
polymers

Article

Chitosan-Sulfated Titania Composite Membranes
with Potential Applications in Fuel Cell: Influence of
Cross-Linker Nature

Andra-Cristina Humelnicu 1, Petrisor Samoila 1,*, Mihai Asandulesa 1 , Corneliu Cojocaru 1,
Adrian Bele 1 , Adriana T. Marinoiu 2 , Ada Sacca 3 and Valeria Harabagiu 1,*

1 “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania;
humelnicu.andra@icmpp.ro (A.-C.H.); asandulesa.mihai@icmpp.ro (M.A.);
cojocaru.corneliu@icmpp.ro (C.C.); bele.adrian@icmpp.ro (A.B.)

2 National Research and Development Institute for Cryogenics and Isotopic Technologies – ICSI Rm. Valcea,
240050 Ramnicu Valcea, Romania; adriana.marinoiu@icsi.ro

3 National Research Council of Italy, Institute for Advanced Energy Technologies “Nicola
Giordano” (CNR-ITAE), via S. Lucia sopra Contesse 5, 98126 Messina, Italy; ada.sacca@itae.cnr.it

* Correspondence: samoila.petrisor@icmpp.ro (P.S.); hvaleria@icmpp.ro (V.H.);
Tel.: +40-232-217454 (P.S. & V.H.)

Received: 30 March 2020; Accepted: 9 May 2020; Published: 14 May 2020
����������
�������

Abstract: Chitosan-sulfated titania composite membranes were prepared, characterized, and
evaluated for potential application as polymer electrolyte membranes. To improve the chemical
stability, the membranes were cross-linked using sulfuric acid, pentasodium triphosphate, and
epoxy-terminated polydimethylsiloxane. Differences in membranes’ structure, thickness, morphology,
mechanical, and thermal properties prior and after cross-linking reactions were evaluated. Membranes’
water uptake capacities and their chemical stability in Fenton reagent were also studied. As proved
by dielectric spectroscopy, the conductivity strongly depends on cross-linker nature and on hydration
state of membranes. The most encouraging results were obtained for the chitosan-sulfated titania
membrane cross-linked with sulfuric acid. This hydrated membrane attained values of proton
conductivity of 1.1 × 10−3 S/cm and 6.2 × 10−3 S/cm, as determined at 60 ◦C by dielectric spectroscopy
and the four-probes method, respectively.
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1. Introduction

Polymer electrolyte membranes (PEMs) play a key role in fuel cells as they transport charges
between electrodes and prevent fuel leaks [1,2]. NafionTM PEMs are recognized for their high
proton conductivity, good mechanical properties, and chemical and electrochemical stability [3].
However, Nafion membranes are extremely expensive, their preparation and use are hazardous
for the environment, and they are also characterized by fuel crossover and low durability [4–6].
Other shortcomings of these membranes consist in water management problems, need for a full
humidification since their high proton conductivity is strictly linked to the H3O+ hydration, and, as a
consequence, the optimal operative temperature is limited below 100 ◦C [7].

In this respect, biopolymer-based membranes are more and more considered as strong candidates
to develop cheaper and more environmentally friendly PEMs. Recently, chitosan membranes were
proposed as substitutes Nafion PEMs [8–10]. In spite of promising results, there is still research
effort required to improve the mechanical strength and the conductivity of chitosan membranes [5].
The solutions often proposed were related to their doping with inorganic fillers (e.g., solid superacids
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known for their high proton conductivities and hygroscopic properties) [11] and/or chemical
modification of the polysaccharide by chemical cross-linking [12]. The cross-linking is the one of the
most efficient ways to improve the characteristics of pristine chitosan membranes, by ameliorating
their thermal and mechanical properties, as well as their water uptake capacities, with direct impact on
the conductivity increasing [12]. However, to the best of our knowledge, little attention was paid on
the influence of the cross-linker nature on the properties of chitosan-solid superacid hybrid PEMs.

The objective of this study was to develop novel chitosan-based composite membranes and
to follow their structure, morphology, mechanical, and thermal properties, as a function of the
cross-linker nature. To this end, we selected sulfated titanium dioxide as inorganic filler and sulfuric
acid, pentasodium triphosphate and epoxy-terminated polydimethylsiloxane as cross-linkers, the
last one not reported for the preparation of PEMs considered for fuel cell application. Typical tests
used to describe PEM performances—such as water uptake, chemical stability and conductivity
behavior—were also carried out.

2. Materials and Methods

2.1. Materials

Chitosan (CS) with molecular weight of 290 kDa (determined by a viscometric study and according
to Equation (S1) on Supplementary Materials) and 82% degree of deacetylation (determined by 1H
NMR (Figure S1 on Supplementary Materials), TiO2 (anatase, particle size < 25 nm, 99.7% purity),
bis(glycidyloxypropyl)-terminated polydimethylsiloxane of Mn = 980 Da (PDMS), acetic acid, sulfuric
acid 98%, pentasodium triphosphate (TPP) and sodium hydroxide were purchased from Sigma Aldrich
(Taufkirchen, Germany). Methanol (purris p.a.) was supplied by Chemical Company (Iasi, Romania).
All reagents were of analytical grade and used without further purification.

