromethane solution results in 
the formation of the corresponding solvate containing dichloromethane molecules in the 
crystalline lattice (Figure 3B). 

 

Figure 3. Single-crystal X-ray crystallographic structure of synthesized tricyanate ester 6 (H atoms—
light grey, C atoms—dark grey, N atoms—blue, O atoms—red, Cl atoms—green) (A). Crystal packing
of tricyanate ester 6 view along a axis (B).

Thermally stimulated polymerization of the cyanate ester proceeds in the liquid state
(i.e., the monomer melt) and results in the formation of highly stable aromatic 1,3,5-triazine
fragments as cross-links (Figure 4), which produces significant amount of heat [30]. Thus,
the reaction progress is conveniently monitored by DSC.
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As mentioned earlier, the kinetics of the cross-linking polymerization can be convo-
luted by a transition from a kinetic- to a diffusion-controlled regime, which is usually
observed near the glass transition temperature of the reaction mixture. This transition is
accompanied by a change in the kinetic parameters of the polymerization process and usu-
ally correlates with vitrification, because the latter is associated with a dramatic increase in
viscosity and, thus, with diffusional retardation. To detect vitrification during the cyanate
polymerization, temperature-modulated DSC measurements (TMDSC) were employed.
The technique separates contributions of the reversing (vitrification) and non-reversing
(polymerization) components into the measured total heat flow [31]. Due to the difference
in the heat capacities of the liquid and glassy states, vitrification manifests itself as a step
change in the temperature dependence of the heat capacity. As shown in Figure 5, the
quasistatic heat capacity, Cp,0, determined from the reversing heat flow, reveals such step
change. The mid-point of the heat capacity step is found at 292 ◦C. The exact conversion
value related to this transition is difficult to determine because of the partial overlap of
the melting and polymerization peaks. However, it is clear that it occurs at the later poly-
merization stages, probably at α > 0.9. In principle, this means that the respective kinetics
of polymerization may undergo a transition to a diffusion-controlled regime at the later
polymerization stages.
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Figure 5. Non-reversing heat flow and quasistatic heat capacity curves for cyanate ester polymer-
ization measured at 1 ◦C min−1 by stochastically modulated DSC (arrow denotes the midpoint
temperature of vitrification).

The kinetics of the polymerization process were studied by conventional DSC. Figure 6
presents the DSC curves for polymerization of the cyanate ester at different heating
rates. The average heat of polymerization is 282 ± 15 J g−1, which corresponds to
185 ± 10 kJ mol−1 or 62 kJ mol−1 of OCN groups. This is below the reaction heat values
of 80–110 kJ mol−1 of OCN groups typically reported for mono- and di-cyanate esters [2].
Since the FTIR measurement of the polymerization product does not show the presence of
the absorption bands corresponding to unreacted OCN groups, we believe that a possible
reason for markedly lower heat values is that the rigid nature of the monomer hinders
complete cyclization of the linear reaction intermediates into triazine fragments [32].
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The heat flow values at different heating rates were normalized by a factor of βref β−1, where β is the
heating rate and βref is 1 ◦C min−1, to facilitate direct comparison of the DSC peaks.

Isoconversional kinetic analysis of the measured DSC data was carried out to quantify
the reactivity of the synthesized tricyanate ester. The conversion dependencies of the
activation energy Eα and pre-exponential factor Aα determined for the polymerization
process are presented in Figure 7. A variation of the activation energy with conversion in a
range of α = 0.05–0.70 is insignificant, i.e., less than 10% of the average Eα (106± 6 kJ mol−1).
The pre-exponential factor also demonstrates a rather small variation (Figure 7B). The
average lnAα value is 18± 1. The rise of the activation energy at α > 0.70 up to 150 kJ mol−1

is likely related to the transition of the polymerization kinetics to a diffusion-controlled
regime as was expected from TMDSC measurements. At the same time, the insignificant
variation of the kinetic parameters in the conversion range 0.05–0.70 (i.e., in the kinetically
controlled regime) indicates that the process appears to be single-step kinetics.
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of cyanate ester.

