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Abstract: Wastewater remains a global challenge. Various methods have been used in wastewater
treatment, including flocculation. The aim of this study was to synthesize iron nanoparticles (FeNPs)
using a polymeric bioflocculant and to evaluate its efficacy in the removal of pollutants in wastewater.
A comparison between the efficiencies of the bioflocculant and iron nanoparticles was investigated.
A scanning electron microscope (SEM) equipped with an energy-dispersive X-ray analyzer (EDX) and
Fourier transform-infrared (FT-IR) spectroscopy were used to characterize the material. SEM-EDX
analysis revealed the presence of elements such as O and C that were abundant in both samples,
while FT-IR studies showed the presence of functional groups such as hydroxyl (–OH) and amine
(–NH2). Fe nanoparticles showed the best flocculation activity (FA) at 0.4 mg/mL dosage as opposed
to that of the bioflocculant, which displayed the highest flocculation activity at 0.8 mg/mL, and both
samples were found to be cation-dependent. When evaluated for heat stability and pH stability,
FeNPs were found thermostable with 86% FA at 100 ◦C, while an alkaline pH of 11 favored FA with
93%. The bioflocculant flocculated poorly at high temperature and was found effective mostly at a
pH of 7 with over 90% FA. FeNPs effectively removed BOD (biochemical oxygen demand) and COD
(chemical oxygen demand) in all two wastewater samples from coal mine water and Mzingazi River
water. Cytotoxicity results showed both FeNPs and the bioflocculant as nontoxic at concentrations up
to 50 µL.

Keywords: biosafety; flocculation; removal efficiency; wastewater

1. Introduction

Approximately 90% of wastewater is discharged untreated into water bodies in developing
countries (Corcoran) [1]. The aquatic ecosystem is threatened by this as edible and drinkable water
become contaminated [2]. Colloids are heterogeneous matter characterized by kinetically non-labile
and thermodynamically instable characteristics. Colloids, organic, and inorganic pollutants in water
are a major concern of this era. Colloids have a tendency of not settling under gravity in a solution [3].
Both organic and inorganic hazardous pollutants, including derivatives of phenols and dyes released
from different industries, have turned out to be a global problem [4,5]. Textile industries are one
of the largest sources that are contributing to the pollution of water. This is due to the application
of different chemicals throughout the textile processing [6,7]. Untreated effluent discharge from the
textile processing results in highly toxic wastewater [8]. This effluent contains high levels of chemical
oxygen demand (COD) and biochemical oxygen demand (BOD) and is highly turbid. The release of
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this untreated effluent to sea, lakes, or rivers affect the environment badly [9]. In developing countries,
close to 10% of the population dies due to waterborne infections as well as cancer caused by untreated
industrial effluents in water [10]. Hence, treatment and removal of the pollutants that are present in
water bodies are necessary, though it is never an easy task.

Several techniques have been employed to treat the effluents and to remove toxic compounds
from the water [10,11]. The methods include constructed wetlands, membrane filtration, hybrid
ion exchange materials and electrocoagulation, etc. All these water treatment technologies play a
substantial role in the treatment of effluents from industries. However, the major downside of these
techniques is that they are either very expensive or produce immense amounts of sludge [12].

Of late, secondary metabolites (bioflocculants) produced by microorganisms during growth
are viewed as the possible solution to water treatment. These flocculants are favored due to their
environmental friendliness, biodegradability, and nontoxicity [11], and they cause no environmental
harm and can remove heavy metals from wastewater [13]. Ugbenyen and Okoh [14] stated that
chemicals that stimulate flocculation by aggregation of colloids and other suspended particles, forming
a floc, are called flocculants. Both organic and inorganic flocculants have been used in the purification
of water in various industries. This includes organic synthetic polymers, inorganic aluminium, and
ferric salt [15]. Natural flocculants have also been used in various downstream processes such as
treatment of wastewater, purification of potable water, and fermentation and food industries [16].
Commonly, the flocculants categories are: synthetic organic flocculants, which include polyacrylamide
derivatives; inorganic flocculants, which include polyaluminium chloride; and naturally occurring
flocculants, which include the secondary secretion (bioflocculants) from microorganisms [17].

