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Abstract: The photoinduced solid-to-liquid transitions property of azobenzene-containing polymers
(azopolymers) enables azopolymers with various promising applications. However, a general
lack of knowledge regarding the influence of structure of the azobenzene derivatives on the
photoinduced liquefaction hinders the design of novel azopolymers. In the present study, a series of
azopolymers with side chains containing azobenzene unit bearing alkyl electron-donating groups
were synthesized. The photoisomerization and photoinduced liquefaction properties of newly
synthesized azopolymers were investigated. Alkyl-based electron-donating group significantly
facilitate the photoisomerization process of azopolymers in solution, as the electron-donating ability of
substituents increased, the time required for photoisomerization of azopolymers continually deceased.
Meanwhile, the electron-donating group can drastically accelerate photoinduced solid-to-liquid
transitions of azopolymers, the liquefaction rate of obtained azopolymers gradually getting quicker
as the electron-donating ability of substituents increased. This study clearly demonstrates that the
electron-donating group that bearing in the azobenzene group of polymer side chain play an essential
role on the photoinduced solid-to-liquid transitions of azopolymers, and hence, gives an insight into
how to design novel azopolymers for practical applications.

Keywords: azopolymer; electron-donating groups; photoisomerization; solid–liquid transitions

1. Introduction

Polymers containing azobenzene chromophores (azopolymers) have been extensively investigated
in past few decades for their potential applications [1–3]. Azobenzene and its derivatives can undergo
reversible trans–cis isomerization upon irradiation with UV or visible light at certain wavelength [4–6].
Induced by the reversible change of molecular shape of azobenzene moiety, azopolymers demonstrate
a variety of photoresponsive properties, and result in a number of practical applications, such as
optical information storage [7,8], actuators [9,10], surface gratings [11–13], light-driven molecular
switches [14,15], sustained-release drugs [16–18], light-controlled microfluidics and other photonic
devices [19–22].

Photoinduced solid-to-liquid transitions (liquefaction) property of azopolymers have attracted
worldwide attention since it makes polymers more easily to reprocessable, reshapable and healable [23].
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Usually, reprocessing of solid thermoplastic polymers requires liquefying the polymers by heating
them above a specific temperature and solidify upon cooling down below that temperature. As a
contrast, photoinduced liquefaction can occur at room temperature, some solid azopolymers can
“flow” upon light irradiation. These unique properties make photoinduced liquefaction suitable for
reprocessing of polymer, switchable adhesives, high-resolution lithography and printing in a manner
of light-driven and remote control. Dr. Si Wu’s team successfully introduced azobenzene group into
the side chain of polyacrylic acid polymer, the glass transition temperature (TG) of the polymer was
controlled reversibly by alternating ultraviolet (365 nm)/visible (530 nm), and realized the reversibly
photoinduced solid–liquid transitions [24]. Dr. Yoshida’s team reported that azopolymers capable of
undergoing photoinduced liquefaction could be used as reworkable adhesives to enable on-demand
bonding and debonding by irradiation with visible and UV light [25].

Macroscopic photoresponsive properties of azopolymers are ascribed to photoisomerization
of azobenzene units and subsequent chain motions of polymer [26,27]. In general, the motions of
azopolymer can be categorized into three levels [28,29]. The chromophore motion at the molecular
level is the first level, which is accompanied often with change in the dipole moment and with change
in the orientation of the chromophore. The motion at the domain level is the second level, which
requests the binding of the chromophore to the polymer matrix to form an ordered structure, phase
transitions and amplified motion at the domain level are often found in Langmuir−Blodgett films and
liquid crystals. The third level is the macroscopic motion, which is the massive response of azopolymer
materials to external light stimuli, e.g., the visible change in pattern of films or change in the shape
of elastomers and gels. In recent years there has been an increasing interest in the investigation of
the effect of fundamental molecular structure on photoinduced macroscopic motion of azopolymer.
Dr. Si Wu’s team reported the effect of different lengths of spacers between azopolymer backbone and
azobenzene unit on the photoresponsive behavior [30]. Although extensive efforts have been devoted
to developing azopolymers capable of undergoing photoinduced liquefactions, there are several critical
issues that need to be addressed in order to further elucidate the correlation between the structure and
photoresponsive property of azopolymers.

