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Abstract: We consider field theory formulation for directed polymers and interfaces in the presence
of quenched disorder. We write a series representation for the averaged free energy, where all the
integer moments of the partition function of the model contribute. The structure of field space is
analysed for polymers and interfaces at finite temperature using the saddle-point equations derived
from each integer moments of the partition function. For the case of an interface we obtain the
wandering exponent ξ = (4− d)/2, also obtained by the conventional replica method for the replica
symmetric scenario.

Keywords: disordered systems; free energy; wandering exponent

1. Introduction

The statistical mechanics of random surfaces and membranes, or more generally of extended
objects, has been widely discussed in the literature, see, e.g., [1]. One of the simplest example of a
tethered surfaces are the polymers [2–4]. Certain models of polymers can be discussed by a classical
field theory [5–7]. Directed polymers in the presence of a quenched random potential describe,
for example, the behavior of a linear elastic objects with no self-intersections in a porous medium
and also the polymer behavior in poor solvents [8,9]. The generalization to more complex extended
objects is straightforward [10–15]. One can also consider a d-dimensional manifold with internal
points x ∈ Rd, embedded in an external D-dimensional space with position vector ~r (x) ∈ RD,
where D = d + N. For oriented manifolds, the set of N transverse coordinates describe the fields
of the model. The N = 1 case describes an interface in a quenched random potential. In these
systems with disorder, two averages must be performed. The average of a thermal ensemble using the
Boltzmann weight and also the average over all the realizations of the disordered variables.

For quenched disorder, one is mainly interested in averaging the free energy over the disorder,
which amounts to averaging the logarithm of the partition function. In the field theory of random
manifolds, a technique that has been used in order to compute the average free energy is the replica
method [16–21]. It is known that there are criticisms concerning the fundamental mathematics behind
such method [22–27]. Nevertheless this procedure has succeed in describing polymers and membranes
in a random media. A nice discussion about the n → 0 limit can be found in Ref. [28,29] The main
mathematical problem of the replica trick is that it is not possible to interpret the above discussed limit
as an analytical continuation procedure. The aim of this paper is to present an alternative to the replica
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trick. We study directed polymers and fluctuating interfaces in quenched random potentials, where we
compute the wandering exponent in a generic d-dimensional manifold. We obtain that the wandering
exponent is given by ξ = 4−d

2 as was discussed in Ref. [30], for the replica symmetric structure of the
correlation functions.

A new method to calculate the average free energy of systems defined in the continuum with
quenched disorder was presented in Refs. [31,32]. An application of such procedure was presented
in Ref. [33,34] where a Landau-Ginzburg model with a disorder field linearly and quadratically
coupled with the order parameter was discussed. The static version of a non-relativistic field theory
with a complex field was investigated in [35]. There, an interacting boson system below the critical
condensation temperature was studied. It was discussed the effects of quenched disorder in a dilute
Bose- Einstein condensate confined in a hard walls trap. Using the disordered Gross-Pitaevskii
functional, a representation for the quenched free energy as a series of integer moments of the partition
function was obtained, where positive and negative disorder-dependent effective coupling constants
appear in the integer moments. The combined contributions of effects due to boundary conditions and
disorder in the weakly disordered condensate was analysed, and the ground state renormalized density
profile of the condensate was presented. This new technique was also used to discuss fluctuations of
the Hawking temperature in an Euclidean Schwarzschild manifold [36].

The organization of this paper is as follows. In Section 2, we discuss directed polymers in the
presence of a quenched disorder. In Section 3, the average free energy associated with a manifold
in the presence of a quenched disorder is presented. Conclusions are given in Section 4. We use
h̄ = c = kB = 1.