Sulfated TiO2 (TS) was obtained by adapting the methods described by Li et al. [13] and
Ayyaru et al. [14]. For this purpose, 22.5 mg of TiO2 nanoparticles were dispersed in a solution
containing 10 mL of methanol and 5 mL of 1 M H2SO4 through sonication for 30 min in a Emmi 12HC
bath. The suspension was then centrifuged, washed with water, and the solid was dried in oven at
105 ◦C for 6 h to obtain the sulfated TiO2 sample (TS) with a content of 0.354 mmol sulfate groups/g
(evaluated according to Equation (S2) on Supplementary Materials).

2.2. Preparation of Membranes

2.2.1. Preparation of Chitosan-Sulfated Titania Composite Membranes (CS-TS)

CS-TS composite membranes were prepared using 5 wt % of sulfated TiO2 relative to the amount
of chitosan. In the first step, a stock solution of chitosan (3% w/v) was prepared by dissolving the
polysaccharide in 2% acetic acid solution. Subsequently, precisely determined amount of TS was
dispersed in 5 mL water, sonicated for 15 min and added over 15 mL of chitosan solution, under
continuous stirring at 600 rpm for 30 min. The final mixture was poured into 9.6 cm diameter Petri
dish and dried at 30 ◦C for 48 h (up to constant weight) to obtain CS-TS membrane.

2.2.2. Membrane Cross-Linking by Sulfuric Acid (HS) and by Pentasodium Tripolyphosphate (TPP)

The cross-linking was carried out by adapting already published procedures. Thus, dried CS-TS
membranes were immersed into 1 M H2SO4 solution (pH = 0.38) for 15 min [15] or in 2% TPP for 2 h
solution (pH = 8.64) [16]. Subsequently, the membranes were washed with distilled water and dried at
room temperature for 48 h until constant weight was achieved. The resulted composite membranes,
with average thicknesses of about 70 µm (from SEM images of the cross-sections), were labeled as
CS-TS-HS and CS-TS-TPP, respectively.
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2.2.3. Cross-Linking by Bis(glycidyloxypropyl)-Terminated Polydimethylsiloxane (PDMS)

The PDMS cross-linked composite membrane (CS-TS-PDMS) was obtained adapting a procedure
previously described for the preparation of PDMS modified chitosan [17]. Shortly, PDMS (NH2/epoxy
= 1/1 molar ratio) was added in situ to the CS/TS dispersion prepared as described in the previous
paragraph and the mixture was stirred at 40 ◦C until complete homogenization. After casting into Petri
dishes and oven drying at 30 ◦C, the obtained membrane was washed with distilled water and dried
at room temperature for 48 h until constant weight was attained. The average thickness of the dried
membrane was of around 130 µm, as determined from SEM image of the membrane cross-section.

2.3. Materials Characterization

Structural characterization of TS and pristine chitosan (CS) intermediates as well as of the
composite membranes was performed by FTIR spectroscopy using a Bruker Vertex 70 spectrometer
(Bruker Optics, Ettlingen, Germany) and KBr pellet method. The surface and cross-section morphology
and elemental composition of the composite membranes were investigated by scanning electron
microscopy using an (ESCM) Quanta 200 device (SEM, FEI Company, Brno, Czech Republic)) coupled
with energy dispersive X-ray (EDX) system (EDAX, Mahwah, NJ, USA). The cross-sections were
obtained by tearing the liquid nitrogen frozen membranes.

The thermal properties of the samples were studied under nitrogen atmosphere in the temperature
range of 20–700 ◦C, with a heating rate of 10 ◦C/min on a Jupiter thermal analysis system TG-DSC
Model STA449F1 (NETZSCH, Selb, Germany). The strain-stress curves were obtained by using a
two-column Instron Model 3365 device equipped with a 500 N cell force (Instron, Norwood, MA, USA).
In this respect, dumb-bell shaped samples (L = 5 cm; l = 4 mm; active length = 3.5 cm) were cut using a
press and were tested for uniaxial stress–strain curves with a 50 mm/min elongation speed.

The kinetics of water uptake was evaluated at 25, 60 and 80 ◦C. In this respect, 1 cm2 of membrane
samples were dried until constant weight (Wdry). Subsequently, the samples were immersed in 30 mL
distilled water at different temperatures. At regular time intervals, the membranes were extracted,
the water excess was removed by buffering the samples on filter paper and weighting (Wwet). The
water uptake (WU%) was calculated for each sample using the formula

WU(%) =
((

Wwet −Wdry
)
/Wdry

)
× 100 (1)

The oxidative stability of the membranes was studied by immersing 1 cm2 dry samples in 10
mL of freshly prepared Fenton reagent (3 vol % H2O2 solution containing 4 ppm Fe(SO4)2·7H2O) at
room temperature. The membranes were extracted from the solution after 1 h or after 24 h, dried and
weighed in order to determine the weight loss of the sample as a function of time.