Flocculants of chemical nature have been used widely in the process of flocculation due to the cost
effectiveness and flocculating efficiency [18]. Nonetheless, some environmental and health concerns
have been raised through their usage due to the monomers of these flocculants being reported as toxic to
humans, and aluminium salts being associated with Alzheimer’s disease [11,19]. Therefore, researchers
in the world have shifted focus in the application of these biodegradable, environmentally friendly
flocculants to replace chemically synthesized flocculants. Despite all these interesting properties of
biodegradability and environmental-friendliness, natural flocculants have the disadvantages of low
shelf life, are very expensive to produce, have low yield, and have minimal flocculation activity [18].
Therefore, to overcome these shortcomings, we investigate the application of bioflocculant-synthesized
nanoparticles in comparison to chemical synthetic flocculant (ferric chloride) and bioflocculant.

Hence, in the present study, we report the synthesis of iron nanoparticles using a polymeric
bioflocculant, and its application in wastewater treatment in comparison to a bioflocculant and
biosafety evaluation.

2. Materials and Methods

2.1. Production Medium Chemicals

All reagents for production media used were obtained from Sigma-Aldrich (St. Louis, MO, USA).
The standard production medium as described by Zhang, et al. [20] was followed. A litre of the filtered
sea water was used together with the following reagents: glucose (20.0 g), KH2PO4 (2.0 g), K2HPO4

(5.0 g), (NH4)2SO4 (0.2 g), NaCl (0.1 g), CH4N2O (0.5 g), MgSO4 (0.2 g), and yeast extract (0.5 g).

2.2. Extraction and Purification of the Bioflocculant

The bacteria used were previously isolated from the sediment sample from Sodwana Bay in the
Province of KwaZulu-Natal in South Africa (28◦450′ S 31◦540′ E) and identified as Alcaligenes faecalis
HCB2 [11]. Bioflocculant extraction was achieved following a method as described by Dlamini et al. [21].
Firstly, 1 L of the production medium was prepared and autoclaved at 121 ◦C for 15 min. Subsequently,
1% in (50 mL) inoculum was added and the medium incubated in a shaker at 165 rpm for 72 h at 30 ◦C,
and after incubation, the medium was centrifuged at 8000 rpm at 4 ◦C for 30 min. This was done in
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order to remove cells and insoluble substances. The supernatant was transferred into a clean container
and 1 L of distilled water and 2 L of ethanol were added to the supernatant, agitated, and the solution
was stored at 4 ◦C for 12 h. Later, the precipitate formed was vacuum-dried and 100 mL of distilled
water was added. A mixture of chloroform and n-butyl (5:2 v/v) was also added and the mixture was
left to stand for 12 h at room temperature [21].

2.3. Synthesis of the Iron Nanoparticles (FeNPs)

To synthesize iron nanoparticles, a green-approach method was adopted [22]. A metal precursor
for the synthesis of iron nanoparticles (FeNPs) used was iron sulphate (FeSO4). Briefly, 0.5 g of pure
bioflocculant was dissolved in 0.2 M (FeSO4), and to prevent agglomeration of nanoparticles, 10 mL
of 5.0 M sodium hydroxide (NaOH) solution was added. The mixture was left overnight at room
temperature and nanoparticles formation was confirmed by physical observation, i.e., color change and
characterization. Subsequently, the mixture was centrifuged at 5000 rpm at 4 ◦C for 15 min to harvest
the synthesized nanoparticles and the resulting precipitate was vacuum-dried at 25 ◦C for 24 h [22].

2.4. Characterization of the Bioflocculant and Iron Nanoparticles

2.4.1. Morphology and Element Analysis

A scanning electron microscope (SEM, JEOL, USA, Inc., Peabody, MA, USA) and energy-dispersive
X-ray spectroscopy (EDX, JEOL, USA, Inc., Peabody, MA, USA) were used to evaluate morphology
and elements in FeNPs and the bioflocculant.

2.4.2. Functional Groups Analysis

Fourier transform-infrared (FT-IR, Bruker, Gauteng, South Africa) spectroscopy was used to
identify and confirm the functional groups present in FeNPs and the bioflocculant (Tensor 27, Bruker
FT-IR spectrophotometer, Bruker, Gauteng, South Africa).

2.5. Determination of Flocculation Activity

The process in which mediation of flocculants is achieved in the presence of microorganisms or
biodegradable macromolecular flocculants released by microorganisms is called bioflocculation.