2. The Field Theory in D = 1 with Quenched Disorder

Let us consider a directed polymer of length L, where for simplicity we assume that the
displacements of the polymer can occur in one direction. In the continuum approximation,
the Hamiltonian of the directed polymer can be written as

H(ϕ, v) =
∫ L

0
dx

[
c
2

(
dϕ

dx

)2

+ v
(

ϕ(x), x
)]

, (1)

where c is the linear tension of the polymer, x is the longitudinal coordinate (0 ≤ x ≤ L), and ϕ(x)
is the transverse displacement of the polymer with respect to the straight line. Finally, v(ϕ(x), x) is
the quenched disordered potential of the model [37–42]. There are different proposed probability
distributions associated with the disorder. A widely used probability distribution is the Gaussian
(normal) distribution. We will take v(ϕ(x), x) to be a Gaussian random variable which has zero mean
and it is delta-correlated in the transverse direction. Therefore

E
(
v(ϕ, x)

)
= 0 (2)

and

E
(
v(ϕ, x)v(ϕ′, x′)

)
= 2V(ϕ− ϕ′)δ(x− x′), (3)

where E(. . . ) means the average over all realizations of the quenched random potential and V(ϕ− ϕ′)

stands for the correlation function of the model. The scaling relation defines the wandering exponent.
We have

E
[
〈(ϕ(L)− ϕ(0))2〉

]
∝ L2ξ , (4)

where 〈. . . 〉 is a thermal average, i.e., the configurational average of the Boltzmann weight.
The quantity E

[
〈(ϕ(L)− ϕ(0))2〉

]
is the polymer mean squared displacement ϕ with length L where

ξ is the wandering exponent. The partition function of the model can be written as
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Z(L, y; v) =
∫ ϕ(L)=y

ϕ(0)=0
[dϕ] exp

(
−βH(v, ϕ)

)
, (5)

where [dϕ] is a formal functional measure. The average free energy is defined as

Fq = − 1
β

∫
[dv]P(v) log Z(L, y; v), (6)

where [dv] P(v) is the probability distribution associated with the disorder. To obtain the average free
energy of the model we can use the replica method. For an application of this method to study finite
size effects in the random field Ising model see the Ref. [43].

Inspired in the usual situation where one defines zeta functions in terms of countable collections
of numbers [44–47] and also defining the zero point energy of quantum fields in the presence of
boundaries [48–50], we define the distributional zeta function as

Φ(s) =
∫
[dv]P(v)

1
Z(L, y; v)s , (7)

for s ∈ C, this function being defined in open connected subset of the complex plane. The average free
energy can be computed using

Fq =
1
β

d
ds

Φ(s)
∣∣∣∣
s→0+

=
1
β

∫
[dv]P(v)

d
ds

1
Z(L, y; v)s

∣∣∣∣
s→0+

. (8)

Next, one can write 1/Zs using the Euler integral representation for the Gamma function.
Breaking this integral representation into two integrals, one from zero to a and another from a
to infinity, where a is an arbitrary real number, and expanding the exponential in power series in the
first integral, one can write that the average free energy is [31,32]

Fq =
1
β

∞

∑
k=1

(−1)kak

k!k
E(Z k) +

1
β

(
ln a + γ

)
− 1

β
R(a), (9)

where γ is the Euler-Mascheroni constant and

R(a) = −
∫
[dv]P(v)

∫ ∞

a

dt
t

e−Z(L, y; v) t. (10)

For large a it is possible to work only with the series contributions. Next, we absorb the
dimensionless parameter a in the functional integral measure. To proceed, let Z k be the k-th power of
the partition function, for k integer. In this case, we have a perturbative expansion of the average free
energy given by Equation (9). The k-th power of the partition function Z k can be written as

(Z(L, y; v))k =
k

∏
i=1

∫ ϕi(L)=y

ϕi(0)=0
[dϕi] exp

(
−β

k

∑
a=1

H(ϕa, v)
)

. (11)

Averaging (Z(L, y; v))k over the disorder we obtain that the k-th moment of the partition function
is given by

E(Zk) =
k

∏
i=1

∫ ϕi(L)=y

ϕi(0)=0
[dϕi] exp

(
−βHe f f (ϕi, k)