Dielectric spectroscopy measurements were performed with a broadband dielectric spectrometer
(Novocontrol, Montabaur, Germany) equipped with a high-resolution Alpha-A analyzer and a Quatro
Cryosystem temperature controller. Complex dielectric permittivity spectra were recorded under
isothermal conditions by applying an alternating electrical field of 1 V in a broad range of frequency
(0.1–107 Hz). The composite membranes were sandwiched between two gold-plated flat electrodes
and measurements were carried out under pure nitrogen, preventing the moisture from environment.
The measurements were performed on dry (samples kept at 80 ◦C into a vacuum oven for 12 h)
and hydrated membranes (obtained by immersing the samples in distilled water for 1 h at room
temperature prior to dielectric spectroscopy measurements). The dielectric spectra were collected in
steps of 5 ◦C with 0.1 ◦C stability and high reproducibility, at temperatures from 0 to 160 ◦C and from 0
to 80 ◦C for dry and hydrated sample, respectively.

The proton conductivity (PC) measurement on CS-TS-HS membrane was carried out in the
longitudinal direction (in-plane) by the four-probes method at two different temperatures (30 and 60
◦C), at fully humidification level (100% RH), P = 1 atm, using a hydrogen flux of 1000 sccm, as suggested
by the supplier, and DC current by using a PTFE commercial BT-112 Bekktech conductivity cell (Bekktech,
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LLC acquired by Scribner Associates Inc. in 2011, Southern Pines, NC, USA) with a 5 cm2 fixture
hardware by Fuel Cell Technologies, Inc. (BekkTech product no. ACC-920). The cell was connected to
a test station and a potentiostat-galvanostat (AMEL mod.551) [18,19]. A membrane sample of about
2.5 × 0.52 cm2 was cut by a sample punch (BekkTech product no. ACC-960) and its size was measured
through a width measurement tool (BekkTech product no. ACC-940) with a magnification of 11× and
a reticule with 0.1 mm gradients. The thickness was measured by a Mitutoyo electronic gauge. The
membrane was assembled in the cell and placed in contact with the two fixed platinum electrodes. By
an indirect imposition of the current, a voltage drop between the two fixed electrodes was measured.
The electrical resistance values were obtained by extrapolating the data from the plot of current as a
potential function. At the end, the PC (σ, S·cm−1) was calculated using the formula

σ = L/R·W·T (2)

where L = 0.425 cm, fixed distance between the two Pt electrodes; R = resistance in Ω; W = sample
width in cm; T = sample thickness in cm. The measurement and cell set-up are detailed in Figure S2.

3. Results and Discussions

3.1. Membrane Preparation

CS-TS membrane of a content of 5 wt % TS filler was prepared by simple mixing the components
and drying. Ionic interactions between Lewis acid sites on filler surface and amino basic groups of CS
were proposed to stabilize the inorganic particles into CS matrix [13] (Scheme 1).Polymers 2020, 12, x FOR PEER REVIEW 5 of 18 
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Three different agents, such as sulfuric acid (HS), pentasodium tripolyphosphate (TPP), and
bis(glycidoxypropyl)-terminated polydimethylsiloxane (PDMS) were further used for cross-linking
and to study their influence on the structure and the properties of the composite membranes. The
first two cross-linkers provide a well-known electrostatic interactions between protonated amino
groups of CS and cross-linker anions [15], while PDMS undergoes covalent cross-linking through the
well-known reaction between CS amino groups and epoxy units attached to the siloxane chains [17]
(Scheme 1). Based on its intrinsic properties (high hydrophobicity, very low Tg, thermal stability
up to 300 ◦C, relatively low variation of its properties with temperature [20], PDMS cross-linker is
expected to provide to the membrane a higher flexibility and lower shrinkage during drying, as well
as a controllable hydrophilic–hydrophobic balance.

3.2. FTIR Characterization

The structure of the prepared materials was first assessed through FTIR spectroscopy. Figure 1
compares the normalized FTIR spectra of TS and CS intermediates with those of the composite
membranes. Apart from the absorption band at 1633 cm−1 (deformation vibration, adsorbed water)
and of a broad band in the range of 879–409 cm−1 (Ti–O), in the spectrum of TS, the presence of four
other absorption bands between 1243 and 967 cm−1 (1243 and 1141 cm−1, asymmetric and symmetric
stretching vibrations of S=O groups; 1055 cm−1 and 967 bands, asymmetric and symmetric stretching
vibrations of S–O units) confirms the sulfating process and indicates a bidentate coordination of sulfate
groups to Ti atoms, as previously stated [13,21].Polymers 2020, 12, x FOR PEER REVIEW 6 of 18 

 

 

Figure 1. FTIR spectra of sulfated TiO2 (TS), pristine chitosan (CS) and CS-TS, CS-TS-HS, CS-TS-TPP, 
and CS-TS-PDMS composite membranes. 

For CS sample the characteristic absorption bands appear in the range 4000–800 cm−1 [22]. Thus, 
broad bands between 3500–3100 cm−1 (O–H and N–H stretching vibration) are visible in the CS 
spectrum, while asymmetric and symmetric stretching vibrations of C–H groups are located at 2922 
and 2872 cm−1, respectively. Chitosan shows also characteristic bands at 1659 cm−1 (C=O, amide I), 
1600 cm−1 (N–H in plane deformation, primary amine), 1400 cm−1 (N–H deformation, amide II) and 
1323 cm−1 (C–N stretching vibrations, amide III). In the range 1153–1030 cm−1 the bands were 
attributed to C–O–C groups [23].  

Modified FTIR spectra as compared to those of the pristine TS and CS components are observed 
for the composite membranes confirming the presence of these components in the membrane 
structure and the interaction of the cross-linker with chitosan matrix. 