Most commonly, the kinetics of cyanate esters polymerization is treated by a reaction
model that combines parallel nth order and auto-catalytic reactions (Equation (7)) [6,20,28,
29,33–39].

dα

dt
= k1αm(1− α)n + k2(1− α)n (7)

The constancy of the activation energy in a range of α = 0.05–0.70 (Figure 7A) indicates
that the polymerization process rate is either controlled by only one reaction step or that the
two aforementioned steps possess reasonably close activation energies. Since the cyanate
ester polymerization is generally known to involve multiple steps [5], the second case
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appears more likely. To properly treat such situations, Equation (7) needs to be rearranged
by factoring out (1− α)n and k1 and replacing k2/k1 with B:

dα

dt
= k1(B + αm)(1− α)n (8)

When E1 ≈ E2, parameter B is a constant equal to the ratio of A2/A1. Then, Equation (8)
allows one to identify the reaction model as follows:

f (α) = (B + αm)(1− α)n (9)

Equation (8) has an important advantage over the autocatalytic model defined by
Equation (5), sometimes referred to as the truncated Sestak–Berggren or expanded Prout–
Tompkins model. Practical application of Equation (5) for kinetic simulations requires
making an illogical assumption that a reaction starts at some non-zero value of α [40].
Unfortunately, the resulting simulations are affected significantly by the choice of the initial
non-zero value of α. The aforementioned model (Equation (9)) is free of this problem.

Because the constant B in Equation (9) is the ratio of pre-exponential factors of two
competing reactions, it provides an estimate of how many times the nth-order reaction
rate constant exceeds the autocatalytic reaction rate constant. In the case of B ≤ 0.1 or
B ≥ 10, the contribution of one of these reactions to the overall reaction rate constant is less
than 10%, which is close to the error of estimating the rate constant. In such situations, the
overall process can be considered as a quasi-single-step reaction.

Figure 8 demonstrates the ability of Equation (9) to fit the numerical g(α) data obtained
from the experimental values of Eα and Aα via Equation (6). To perform fitting, Equation (9)
is converted to the integral form as follows:

g(α) =
α∫

0

dα

(B + αm)(1− α)n (10)
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Clearly, the model provides a good quality fit (Figure 8).
Additionally, the rate data for 0.05 < α < 0.70 were fitted directly by Equation (8)

to obtain other parameters of the polymerization process. This fitting procedure used
A1, m, n, and B as adjustable parameters. In Equation (8), the temperature dependence
of k1 is introduced via the Arrhenius equation, in which E1 is kept as a constant equal
to 106 ± 6 kJ mol−1, i.e., equal to the average Eα value determined by the advanced
isoconversional method. Table 1 presents the obtained values of the kinetic parameters.
The obtained lnA1 value is 18.1 ± 0.1, which is practically the same as that determined
independently from the compensation effect (18 ± 1). In turn, the value of B indicates that
A2 is about 30 times smaller than A1. The obtained A1 and B values can be used to estimate
the value of lnA2. It is found to be 14.7. Since the B parameter is found to be less than



Polymers 2021, 13, 1686 9 of 13

0.1, the contribution of nth order reaction to the overall reaction constant is judged to be
insignificant for the reasons explained above. Thus, the reaction can be considered as an
autocatalytic quasi-single-step processes.

Table 1. Estimated kinetic parameters for polymerization of tricyanate ester 6.

E1/kJ mol−1 ln(A1/s−1) m n B ln(A2/s−1)

106 ± 6 18.1 ± 0.1 1.4 ± 0.1 1.2 ± 0.1 0.033 ± 0.01 14.7 *
* denotes the lnA2 value estimated from the values of B and lnA1.