)
, (12)

where the effective Hamiltonian He f f (ϕi, k) is

He f f (ϕi, k) =
∫ L

0
dx

[
c
2

k

∑
i=1

(
dϕi
dx

) 2

− β
k

∑
i,j=1

V
(

ϕi(x)− ϕj(x)
)]

. (13)
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We would like to stress that the method used in this paper, contrary to the replica method
neither involves derivatives of the integer moments of the partition function, nor the extension to this
derivative to non-integer values of k. Now, we have to discuss the quantity V(ϕ(x)− ϕ′(x)) defined
in Equation (3). It is well know that the delta correlated potential V(ϕ) = uδ(ϕ) maps the replicated
problem to interacting quantum bosons.Using that V(ϕ− ϕ′) is given by

V(ϕ− ϕ′) = V0 −
1
2

u(ϕ− ϕ′)2, (14)

permits an entire analysis via replicas [42]. Since we are interested in a soluble model, we assume
that V(ϕ − ϕ′) is given by Equation (14). After integrating by parts, we can write that He f f =

H(1)
e f f + H(2)

e f f , where

H(1)
e f f (ϕi, k) =

1
2

∫ L

0
dx

k

∑
i,j=1

ϕi(x)

[(
−c

d 2

dx2 + βu
)

δij − βu

]
ϕj(x), (15)

and

H(2)
e f f =

∫ L

0
dx βV0. (16)

Studying the replica field theory for the problem of fluctuating manifold in a quenched random
potential, Mézard and Parisi and others introduced a mass term in the effective Hamiltonian in
order to regularize the model [30,51]. Indeed, in the high temperature limit, i.e., β→ 0 the operator
(− c

2
d 2

dx2 + βu) has the zero eigenvalue and therefore is not invertible. To circumvent this problem,
we are following the same idea introducing the term

1
2

∫ L

0
dx
[
ϕi(x)ω2δij ϕj(x)

]
,

in the effective Hamiltonian He f f . Neglecting H(2)
e f f , we have

He f f (ϕi, k; ω) =
1
2

∫ L

0
dx

k

∑
i,j=1

ϕi(x)

[(
−c

d 2

dx2 + ω2 + βu
)

δij − βu

]
ϕj(x). (17)

In the limit where ω → 0 we recover the polymer field theory. To find the contribution to the k-th
term, E(Zk) of the series that defines the quenched free energy, let us define the operator Dij(x− y) in
field space. We have

Dij(x− y) = δd(x− y)

((
−c

d 2

dx2 + ω2 + βu
)

δij − βu

)
. (18)

Within this definition, we can write He f f (ϕi, k; ω) as

He f f (ϕi, k; ω) =
1
2

∫ L

0
dx

k

∑
i,j=1

ϕi(x)Dij(x− y)ϕj(x). (19)

Therefore, E(Zk) reads

E(Zk) =
k

∏
i=1

∫ ϕi(L)=y

ϕi(0)=0
[dϕi] exp

(
− β

2

k

∑
i,j=1

∫ L

0
dx
∫ L

0
dy ϕi(x)Dij(x− y)ϕj(y)

)
. (20)

Substituting the above equation into Equation (9) we obtain the average free energy of the system.
A point that deserves be emphasized is the fact that the number of terms in the series that represents
the average free energy can be finite. For instance, we can use the saddle-point equation to find a
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bound for k. Therefore, let us discus the saddle-point equations of the model. For each moment of the
partition function, the saddle-point equations are(

−c
d 2

dx2 + ω2 + βu
)

ϕi(x) = βu
k

∑
j=1

ϕj(x). (21)

In each integer moment of the partition function, we must have ϕi(x) = ϕ(x). This is the unique
solution for the problem of the structure in field space in each moment of the partition function.
For equal fields, the saddle-point equation becomes(

−c
d 2

dx2 + ω2 + βu(1− k)
)

ϕ(x) = 0. (22)

The condition ω2 + (1− k)βu ≥ 0 must be satisfied to have a physical theory. Consider a generic
term of the series given by Equation (9) with a moment of the partition function given by E (Z l).
Defining kc as

kc =

⌊
ω2

βu
+ 1
⌋

, (23)

where bxc means the integer part of x, the structure of the fields in each moment of the partition
function is given by 

ϕ
(l)
i (x) = ϕ(x), for l = 1, 2, . . . , kc,

ϕ
(l)
i (x) = 0, for l > kc.