Kaolin clay was used as the test material in this study; 4.0 g in 1 litre distilled water was prepared.
Kaolin clay solution (50 mL) was added into a 250 mL conical flask, and thereafter, 2.0 mL (0.2 mg/mL)
solution of the bioflocculant or iron nanoparticles was added and 3.0 mL CaCl2 (1.0 g/L) solution was
also added. The mixtures were shaken for 1 min and transferred to 100 mL graduated measuring
cylinders. The mixture was left to stand for 5 min before the supernatant was taken for analysis [23].
The following equation was used to calculate the flocculation activity:

Flocculation activity

FA % =
[A− B]

A
× 100 (1)

where A is the optical density of a control at 550 nm and B is the optical density of a sample at 550 nm.
The flocculation mechanism for the bioflocculant is bridging [11].

2.6. Optimization of the Flocculation Efficiency of the Bioflocculant and FeNPs

2.6.1. Evaluation of Flocculation Activity of the Bioflocculant and FeNPs

To evaluate the most effective dosage, different concentrations were prepared (0.2, 0.4, 0.6,
and 0.8 mg/mL) by dissolving the bioflocculant and FeNPs in distilled water to obtain respective
concentrations. A liter of kaolin solution was prepared using distilled water (4 g/L), after which,
100 mL of kaolin solution, 2 mL of the bioflocculant or FeNPs, and 3 mL of 1% CaCl2 were transferred
into a 300 mL conical flask. The mixture was vigorously shaken for 1 min before being transferred into
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a measuring cylinder (100 mL) and allowed to settle for 5 min at room temperature. This procedure
was also followed for the control, where 2 mL of nanoparticles were replaced by 2 mL distilled water.
The clear top layer of the supernatant was pipetted into a cuvette to determine the flocculation activity.
A UV-Visible spectrophotometer was used to measure the optical density (OD550nm). All experiments
were conducted in triplicates. Equation (1) above was used to calculate the flocculation activity.
The most effective dosage was used for the subsequent experiment and kaolin clay used as test material.

2.6.2. Effect of Cations on Flocculating Activity

Different salts were used to ascertain cation effect on flocculation activity, solutions were used to
replace 1% CaCl2, and the salts used were comprised of monovalent (LiCl and NaCl), divalent (MgCl2
and CaCl2), and trivalent (FeCl3) at the same concentration. The control was maintained without
cations. To measure the flocculating activity, the above procedure was used to evaluate cation effect on
flocculation activity.

2.6.3. Effect of pH and Temperature on Flocculating Activity

A solution of NaOH (1.0 M) or HCl (1.0 M) was used whenever necessary to adjust pH in a range
(3 to 11). The flocculation activity was assessed using the previously described method. Both the
bioflocculant and FeNPs were subjected to high temperatures (50–100 ◦C) in a water bath for 30 min
to determine thermostability, after which the flocculation activity was calculated using the method
described above.

2.7. Wastewater Treatment

To assess removal efficiency (RE), coal mine wastewater and Mzingazi River water samples were
collected and autoclaved at 121 ◦C for 15 min to ensure that no microorganisms were present to
interfere with experimentation. The samples were collected from Tendele Coal Mine and Mzingazi
River in KwaZulu Natal, RSA. Following the method described by Maliehe, Basson, and Dlamini [11],
COD and BOD removal was evaluated. A UV-Vis spectrophotometer Pharo 300 Spectroquant® was
used at 680 nm for the RE measurement. The removal efficiency (RE) of the pollutants was calculated
by the following equation:

RE (%) =
Ci −C f

Ci
× 100 (2)

where: Ci is the initial value before treatment with the bioflocculant and nanoparticles and Cf is the
value after treatment.

2.8. Cytotoxicity of the Bioflocculant and Iron Nanoparticles

A method described by Daniels and Singh [24] was adopted to evaluate cytotoxicity of the
bioflocculant and nanoparticles using human embryonic kidney (HEK 293) and breast cancer cells
(MCF-7). Cells with cell suspensions of 1 × 105 cells/mL concentrations were platted on 96-well-plate.
Using a tenfold serial dilution method, the cells were seeded with different concentrations of
nanoparticles (25–100 µg/µL). After 48 h of incubation, media containing 1% of fetal bovine serum
(FBS) were used for the administration of nanoparticles and the plates were returned to the incubator
for 48 h. To ascertain cell viability, tetrazolium salt (Sigma) was added as an indicator after 48 h of
incubation. Then, 15 µL of MTT (5 mg/mL) in phosphate-buffered saline (PBS) was added to each well
and incubated at 37 ◦C for 4 h. After sucking off from the wells, the medium with MTT and the formed
formazan crystals were dissolved in 100 µL of dimethyl sulfoxide (DMSO). The optical density of the
solutions was measured at 570 nm using a microplate reader [24].