Thus, the presence of acidic groups determines the protonation of amino groups of chitosan and 
the shifting of the primary amine absorbance from 1600 cm−1 in CS spectrum to 1543 and 1547 cm−1, 
respectively in CS-TS and CS-TS-HS spectra (see insert) [15]. Moreover, the interaction of sulfate 
groups with chitosan determines shifting of amide I and amide III bands to lower (decreased bond 

Figure 1. FTIR spectra of sulfated TiO2 (TS), pristine chitosan (CS) and CS-TS, CS-TS-HS, CS-TS-TPP,
and CS-TS-PDMS composite membranes.



Polymers 2020, 12, 1125 6 of 17

For CS sample the characteristic absorption bands appear in the range 4000–800 cm−1 [22]. Thus,
broad bands between 3500–3100 cm−1 (O–H and N–H stretching vibration) are visible in the CS
spectrum, while asymmetric and symmetric stretching vibrations of C–H groups are located at 2922 and
2872 cm−1, respectively. Chitosan shows also characteristic bands at 1659 cm−1 (C=O, amide I), 1600
cm−1 (N–H in plane deformation, primary amine), 1400 cm−1 (N–H deformation, amide II) and 1323
cm−1 (C–N stretching vibrations, amide III). In the range 1153–1030 cm−1 the bands were attributed to
C–O–C groups [23].

Modified FTIR spectra as compared to those of the pristine TS and CS components are observed
for the composite membranes confirming the presence of these components in the membrane structure
and the interaction of the cross-linker with chitosan matrix.

Thus, the presence of acidic groups determines the protonation of amino groups of chitosan and
the shifting of the primary amine absorbance from 1600 cm−1 in CS spectrum to 1543 and 1547 cm−1,
respectively in CS-TS and CS-TS-HS spectra (see insert) [15]. Moreover, the interaction of sulfate
groups with chitosan determines shifting of amide I and amide III bands to lower (decreased bond
strength), respectively higher wavenumbers (increased bond strength). Both composite membranes
also show strong bands attributed to the sulfate (1259 cm−1) and to Ti–O–Ti vibrations (superposed on
the NH3

+ rocking vibrations [24,25] and located at 802 cm−1).
The successful cross-linking of CS-TS membrane with TPP is confirmed by the shifting of the

primary amine absorbance to 1567 cm−1 due to its protonation and interaction with the phosphate
groups as well as the presence of the P–O–P bridge asymmetric stretching vibration at 889 cm−1 [26].
The other phosphate characteristic bands are overlapped on C–O–C vibrations of CS in the range of
1161–1028 cm−1 and different effect of phosphate groups on amide bands as compared to that of sulfate
groups is evidenced, i.e., the increase and decrease of amide I, amide II bonds strength respectively,
while amide III absorption remain unchanged.

In the FTIR spectrum of the CS-TS-PDMS membrane, the covalent linking through the reaction
of amino groups of CS and epoxy units attached to the siloxane chains, as well as the increasing of
membrane hydrophobic character induced by siloxane component determines a notable diminishing
of the absorbance bands between 3500–3100 cm−1. Moreover, strong bands characteristic to siloxane
moiety (1261 and 800 cm−1 Si–CH3; 1094–1026 cm−1, Si–O–Si) [17], partially covering the bands of CS
are also visible in the spectrum.

One should also mention the diminishing of the characteristic bands of CS in the region
1670–1300 cm−1 for both CS-TS-HS and CS-TS-PDMS samples due to the effect of the strong Si–O–Si
(1100–1000 cm−1) and sulfate (1259 cm−1) bands on shorter bands in normalized spectra. (see inserts).

3.3. SEM Characterization

Representative SEM images of membranes recorded for membrane cross-sections are shown in
Figure 2. From the analysis of SEM micrographs, one may observe that all prepared membranes are
dense, with no detectable interconnected pores. TiO2 nanoparticles are quite well dispersed throughout
the cross-section of membranes for all studied materials. In addition, CS-TS-PDMS membrane shows
a phase separated morphology, with distinct domains at micro scale level, as a consequence of
strong incompatibility between hydrophilic chitosan and hydrophobic polysiloxanes sequences [20].
Otherwise, according to the literature, siloxanes polymers tend to migrate at the surface exposed to
air [27]. In this respect, elemental analysis was performed on CS-TS-PDMS membrane surfaces and in
the cross-section (Figure 3). The EDX data confirm the presence of Si in higher concentrations at air
exposed interface compared to polymer/glass interface. Nevertheless, one may notice that most of Si
atoms are mainly concentrated in cross-section.

