Synthesis of amphiphilic statistical copolymers bearing methoxyethyl and phosphorylcholine groups and their self-association behavior in water

Thi Lien Nguyen¹, Yuuki Kawata¹, Kazuhiko Ishihara², and Shin-ichi Yusa^{1,*}

- ¹ Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan; nguyenlienk56hh@gmail.com (T.L.N), yuki chibikitty1020@yahoo.co.jp (Y.K.)
- ² Department of Materials Engineering, School of Engineering, The University of Tokyo,
 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; ishihara@mpc.t.u-tokyo.ac.jp
- * Correspondence: yusa@eng.u-hyogo.ac.jp; Tel.: +81-79-267-4954

Figure S1. (a) Time-conversion and (b) the pseudo first-order kinetic plots for conventional free-radical polymerization of equimolar concentrations of MEA (\bullet) and MPC (\blacksquare) in methanol at 40°C. [M]₀ and [M] were monomer concentrations at polymerization times of 0 and *t* min, respectively.

Figure S2. ¹H NMR spectra of $P(MEA/MPC_m)$ with various feed mol% of the hydrophilic MPC units in methanol-*d*₄ at room temperature.

Monomer in feed (mol%)		Monomer ratio in feed	Integral intensities of monomers in the copolymers		Content ratios of monomers in the copolymer	Parameters of Fineman–Ross equation	
MEA	MPC	F = [Mmea]0/[Mmpc]0	MEA (<i>I</i> 1) <i>^a</i>	MPC (<i>I</i> ₂) ^{<i>b</i>}	$f = m_{\text{MEA}}/m_{\text{MPC}}$ $= I_1/I_2$	F^2/f	F(f-1)/f
90	10	9.00	398.7	87.1	4.58	17.69	7.03
80	20	4.00	268.8	124.8	2.15	7.43	2.14
70	30	2.33	174.2	168.8	1.03	5.28	0.07
60	40	1.50	170.5	200.5	0.85	2.65	-0.26
50	50	1.00	99.3	219.2	0.45	2.21	-1.21
30	70	0.43	43.1	215.3	0.20	0.92	-1.71
10	90	0.11	9.89	214.8	0.05	0.27	-2.30

Table S1. The Fineman–Ross parameters of the copolymers, as determined via ¹H NMR in

methanol- d_4 at room temperature

^a The integral intensities of the pendant methylene protons in the MEA units at 3.62 ppm. ^b

The integral intensities of the pendant methylene protons in the MPC units at 3.72 ppm.

Table S2. Composition of the copolymers, as estimated via 1 H NMR in methanol- d_4 at roomtemperature

Monomer in		m in food a	Integral inter	<i>m</i> in the	
feed (mol)		$m \ln 100$	copoly	copolymer ^d	
MEA	MPC	(1110170)	$\mathrm{MEA}\left(I_{1}\right){}^{b}$	MPC (<i>I</i> ₂) ^{<i>c</i>}	(mol%)
1.901	0.099	4.96	9.37	0.55	$5.54 \approx 6$
1.836	0.201	9.88	4.06	0.53	$11.55 \approx 12$
1.201	0.800	39.97	1.75	1.49	$45.99 \approx 46$

^{*a*} *m* in feed = $[M_{MPC}]_0/([M_{MEA}]_0+[M_{MPC}]_0) \times 100$. ^{*b*} The integral intensities of the pendant methylene protons in the MEA units at 3.62 ppm. ^{*c*} The integral intensities of the pendant methylene protons in the MPC units at 3.72 ppm. ^{*d*} *m* in the copolymer = $I_2/(I_1+I_2) \times 100$.

Figure S3. Photographs of (a) PMEA, (b) P(MEA/MPC₆), (c) P(MEA/MPC₁₂), and (d)

P(MEA/MPC₄₆) solutions after dialysis using pure water.

Figure S4. SEC elution curves for (a) PMEA, (b) P(MEA/MPC₆), (c) P(MEA/MPC₁₂), and (d) P(MEA/MPC₄₆) using methanol containing 0.1 M lithium perchlorate as the eluent at 40°C.

Figure S5. Hydrodynamic radius (R_h) distributions for (a) P(MEA/MPC₆), (b) P(MEA/MPC₁₂), and (c) P(MEA/MPC₄₆) in methanol at $C_p = 10$ g/L at 25°C.

Figure S6. Zimm plots of (a) P(MEA/MPC₆), (b) P(MEA/MPC₁₂), and (c) P(MEA/MPC₄₆) in methanol at 25°C.

Figure S7. Hydrodynamic radius (R_h) of P(MEA/MPC₆) as a function of the polymer concentration (C_p) in water.

Figure S8. Transmission electron microscopy (TEM) images for P(MEA/MPC₆) at $C_p = 1.0$ g/L in water with different magnifications.

Figure S9. Fluorescence spectra of pyrene excited at 334 nm in water in the presence of $P(MEA/MPC_6)$ at $C_p = 0.08$ (solid line) and 0.0012 g/L (dashed line).