(24)

Only in the high-temperature limit, (β→ 0), all the moments of the partition functions contribute
to the average free energy. For finite temperature, we must have only a finite number of terms in
the series representation to the average free energy. In this case, using Equation (24) the average free
energy is given by

Fq =
1
β

kc

∑
k=1

(−1)k

k!k
E (Z k). (25)

For ω 6= 0 and large kc = N we have the large-N approximation for a Gaussian field theory. It is
interesting to point out that the limit ω → 0, we must have kc = 1. The system is described by a field
theory where the dimension of the order parameter is one. In the next section, we discuss another
Gaussian model defined in the continuous limit and calculate its wandering exponent.

3. Field Theory for Interfaces in Random Media

In this section, we study an interface. We consider a d-dimensional manifold with internal points,
x ∈ Rd, embedded in an external D-dimensional space with position vector ~r(x) ∈ RD. We are
considering a d-dimensional manifold in a D = d + N dimensional space. For oriented manifolds,
we can describe the system in terms of the set of transverse coordinates, where N is the number of
transverse dimensions. We are interested in the case N = 1, so we have an interface in a quenched
random potential and D = d + 1. The Hamiltonian of the domain wall can be written as

H(ϕ, v) =
∫

d dx

[
σ

2
|∇ϕ(x)|2 + v

(
ϕ(x), x

)]
, (26)

where σ is the domain wall stiffness and v(ϕ(x), x) is the quenched random potential of the
model [14,15]. Following Mezard and Parisi and also Cugliandolo et al. [30,51], let us introduce
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a 1
2 ω2 ϕ2(x) contribution, which constrain the manifold to fluctuate in a restricted volume of the

embedding space. The regularized Hamiltonian becomes

H(ϕ, v) =
1
2

∫
d dx

[
ϕ(x)

(
−σ∆ + ω2)ϕ(x) + v

(
ϕ(x), x

)]
. (27)

The partition function of the model is given by

Z(v) =
∫
[dϕ] exp

(
−βH(v, ϕ)

)
, (28)

where [dϕ] is a functional measure. We are assuming that the probability distribution associated to the
random potential has zero mean

E
(
v(ϕ, x)

)
= 0 (29)

and correlator

E
(
v(ϕ, x)v(ϕ′, x′)

)
= 2V(ϕ− ϕ′)δd(x− x′), (30)

where again, the E(. . . ) means that we are taking the average over all the realizations of the
quenched random potential. Since we are assuming that the system has a quenched random potential,
the average free energy is defined as

Fq = − 1
β

∫
[dv]P(v) log Z(v). (31)

With Equation (9) in hands, we have to compute k-th moment of the partition function, E(Zk).
After integrating over the disorder, we get

E(Zk) =
∫ k

∏
i=1

[dϕi] exp
(
−βHe f f (ϕi, k)

)
, (32)

where

He f f (ϕi, k) =
1
2

∫
d dx

[
k

∑
i=1

ϕi(x)
(
−σ∆ + ω2)ϕi(x)− β

k

∑
i,j=1

V
(

ϕi(x)− ϕj(x)
)]

. (33)

Again, as in the case of the polymers, to proceed we must use some model for V(ϕi − ϕj).
Following Balents and Fisher [52], we consider that V(ϕi − ϕj) can be written as

V(ϕi − ϕj) = ∑
m

1
m!