As one may also see from Figure 2, the thicknesses of the cross-linked membranes (about
70 µm for CS-TS-HS and CS-TS-TPP samples and about 130 µm for CS-TS-PDMS membrane) are
larger as compared to CS-TS pristine membrane (about 30 µm), due to the incorporation of the
cross-linking agents. Similar results were obtained on poly(styrene–2-vinylpyrridine) films crosslinked
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by quaternization of pyridine units with diiodobutane [28]. The SEM micrographs recorded for the
membrane surfaces (Figure S3), confirm that all the obtained membranes are dense, with uniform
dispersion of TiO2.
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EDX analysis for CS-TS-HS and CS-TS-PDMS Figure 3) also showed an average content of nitrogen
of 7.2%, respectively 3.7%, confirming the presence of CS in these samples that showed small amide
absorptions in their FTIR spectra.
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3.4. Thermogravimetric Analysis

Figure 4 presents the thermogravimetric (TG) and thermogravimetric derivative (DTG) curves for
pristine CS and composite membranes registered in nitrogen atmosphere, between 20 and 700 ◦C. CS
degrades through a complex mechanism involving deacetylation followed by dehydration, deamination,
and depolymerization processes. At temperatures lower than 300 ◦C, two main weight losses are
noticed, centered at Tmax = 73 ◦C and 300 ◦C, respectively, as also reported previously by others [29].
The first stage (Tmax = 73 ◦C) is attributed to the evaporation of water and residual acetic acid solvent
and the second stage (Tmax = 300 ◦C) is concerned with degradation of chitosan chains. At temperatures
higher than 300 ◦C, the sample continuously degrades up to a residual percentage weight of 34% at
700 ◦C.
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Figure 4. TG/DTG curves of CS-TS, CS-TS-HS, CS-TS-TPP, and CS-TS-PDMS composite membranes
compared with pristine chitosan (CS).

The thermal decomposition of composite membranes strongly depends on the nature of
cross-linking agent. Similarly to CS, all of them showed water solvent and acetic acid traces evaporation
phenomena with Tmax between 56 and 86 ◦C. The presence of acidic groups either linked to TS or
coming from HS and TPP cross-linkers reduces the stability of all composite membranes, the second
decomposition Tmax being about 20–90 ◦C lower than the value corresponding to pristine CS. However,
comparable weight losses at 700 ◦C are observed for CS, CS-TS and CS-TS-HS samples, while lower
and higher weight losses are registered for CS-TS-TPP and CS-TS-PDMS membranes, respectively.
Moreover, multi-stage decomposition behavior is observed for composite membranes.

CS-TS membrane shows the second major weight loss with two maxima at 203 ◦C, attributed
to the loss of sulfate groups, and 243 ◦C, attributed to the decomposition of amorphous part of CS
matrix. The CS more crystalline domains are decomposing at slightly lower Tmax (290 ◦C) as compared
to pristine CS. CS-TS-HS membrane presents a second stage of decomposition at Tmax = 211 ◦C
(sulfate groups) and a third one (CS chains) at Tmax = 266 ◦C due to the action of higher amounts of
sulfate groups on the polysaccharide structure. CS-TS-TPP membrane showed only a second stage
degradation with Tmax of 237 ◦C. One may notice that this step occurs at a temperature close to the
loss of the sulfate groups. On the other hand, literature data indicate that TPP cross-linked chitosan
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degrades at lower temperatures than pure chitosan (around 230 ◦C) and this behavior is explained by a
decrease in crystallinity of the polysaccharide following crosslinking with TPP [30]. Thus, at this stage,
the degradation of both sulfate groups and polymer occurs. Apart the first step of water evaporation,
the thermal degradation of the CS-TS-PDMS sample is more complex and involves simultaneous
decomposition of the functional sulfate, hydroxyl and alkyl amines units (at 280 ◦C) and of CS and
PDMS chains at 342 and 450 ◦C, respectively Note that all prepared membranes are thermally stable to
relatively high temperatures (above 200 ◦C).

3.5. Mechanical Properties

To study the mechanical properties of the produced membranes, typical mechanical tests were
performed by recording the stress–strain profiles (Figure 5). The mechanical properties were ascertained
in terms of fracture strain, tensile stress, and Young’s modulus (Table 1).
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Figure 5. Mechanical stress–strain profiles at high and low (insert) tensile strain values of CS-TS (1),
CS-TS-HS (2), CS-TS-TPP (3), and CS-TS-PDMS (4) composite membranes.

Table 1. Mechanical properties, water uptake, and stability in oxidative environment and of
chitosan-sulfonated titania composite membranes.

Membrane
Mechanical Properties Water Uptake (%) (24 h) Weight Loss (%) in

Fenton Reagent

Tensile Strain (%) Tensile Stress (MPa) Young’s Modulus 2 (GPa) 25 ◦C 60 ◦C 80 ◦C 1 h 24 h

CS-TS 10.6 24.9 1.54 dissolution dissolution
CS-TS-HS 11.8 40.2 1.87 184 172 163 10 15
CS-TS-TPP - 1 15.3 1.46 170 121 135 8 22
CS-TS-PDMS 39.7 50.9 1.01 118 88 92 9 30

1 Sample slips in gripping, no break occurred. 2 Calculated at 1% strain.

As expected, membrane mechanical properties were influenced by the cross-linker nature.
All samples present stress–strain curves specific to plastic materials with a clear elastic domain at low
strains, followed by a yield strength and plastic deformation. Due to the nature of the siloxane bond
(highly flexible), the yield strength of CS-TS-PDMS shifted to larger strains. Moreover, the cross-linking
of CS-TS membrane with TPP resulted in a tougher material, since no strain break occurred. These
observations were corroborated by the data presented in Table 1.