To account for diffusion that controls kinetics of polymerization at the later stages of
the process (α > 0.7), we applied an approach that considers the total polymerization rate
as the product of the reaction-controlled polymerization rate [dα/dt]r and the conversion-
dependend diffusion factor fd(α): [41,42]

dα

dt
=

[
dα

dt

]
r

fd(α) (11)

fd(α) equals unity when polymerization proceeds in a kinetically controlled regime
and starts to decrease when it switches to diffusion control. The kinetically controlled
polymerization rate can be easily calculated by means of Equation (8) using the kinetic
regime parameters (Table 1) and experimental α and T values. According to Equation (11),
the diffusion factor values at the corresponding α values are the ratio of the experimental
polymerization rate to the calculated polymerization rate in the kinetically controlled
regime. As expected, the values of the fd(α) plateau near unity up to conversion of 0.7
then drop to ~0.4 when the polymerization transitions to the diffusion-controlled regime
(Figure 9). The Fournier empirical equation [41] was used to describe a dependence of
diffusion factor on conversion:

fd(α) = 2
(

1 + exp
[

α− α f

b

])−1
− 1 (12)

where αf is the final conversion and b is an empirical parameter. The goodness of the fit of
Equation (12) to calculated fd(α) values is shown in Figure 9.
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Figure 10 shows how the rate equations with and without accounting for diffusion
(i.e., Equations (8) and (13)) describe the experimental polymerization rate data in the
whole range of conversions. As expected, Equation (8) cannot describe the experimental
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rate outside of the kinetically controlled conversion range, whereas Equation (13) is able to
fit the experimental data in the whole range of conversions.

dα

dt
= k1(1− α)n(B + αm)

(
2
(

1 + exp
[

α− 1
b

])−1
− 1

)
(13)
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mated with (solid line) and without (dashed line) accounting for diffusion control.

It is instructive to compare the reactivity of the presently synthesized rigid tricyanate
ester with other cyanate esters of lower functionality that contan flexible bridging units.
The transition of the polymerization from a kinetic- to a diffusion-controlled regime is
of particular interest. As previously mentioned, polymerization of the presently studied
tricyanate ester transitions to the diffusion-controlled regime at α ≈ 0.7. In turn, non-
catalyzed polymerization of dicyanate esters with flexible bridging units does not show
such transition under non-isothermal conditions, which means that reaction proceeds in a
kinetically controlled regime in the whole conversion range [20,30,34].

The thermal stability and glass transition temperature of the polymerization product
were evaluated by TGA and TMA (Figure 11). Thermal decomposition of cyanate polymers
is known to be a complex process. This complexity manifests itself in the multi-step
character of the mass loss that reveals the presence of three large peaks (463, 640, and
740 ◦C) in the derivative TG (DTG) curve (Figure 11A). It should be noted that the thermal
behavior of the present polymer product compares favorably with the polymers based on
commercially available cyanate esters [43]. For example, the 5% mass loss temperature of
the synthesized polymer is 515 ◦C, which is significantly higher than the 439–457 ◦C found
for polymers derived from commercially available monomers [43]. Furthermore, the char
yield at 900 ◦C for the present polymer is 80%, which is substantially larger than that for the
aforementioned polymers (31–63%) [43]. The glass transition temperature of the present
polymer is determined as high as 360 ◦C (Figure 11B), which greatly exceeds the value
determined for known crosslinked cyanate polymers (192–289 ◦C) [3,30,43]. Apparently,
such exceptional thermal stability, high glass transition temperature, and char yield are
associated with the rigid polyaromatic nature of the cyanate ester monomer [15,16,44,45].
Moreover, one should generally expect that introducing polar groups or groups capable of
forming hydrogen bonds into the aromatic rings of the monomer to lead to an increase in
Tg of a polymer.
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5. Conclusions

We synthesized a new rigid tricyanate ester and confirmed its structure by X-ray
analysis. Upon heating, the monomer polymerized in the liquid (melted) state. The
polymerization process was studied by conventional and temperature-modulated DSC.
Temperature-modulated DSC detected vitrification in the later stages of the process, and
detailed kinetic analysis revealed corresponding changes in the kinetic parameters of
the polymerization process, which were interpreted as a transition from a kinetic- to a
diffusion-controlled regime. Moreover, kinetic analysis showed that polymerization in
the kinetically controlled regime of the present monomer can be described as a quasi-
single-step, auto-catalytic, process. The polymerization product demonstrated exceptional
thermal stability, high glass transition temperature, and high char yield. Overall, the
obtained experimental results appear consistent with our hypothesis about the effect of
the rigidity and functionality of cyanate ester structure on its reactivity and the glass
transition temperature.
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