Vm(ϕi − ϕj)
2m. (34)

Now, let us discuss the model going beyond the Gaussian approximation. Assuming that that
V1 > 0, V2 > 0 and Vm = 0 for m ≥ 3. The potential V(ϕi − ϕj) reads

V(ϕi − ϕj) = V0 −
1
2

u1(ϕi − ϕj)
2 − 1

4
u2(ϕi − ϕj)

4.

In this case, the k-th moment of the partition function is given by

E(Zk) =
∫ k

∏
i=1

[dϕi] exp
(
−βHe f f (ϕi, k)

)
, (35)

where the effective Hamiltonian can be written as

He f f = H(0)
e f f + H(1)

e f f . (36)
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In the above equation, the Gaussian contribution is given by

H(0)
e f f =

1
2

k

∑
i,j=1

∫
d dx ϕi(x)

[(
−σ∆ + ω2

0 + βu1
)
δij − βu1

]
ϕj(x) (37)

and the non-Gaussian contribution is

H(1)
e f f =

βu2

2

k

∑
i,j=1

∫
d dx

[
1
4

ϕ4
i (x) +

1
4

ϕ4
j (x)− ϕ3

i (x)ϕj(x) +
3
2

ϕ2
i (x)ϕ2

j (x)− ϕi(x)ϕ3
j (x)

]
. (38)

We are interested in studying the structure of the field space. Using the saddle-point equations and
assuming the symmetry ansatz, ϕi(x) = ϕ(x) for all fields in each moment of the partition function,
we have that the saddle-point equation reads(

−σ∆ + ω2
0 + (1− k)βu1

)
ϕ(x) = 0. (39)

The condition ω2
0 + (1− k)βu1 ≥ 0 must be satisfied to have a physical theory. Let us define

kc =

⌊
ω2

0
βu1

+ 1
⌋

and considering again a generic term of the series, given by Equation (9), with the

moment of the partition function, E (Z l), the only choice in the field space is given by
ϕ
(l)
i (x) = ϕ(x) for l = 1, 2, . . . , kc

ϕ
(l)
i (x) = 0 for l > kc,

(40)

the average free energy becomes

Fq =
1
β

kc

∑
k=1

(−1)k

k! k
E (Z k), (41)

where E (Z kc) is given by Equation (35) and the effective Hamiltonian, by Equations (36)–(38). With the
choice of the field space we obtain that the effective Hamiltonian can be written in the simple form

He f f (ϕi, k) =
1
2

k

∑
i,j=1

∫
d dx

∫
d dy ϕi(x)Dij(x− y)ϕj(y), (42)

where for simplicity we are using u1 = u and Dij(x− y) reads

Dij(x− y) =
((
−σ∆ + ω2 + βu

)
δij − βu

)
δd(x− y). (43)

Therefore, in Equation (41), the quantity E (Zk) is given by

E (Zk) =
∫ k

∏
i=1

[dϕi] exp
[
− β

2

k

∑
i,j=1

∫
d dx

∫
d dy ϕi(x)Dij(x− y)ϕj(y)

]
. (44)

In the symmetric ansatz framework, all the series that represents the average free energy can be
viewed as an Euclidean field theory for a k-component scalar field. Defining the k-vector field Φ(x)
with the components ϕ1(x), ϕ2(x), . . . , ϕk(x), we can write the effective Hamiltonian as

He f f (Φ; k) =
1
2

∫
d dx

∫
d dy ΦT(x)D(x− y; k)Φ(y), (45)

where ΦT(x) stands for the transpose of the k-vector Φ(x). In view of Equations (43) and (44),
the kernel D(x− y; k) is
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D(x− y; k) = δd(x− y)
((
−σ∆ + ω2 + βu

)
Ik − βuMk

)
, (46)

where Ik is the k-dimensional identity matrix and Mk is the square k-dimensional matrix with all
elements 1 [53].