The cross-linking process of composite membranes affects the calculated values for fracture strain,
tensile stress, and Young’s modulus. Thus, compared to CS-TS sample, one may observe that the
elongation at break is higher for the cross-linked membranes. It should be noted that the same trends
were found for the tensile stress values, except for CS-TS-TPP sample. One may also notice that the
cross-linking processes decrease Young’s modulus values whatever the cross-linking agent, except the
membrane cross-linked with sulfuric acid, but its values are higher than 1 GPa for all samples.
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3.6. Water Uptake Capacity of Composite Membranes

Sufficient water content is essential in the operation of fuel cells determining the membrane
performance, stability, and durability [31]. As expected, CS-TS sample was completely dissolved
in water after less than 5 min. Water uptake kinetics curves of cross-linked membranes are given
in Supplementary Materials (Figure S4) and the values observed after 24 h are listed in Table 1.
All cross-linked membranes revealed very high water uptake capacities for all temperatures considered,
with values ranging from 88% (for amphiphilic CS-TS-PDMS sample at 60 ◦C) to 184% (for CS-TS-HS
sample at 80 ◦C). Moreover, water uptake mainly occurred in the first minutes of experiment. Generally,
the cross-linked membranes exhibit superior capabilities at 25 ◦C compared to 60 and 80 ◦C. These
findings are in good agreement with the literature and confirm that the moisture adsorbed by chitosan
films decrease with the increase of temperature [32].

3.7. Chemical Stability of Composite Membranes

The oxidative stability of membranes are often used in the evaluation of PEMs [33]. In this respect,
the membranes were challenged with freshly prepared Fenton’s reagent (Table 1). The unmodified
membrane (CS-TS) was completely dissolved in Fenton’s reagent, while the cross-linked membranes
were relatively stable. The resistance to oxidation of the membranes decreased in 24 h from weight
loss values of up to 10 wt % in 1 h, to 15, 22, and 30 wt % for the samples cross-linked with HS, TPP,
and PDMS, respectively, the CS-TS-HS membrane showing the best oxidation resistance.

3.8. Broadband Dielectric Spectroscopy

3.8.1. Overall Dielectric Behavior of Dry Membranes

Figure 6 displays the evolution of dielectric constant (ε’) and dielectric loss (ε”) with frequency
for dry CS-TS-HS membrane, as a representative example. The spectra corresponding to dry CS-TS,
CS-TS-TPP, and CS-TS-PDMS samples are found on Supplementary Materials (Figure S5).
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As is generally known, the dielectric constant is related to the orientation of chemical dipoles
in the direction of an alternating electrical field. ε’ diminishes gradually with increasing frequency,
since the dipoles can no longer follow the oscillations of alternative field [34]. According to Figure 6a,
the CS-TS-HS membrane provided a high dielectric constant in the considered integral frequency
range, revealing an intense dipolar activity. The strong decrease of the dielectric constant, especially at
low frequencies is an effect of ionic polarization induced by the sulfate groups [34]. Moreover, the
magnitude of ε’ increased with temperature due to increased mobility of polymer segments having a
dipole moment.

The dielectric loss parameter comprises the dissipated energy for the dipole alignment motions
and the energy required to move ions in response to the alternating electrical field. As a consequence,
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both the polarization and the electrical conductivity signals are observed. In Figure 6b, the dielectric loss
curves revealed a linear evolution with frequency, especially at low frequencies and high temperatures,
with a slope close to −1, which is characteristic for the ionic conductivity-type signal. In fact, the high
dielectric signals and their gradual decline with increasing frequency are a result of ionic polarization
in the polymer membrane matrix [34].

The electrical conductivity, σ (S/cm), is related to the dielectric loss and was further estimated
with the relation (3) [35]

σ = 2π ε0 f ε” (3)

where ε0 is the permittivity of the free space and f is the applied electric field frequency.
Figure 7 displays the behavior of conductivity with frequency at selected temperatures from

0 to 160 ◦C for dry membranes. For CS-TS-HS sample (Figure 7a), at low temperature (0 ◦C), the
conductivity exhibits an approximately linear evolution with log frequency and is generally attributed
to electronic-type conduction of the bulk membrane [36]. At higher temperatures, deviations from
linearity are observed, especially at low frequencies. This region appears in the same frequency range
with the linear-type behavior of dielectric constant and dielectric loss. The observed correspondences
were previously reported by Pochard et al. [37]. According to literature, the low frequency-independent
conductivity plateau could be attributed to the transport of protons through the polymer membrane [36].
Additionally, one may observe an increasing step in σ(f ) spectra that shifts progressively to higher
frequencies with temperature. This particular signal called as Maxwell–Wagner–Sillars (MWS)
polarization generally appears in heterogeneous systems, at the interface between the components
with different dielectric constant (polar sulfate groups within the chitosan matrix) [34,38,39]. As shown
in Figure 7a, one may notice that the conductivity values at a frequency of 1 Hz are ranging from
5.9·× 10−13 S/cm at T = 0 ◦C to 8.5 ×·10−9 S/cm at T = 160 ◦C. The relatively low values correspond to
the conductivity of the bulk material and reveal the dielectric-type of the dry CS-TS-HS sample [4].
The σ(f ) spectra of dry CS-TS, CS-TS-TPP, and CS-TS-PDMS systems are presented in Supplementary
Materials, Figure S6 and reveal similar dielectric behavior.Polymers 2020, 12, x FOR PEER REVIEW 13 of 18 
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The high values of dielectric constant and dielectric loss, especially at low frequencies, suggests
the possibility of the use of these materials as PEMs suitable for fuel cell application in a considerable
temperature range [36]. Moreover, the frequency evolution of dielectric loss with the slope of −1
could suggest that the segmental dynamics controls the conductivity signal [40]. Since the glass
transition of polymer membranes appears above 210 ◦C, the segmental relaxation should corresponds
to the side chain movements from chitosan together with the attached acid groups. In this respect,
a comparative evolution of conductivity as function of frequency for all considered dry membranes is
displayed in Figure 7b. At lower temperatures (25 ◦C), the conductivity is mostly electronic, with a
small contribution of ionic conductivity localized in the low frequency spectral region (more evident
for CS-TS-TTP sample) and generally assigned with proton transfer through different sulfate acid sites.
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Furthermore, the σ(f ) profiles of cross-linked chitosan membranes furnishes similar behavior probably
due to reduced mobility of active sites. The CS-TS-HS, CS-TS-TPP, and CS-TS-PDMS composite
membranes presented lower proton conductivity than the CS-TS membrane since the cross-linking
process restrict the mobility of polymer segments, hindering the transport of charges [34].