The % cell inhibition was determined using the following formula:
Cell viability (%) = F1

F0
× 100, where F1 and F0 are the final values obtained after and before

treatment with the bioflocculant and nanoparticles, respectively.
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2.9. Experimental, Software, and Statistical Analysis

All data was collected in triplicates and the error bars in the Figures show the standard deviations
of the data. Data were subjected to one-way analysis of variances (ANOVA) using Graph Pad Prism™
6.1. A significant level of p < 0.05 was used.

3. Results

3.1. FT-IT Spectra of the Bioflocculant and Iron Nanoparticles

Figure 1 below represents the functional groups present in the bioflocculant and iron nanoparticles.
The peak at 3245 cm−1 (bioflocculant) and 3250 cm−1 (iron nanoparticles) indicates the presence of
hydroxyl (–OH) and amine (–NH2) functional groups in the sample.
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3.2. The SEM Morphology of the Bioflocculant and Iron Nanoparticles

Figures 2 and 3 below represent the surface morphology of the bioflocculant and iron nanoparticles,
respectively. The bioflocculant has the crystal-like morphology while the nanoparticles seem to have
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Figure 3. SEM surface morphology of the iron nanoparticles.

3.3. Elemental Composition of the Bioflocculant and Iron Nanoparticles

In Table 1 below, elements such as O, C, Mg, P, K, Ca, Fe, and Cu are present in the bioflocculant
and iron nanoparticle samples. From both samples, oxygen and carbon account for over 50%, while iron
and copper were only found to be present in the iron nanoparticles alone and absent in the bioflocculant.

Table 1. Energy-dispersive X-ray analysis (EDX) of the bioflocculant and iron nanoparticles.

Elements
Sample

Bioflocculant (wt.%) FeNPs (wt.%)

C 13.21 12.39

O 55.25 47.94

Mg 13.35 1.12

P 16.00 13.43

K 0.14 0.24

Ca 2.04 7.33

Fe - 17.31

Cu - 0.30

Total 100.00 100.00

3.4. Dosage Concentration Effect on Flocculation

An adequate dosage is required for an efficient flocculation process. Fe nanoparticles showed
the optimum flocculation activity (FA) at 0.4 mg/mL dosage as opposed to that of the bioflocculant,
which displayed the highest flocculation activity at 0.8 mg/mL (Figure 4). The optimum dosage for
each flocculant was then used for subsequent experiments.

3.5. Temperature Effect on Flocculation Activity

The FeNPs are more thermostable compared to the bioflocculant, as the flocculation activity is
above 86% at 100 ◦C, while the significant drop in flocculation activity is observed with the increased
temperature in the bioflocculant (Figure 5).
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Figure 4. Dosage effect on flocculation activity. Error bars denote statistical significance at (p < 0.05).
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3.6. Effect of pH on Flocculation Activity

Both the FeNPs and bioflocculant flocculate well in alkaline conditions, with FeNPs having the
optimum flocculation activity at a pH of 11, while that of the bioflocculant is at a pH of 7 (Figure 6).
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3.7. Effect of Metal Ions on Flocculation Activity

The nanoparticles and bioflocculant flocculated poorly when the cation was not added, with 49%
and 46% flocculation activity, respectively (Table 2).

Table 2. Cation effect on flocculation activity.

Cations
Flocculation Activity (%)

Bioflocculant FeNPs

Control 49 ± 3.35 46 ± 2.03 b

Fe3+ 31 ± 3.15 85 ± 2.72 a

Mg2+ 63 ± 6.78 82 ± 1.53 a

Ca2+ 71 ± 5.42 82 ± 3.64 a

Li+ 75 ± 2.31 72 ± 1.15 a

Na+ 62 ± 7.28 72 ± 1.15 a

Different letters (a and b) denote statistical significance at (p < 0.05).

3.8. The Removal of COD and BOD

Table 3 represents removal efficiency by FeCl3, FeNPs, and the bioflocculant; Fe nanoparticles
were the most effective in reducing both COD and BOD compared to the other two flocculants.
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Table 3. Chemical oxygen demand (COD) and biochemical oxygen demand (BOD) removal in wastewater by the bioflocculant and iron nanoparticles.