Our aim now is to study the two-point correlation function of the Euclidean field theory for a k-
component scalar field. Performing a Fourier transform we get

He f f (ϕi, k) =
1
2

k

∑
i,j=1

∫ d d p
(2π)d ϕi(p)

[
G0
]−1

ij (p)ϕj(−p), (47)

where
[
G0
]−1

ij is the inverse of the two-point correlation function,

[
G0
]−1

ij (p) = (σp2 + ω2 + βu)δij − βu.

Using the projectors operators we can write the two-point correlation function
[
G0
]

ij(p) as

[
G0
]

ij(p) =
δij

(σp2 + ω2 + βu)
+

βu
(σp2 + ω2 + βu)(σp2 + ω2 + βu(1− k))

. (48)

The first term in the right hand side of Equation (48) is the bare contribution to the connected
two-point correlation function; the second term is the contribution to the disconnected two-point
correlation function, which becomes connected after averaging the disorder. Let us study the two-point
correlation function. First write

[G0]lm(x− y) = [G0]
(1)
lm (x− y) + [G0]

(2)
lm (x− y; k), (49)

with

[G0]
(1)
lm (x− y) =

δlm

(2π)d

∫
d dq

ei(x−y)q(
σq2 + ω2 + βu

) (50)

and [G0]
(2)
lm (x− y; k) = [G0]

(2)(x− y; k) where

[G0]
(2)(x− y; k) =

1
(2π)d βu

∫
d dq

ei(x−y)q

(σq2 + ω2 + βu)(σq2 + ω2 + βu(1− k))
. (51)

Now we are able to discuss the functional form of [G0]
(1)
lm (x − y) and [G0]

(2)
lm (x − y).

A straightforward computation yields

[G0]
(1)
lm (r) =

δlm

(2π)
d
2 r

d−2
2 σ

d+2
4

(
ω2 + βu

) d−2
4 K d

2−1

(
r
√

σ−1(ω2 + βu)
)

. (52)

Also we can write that

[G0]
(2)(r; k) =

1

(2π)
d
2 r

d−2
2 σ

d+2
4 k

[
−
(
ω2 + βu

) d−2
4 K d

2−1

(
r
√

σ−1(ω2 + βu)
)

+
(
ω2 + βu(1− k)

) d−2
4 K d

2−1

(
r
√

σ−1(ω2 + βu(1− k))
)]

. (53)

In the case which we are interested in, one must take the limit of ω → 0, since ω2
0 +(1− k)βu1 ≥ 0,

only the contribution from k = 1 survives. From Equations (52) and (53) we have
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[G0](r) =
1

4(πσ)
d
2

Γ
(

d− 2
2

)
1

rd−2 . (54)

We can introduce a normalized generating functional with the normalization factor (det ′ D)−1/2

where the prime sign means that the contribution of the zero mode must be omitted. The wandering
exponent describes the growth of the transverse fluctuations of the manifold as function of the distances.
In the limit ω → 0, we obtain from Equation (48) the wandering exponent given by ξ = 4−d

2 as was
discussed by Parisi and Mézard in Ref. [30], discussing the replica symmetric solution.

4. Conclusions

For quenched disorder, we are mainly interested in averaging the free energy over the disorder,
which amounts to averaging the logarithm of the partition function. The standard replica method is a
powerful tool used to calculate the free energy of systems with quenched disorder.

In this paper, we computed the average free energy of directed polymer and a fluctuating interface
in the presence of a quenched disorder. To find the average free energy for both systems, we define a
distributional zeta-function. The derivative of this function at the origin yields the average free energy
of the underlying system. The average free energy of a system with quenched disorder is represented
by a series in which all the moments of the partition functions contribute. In the case of a polymer and
an interface in a quenched random potential, we were able to discuss the field theory generated by
each term of the series that defines the average free energy. Each term of the series that represents the
average free energy is an Euclidean field theory for a k-component scalar field. As an application of the
distributional zeta-function method, we calculate the wandering exponent in a generic d-dimensional
manifold. We obtain that the wandering exponent given by ξ = 4−d

2 . This result was discussed by
Parisi and Mézard in Ref. [30] in the replica symmetry scenario.
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