As seen in Figure 7b, at higher temperature (60 ◦C), the plateau region of proton conductivity is
enlarged to higher frequencies, revealing an increased mobility of charge carriers. In this temperature
region, the magnitude of σ(f) spectra for CS-TS is still higher than those of cross-linked membranes,
due to restrictions imposed by the membrane network.

The effects of cross-linking with different agents are shown in Table 2, where the proton conductivity
values are extracted from σ(f ) spectra of the prepared membranes, choosing the frequency of 1 Hz.

Table 2. Values of conductivity at various frequencies for dry and hydrated chitosan-sulfated
titania membranes.

Membrane

Conductivity, σ (S/cm) at a Frequency
of 1 Hz for Dry Membranes

Conductivity, σ (S/cm) at Low and High
Frequencies for Hydrated Membranes

25 ◦C 60 ◦C 100 ◦C
f = 1 Hz f = 106 Hz

25 ◦C 60 ◦C 25 ◦C 60 ◦C

CS-TS 6.6 × 10−12 5.2 × 10−11 3.3 × 10−9 - - - -
CS-TS-HS 2.2 × 10−12 1.7 × 10−11 3.9 × 10−10 2.5 × 10−6 8.1 × 10−6 2.1 × 10−3 1.1 × 10−3

CS-TS-TPP 1.8 × 10−12 1.2 × 10−11 7.8 × 10−11 5.7 × 10−8 5.7 × 10−8 5.7 × 10−5 4.5 × 10−5

CS-TS-PDMS 2.6 × 10−12 1.1 × 10−11 7.4 × 10−11 7.0 × 10−8 1.9 × 10−7 1.4 × 10−5 3.1 × 10−5

As seen from Table 2, at 25 ◦C, σ values of all dry membranes are of the order of 10−12 S/cm and are
increasing to 10−11 S/cm at 60 ◦C. At 100 ◦C (see also Figure S7), the values of the conductivity for dry
CS-TS-TPP and CS-TS-PDMS are surprisingly similar, revealing that the TPP and PDMS cross-linking
agents have comparable effects on the transport of protons through the chitosan membrane. This finding
is somewhat surprising since the acid sites of pentasodium tripolyphosphate were expected to enhance
the proton conductivity of the membrane. By contrast, the conductivity of CS-TS-HS is at least one
order higher than those of CS-TS-TPP and CS-TS-PDMS indicating that the protonation of the amine
groups of chitosan by sulfuric acid promotes the protonic conductivity. Thus, among various types of
cross-linking agents, the sulfuric acid conducts to superior protonic conductivity at low humidity and
high temperatures.

3.8.2. Influence of Water Absorption on the Protonic Conductivity of Membranes

The hydrated membranes were obtained by immersing the samples in distilled water for 1 h at
room temperature prior to dielectric spectroscopy measurements. The hydrated CS-TS membrane was
not examined, because the water incorporation completely damaged the sample. The dielectric spectra
of membranes were collected at different temperatures from 0 to 60 ◦C, in steps of 5 ◦C. No reliable
spectra were obtained at temperatures higher than 60 ◦C due to quick evaporation of water.

Previous studies have concluded that the hydrophilic sulfonic acid groups from the membranes
is primarily responsible for water uptake [2]. As stated above, the water uptake of the studied
membranes varies with the cross-linker nature. The resulting conductivity dependences as function
of frequency and temperature are shown in Figure 8. σ(f ) spectra similar to that corresponding to
hydrated CS-TS-HS membrane were obtained for hydrated CS-TS-TPP and CS-TS-PDMS samples
(Figure S8). For CS-TS-HS hydrated membrane (Figure 8a), one may observe dramatically increased
σ(f ) magnitudes in the integral frequency range as compared to the dry sample (Figure 7a). Therefore,
the membrane saturated with water exhibits conductivity values with about 4 orders of magnitude
higher than the corresponding dry membrane, thus suggesting that the conductivity is strongly
enhanced by proton migration between polar water molecules. Similar differences between dry and
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hydrated membranes were previous reported for the standard Nafion 117 [4]. Likewise, the σ(f ) profiles
reveal an additional frequency independent conductivity plateau located at high frequencies.
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The comparative σ(f ) spectra of hydrated membranes from Figure 8b and the conductivity values
collected in Table 2 reveal that both the low frequency and the high frequency independent frequency
plateaus are different in magnitude and their enlargement is depending on membrane composition,
water content and temperature. The conductivity of hydrated CS-TS-HS membrane is two orders
higher than those of CS-TS-TPP and CS-TS-PDMS because of superior content of sulfuric acid and
water uptake capacity (see Section 3.6). Moreover, the conductivities of CS-TS-TPP and CS-TS-PDMS
membranes are almost similar, revealing no particular influence of the cross-linking agent.