Flocculant Types of Waste Water Types of Pollutants
in Water

Water Quality before
Treatment (mg/L)

Water Quality after
Treatment (mg/L) Removal Efficiency (%)

FeNPs

Coal mine water COD
BOD

842
123.2

204
23

76
81

Mzingazi river water COD
BOD

3.300
136

1.700
24

48
82

Bioflocculant
Coal mine water COD

BOD
842

123.2
208

77.88
72
59

Mzingazi river water COD
BOD

3.300
136

1.68
72.08

51
53
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3.9. Evaluation of Cytotoxicity of the FeNPs and Bioflocculant

In vitro cytotoxicity of both the FeNPs and bioflocculant were evaluated and the FeNPs were found
nontoxic at low concentrations and the bioflocculant was nontoxic at all concentrations (Figures 7 and 8).
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Figure 7. In vitro cytotoxicity effect of FeNPs nanoparticles on HEK293 and MCF7 cells.
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4. Discussion

The functional groups present in the molecular chains of the bioflocculant facilitate the binding
capability of the bioflocculants [25]. The presence of the –OH group plays the significant role in
reducing and stabilizing nanoparticles during synthesis [26]. Thermostability of the nanoparticles
when subjected to heat further confirm the presence of the hydroxyl group. The flocculation process
is influenced by the surface morphology of the flocculant and accounts for the effectiveness or poor
efficiency of the flocculant [20]. In Figure 3, the crystal-like and granular morphology is observed.
The change in the bioflocculant structure is the indication of the formation of nanoparticles in the
synthesis. Furthermore, it can be noted that the nanoparticles have more surface area for pollutants
absorption. Therefore, it can be deduced that the synthesis of nanoparticles does not only modify the
surface structure, but it also increases the surface area on nanoparticles for particles flocculation and
pollutants removal in water. The flexibility and stability of flocculants is brought about by the different
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elements present in the sample. In Table 1, elements such as O and C were found in the bioflocculant
sample and account for a major percentage, as these elements form the backbone structure of the
biomolecule. Furthermore, Mg, P, K, and Ca account for the production media that were used for the
bioflocculant production. Similarly, the as-synthesized iron nanoparticles also had O and C, which
account for 60.33%, and Fe was found to be the second highest present element at 17.31%, which
indicates that the nanoparticles synthesis was successful. The copper grid, which was used during
analysis, could account for 0.30% Cu present in the sample.

To effectively neutralize some of the negative charges on colloidal particles, an adequate dosage is
required; if the dosage is insufficient, poor flocculation results [27]. Contrary to this, excess dosage
may increase the viscosity, which results in poor flocculation activity [28]. As illustrated in Figure 4,
the optimum flocculation activity was achieved at 0.4 mg/mL and 0.8 mg/mL for the nanoparticles and
bioflocculant, respectively. An increase in flocculation activity was observed between 02–04 mg/mL for
FeNPs, however, with the increase in dosage concentration to 0.6–1.0 mg/mL, the flocculation activity
dropped a little and it remained consistent throughout. This could be due to the competition and
repulsion of negatively charged kaolin particles, which in turn block binding sites. The low flocculation
activity for the bioflocculant at 0.2–0.6 mg/mL may be due to the fact that low dosage did not permit
bridging phenomena to occur effectively [11]. Both the bioflocculant and the FeNPs were subjected
to different temperatures (50–100 ◦C) for 30 min in a water bath. As depicted in Figure 5, higher
flocculation activity was observed at 50 ◦C with 91 and 81% for the nanoparticles and bioflocculant,
respectively. The increase in temperature did not affect the flocculation process of the as-synthesized
nanoparticles. The flocculation activity remained above 86%, suggesting that the nanoparticles are
thermostable. The results are comparable with those of other studies [13,27,29], where heat could not
affect the effectiveness of bioflocculants, indicating their thermostability. This could be attributed to
the presence of the -OH group as indicated in Figure 1 above. The results are comparable with that of
Sekelwa, et al. [30], where the presence of hydroxyl groups, evidenced by the IR spectra within the
polymer, favored the possibility of hydrogen bonding with one or more water molecules.