According to Figure S9, the conductivity of dry membranes increases linearly with temperature,
suggesting that the relaxation dynamics influences the overall conductivity. By contrast, the increase
of conductivity with temperature for hydrated samples is noticeably reduced, indicating that the
conductivity is primarily highlighted by polar water molecules.

The activation energy for proton transport in chitosan membranes, Eσ, was determined with the
Arrhenius-type relation

σ = σ0exp(−Eσ/kT) (4)

where σ0 is a pre-exponential factor, k is the Boltzmann constant, and T is the absolute temperature.
The activation energy is related to the energy required for proton transport between different polar
sites [35].

The activation energy values of the dry membranes are ranging from 53 to 69 kJ/mol. The calculated
values are comparable with other systems previously reported [36,41]. Besides, the activation energy
for hydrated membranes is much lower than that of dry membranes (ranging from 23 to 31 kJ/mol).
According to literature, the values for hydrated membranes suggest that the proton transport occurs
primarily via the Grothuss mechanism, i.e., proton migration through hydrogen bond of water
molecules by jumping [34,42,43].

The measurement of in-plane proton conductivity by four-probes [44,45] method, as described in
Section 2.3, was carried out as a confirmation only on the most promising membrane CS-TS-HS that
supplied the highest proton conductivity value by dielectric spectroscopy. Such measurement was
repeated twice for each temperature in order to have a statistically valid value and hence the result
provided is the average between them. Thus, the test through four-probes method (in-plane) at 30 and
60 ◦C indicated proton conductivity values of 3.0 × 10−3 and 6.2 × 10−3, respectively.

The results obtained supply a complete overlapping at 30 ◦C and a good coherence at 60 ◦C,
if compared to the results on the same membrane arising from the dielectric spectroscopy taking into
account the substantial differences of the techniques. In Figure S2, the technique used together to the
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test station and cell for the measurement is described. Such a result confirms the promising capacity of
the membrane CS-TS-HS, cross-linked by sulfuric acid.

4. Conclusions

Chitosan-sulfated titania composite membranes with appropriate properties for fuel cell
applications were produced and the influence of three different cross-linkers—sulfuric acid,
pentasodium tripolyphosphate, and polydimethylsiloxane-diglycidyl ether terminated—were studied
to obtain their properties. The chemical interaction between chitosan and sulfated titania, as well as
the success of the cross-linking reactions, was proved by FTIR structural analysis. The morphological
analysis by SEM showed the formation of dense membranes with thicknesses ranging from 31 to 130 µm
and uniform dispersion of inorganic filler. The mechanical and thermal measurements indicated that
cross-linking processes conducted to tougher materials with thermal stabilities values up to 200 ◦C.
Typical tests usually applied for PEM evaluation, such as water uptake and chemical stability, indicated
that the cross-linked membranes developed in the present study can be recommended for fuel cell
application. The proton conductivity performances evaluated by dielectric spectroscopy were proven
to strongly depend on cross-linker nature and on hydration state of membranes. The most promising
membrane was achieved by using sulfuric acid as cross-linker. In addition, according to calculated
values of activation energy, the proton transport can occur mainly via the Grothuss mechanism.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/5/1125/s1,
Figure S1: 1H NMR spectrum of pristine chitosan (CS); Figure S2: (a) Test station for proton conductivity
measurement connected to cell and potentiat-galvanostat; (b) conductivity cell and formula used; Figure S3:
Representative surface SEM images of (a) composite chitosan–sulfonated titania membrane (CS-TS) and composite
chitosan–sulfonated titania membranes cross-linked with (b) sulfuric acid, (c) pentasodium tripolyphosphate,
and (d) polydimethylsiloxane (CS-TS-HS, CS-TS-TPP, and CS-TS-PDMS, respectively); Figure S4: Water uptake
kinetics of composite chitosan–sulfonated titania membranes cross-linked with sulfuric acid, pentasodium
tripolyphosphate and polydimethylsiloxane (CS-TS-HS, CS-TS-TPP, and CS-TS-PDMS, respectively) at (a) 25 ◦C,
(b) 60 ◦C and (c) 80 ◦C; Figure S5: Dielectric constant and dielectric loss evolution with frequency for dry CS-TS,
CS-TS-TPP, and CS-TS-PDMS composite membranes; Figure S6 Evolutions of the measured conductivity with
frequency for dry (a) CS-TS, (b) CS-TS-TPP, and (c) CS-TS-PDMS composite membranes; Figure S7: The evolution
of conductivity with frequency at 100 ◦C for dry membranes; Figure S8: Evolutions of the measured conductivity
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sulfate groups content by back-titration method.
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