Key factors that influence the flocculation process include pH. Flocculation activity may be
affected by pH; it may alter flocculant status charge and surface characteristics of colloidal particles in
suspension [27]. In Figure 6, the highest flocculation activity of 90% was achieved with FeNPs at a
strong alkaline pH of 11. Nonetheless, the flocculation activity was still above 77% at a strong acidic pH
of 3, suggesting that FeNPs can be applied in both acidic and alkaline conditions, but are most effective
by using alkaline conditions. Contradictory to this, the flocculation activity of the bioflocculant was
poor in acidic conditions with the optimum of 93% at a pH of 7. The poor performance in strong acidic
conditions may be attributed to protein denaturation in the bioflocculant [11]. These findings suggest
that the nanoparticles can be a suitable flocculant in coal mine waste, as the pH is mostly alkaline.

Residual negative net surface charge of the bioflocculant functional group is neutralized by cations,
which in turn enhance the flocculation activity [31]. Various metal ion effects were evaluated on the
as-synthesized nanoparticles and bioflocculant as shown in Table 2. The highest flocculation activity
of 85% was observed when a trivalent cation (Fe3+) was used as an enhancing metal ion. However,
both the monovalent and divalent cations could still have enhanced the flocculation activity with
the flocculation activity above 70%. Contrary to this, the nanoparticles flocculate poorly without
the presence of the cation, suggesting that they are cation-dependent. In the bioflocculant, both the
monovalent and divalent were found to be most effective, with Li+ being the highest flocculation
activity at 75%. The least flocculation activity was observed when the trivalent cation (Fe3+) was used.
This conflicts the findings that suggest monovalent cations reduce the strength of the bonds and results
in loose flocs, thus producing poor flocculation activity [32].

The higher amount of both COD and BOD is not good for the aquatic ecosystem. This condition
results in the decrease of the amount of dissolved oxygen (DO), which in turn results in anaerobic
conditions that are detrimental to higher aquatic life. Furthermore, a high amount of BOD in water
signifies a high amount of nutrients, which may result in an algal bloom. In Table 3, different wastewaters
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were used to evaluate the effectiveness of FeNPs in comparison to a bioflocculant. Samples were
analysed using a UV-Vis spectrophotometer Spectroquant® at 620 nm wavelength. The removal of COD
and BOD was conducted using the 0.4 and 0.8 mg/mL for the FeNPs and bioflocculant, respectively,
as these concentrations were found to be effective from optimization in Figure 4. The nanoparticles
proved to be most effective when compared to both the bioflocculant and ferric chloride with BOD
over 80%, while COD was 76% for coal mine wastewater and least effective on river water with just
48%. Contrary to this, the Actinomycete bioflocculant that was used in the wastewater treatment
and removal of heavy metals by Agunbiade et al. performed below 70% for both COD and BOD
removal efficacy [13]. The bioflocculant remained consistently poor in all the samples for BOD removal
with just 50% efficacy. However, a remarkable improvement was observed in COD removal for coal
mine wastewater by the bioflocculant with 72%, but it remained poor in the river water sample.
Therefore, it can be deduced that FeNPs are a better flocculant compared to the bioflocculant and ferric
chloride. Bioflocculants are generally nontoxic but they still need to be tested for biosafety reasons [33].
In Figure 7, nanoparticles were evaluated against human normal cells (HEK 293) and cancer cells
(MCF7). As-synthesized nanoparticles are found to be nontoxic at low concentrations, as the cell
survival was above 76% for both cells at 25–50 µL. With the increase in concentration, cell survival rates
decrease, however, cell survival was still above 56%. It is therefore recommended that FeNPs should
not be used at high concentrations, as it may result in cell toxicity. Contrarily, the bioflocculant proved
to be nontoxic against both cells at the highest concentration of 100 µL, with the cell survival over 90%.

5. Conclusions

The sample as-synthesized nanoparticles and bioflocculant revealed the presence of the functional
groups –OH and –NH2, respectively. SEM-EDX indicated a huge percentage of O and C wt.% in
both samples. FeNPs are most effective at low concentrations while the bioflocculant works best
when the dosage is increased to 0.8 mg/mL. FeNPs are effective in all pH conditions and temperature
ranges, while the bioflocculant was only effective at lower temperatures and neutral in weak alkaline
conditions. Nanoparticles could remove effectively both COD and BOD in all water samples, while
the bioflocculant and ferric chloride were seen to be less effective. FeNPs are nontoxic only at lower
concentrations, while the bioflocculant is nontoxic even at higher concentrations. Therefore, FeNPs can
be recommended as an alternative flocculant provided a lower concentration is maintained. For future
prospects, more characterization should be conducted (XPS) to ascertain the oxidation state of the
synthesized material. In addition, more characterization is necessary to establish the mechanism
behind the formation of nanoparticles.
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