Herein, a series of azopolymers with side chain containing azobenzene units with alkyl-based
electron-donating substituents were synthesized by atom transfer radical polymerization (ATRP).
We investigated the effect of alkyl-based electron-donating groups on the photophysical properties
of prepared azopolymers. The structure of the monomers was characterized by nuclear magnetic
resonance, the molecular weight of the polymers and its distribution were determined by gel permeation
chromatography, the photoisomerization process of these polymers in solution was analyzed by UV-vis
spectrophotometry and the photoinduced liquefaction was recorded with optical microscope after
UV irradiation. The results show that the alkyl-based electron-donating group can accelerate the
photoisomerization process of azopolymers in solution, and the electron-donating group can drastically
facilitate photoinduced solid–liquid transitions of azopolymers as well. This research indicates that
electron-donating groups that bearing in the azobenzene group of polymers play an essential role on the
photoinduced solid-to-liquid transitions of azopolymers, and hence, gives an insight into how to design
novel azopolymers by tuning the structure of attached azobenzene unit for practical applications.

2. Materials and Methods

2.1. Materials

Aniline, p-methylaniline, 4-ethylaniline, 4-isopropylaniline and 4-tert-butylaniline were purchased
from Shanghai Adamas Reagent Co., Ltd. (Shanghai, China). Phenol, 6-chloro-1-hexanol provided by
Shanghai Adamas reagents Co., Ltd. (Shanghai, China). Triethylamine, acryloyl chloride and sodium
nitrite are also supplied by Adamas Reagent, Ltd. (Shanghai, China). 2-Bromoisobutyryl bromide and
N,N,N′,N′,N′′-pentamethyldiethylenetriamine (PMDETA) were purchased from Sigma-Aldrich Trading
Co., Ltd. (Shanghai, China). Hydrochloric acid (HCl), glacial acetic acid (CH3COOH), sodium hydroxide
(NaOH), potassium carbonate (K2CO3) and potassium iodide (KI) were purchased from Xilong Science
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Co., Ltd. (Shantou, China). The purified water used in all the experiments was prepared with a water
purification system AXLM1820 (Asura Technology Development Co., Ltd., Chongqing, China).

2.2. Characterization

1H NMR spectra of samples were performed on a 400 MHz NMR instrument (AVANCE III
HD 400 MHz, Swiss Bruker, Brooke, Switzerland) and tetramethylsilane was used as an internal
standard in deuterated chloroform (CDCl3). The ultraviolet-visible (UV-vis) spectra were recorded on a
PerkinElmer Lambda 365 spectrometer (PerkinElmer, Waltham, MA, USA). The molecular weight and
molecular weight distribution were conducted on an Agilent 1260 HPLC system (Agilent Technologies
Inc., Santa Clara, CA, USA), tetrahydrofuran (THF) was used as eluent at 20 ◦C at a flow rate of
0.5 mL/min while using a refractive index (RI) detector and polystyrene calibration. The photo-liquefied
photos were acquired by the microscope (XP-300C) (Shanghai Caikon Optical Instrument Co., Ltd.
Shanghai, China). The ultraviolet light source is provided by Mightex (Mightex, Toronto, ON, Canada).

2.3. Synthesis of Monomer

The overall synthesis procedures of monomers M-n-Azo (n = 1–5) were shown in Figure 1.
The synthesis route for each individual monomer are shown in Figures S1–S5. Taking M-1-Azo as an
example, in a 100 mL three-neck flask equipped with a magnetic stirrer. 4-hydroxyazobenzene (1.98 g,
10 mmol) was dissolved in 20 mL of N,N-dimethylformamide (DMF), 3.45 g of K2CO3 and 50 mg
of KI was then added, followed with addition of 6-bromo-1-hexanol (2.17 g, 12 mmol) dropwisely,
and the reaction was carried out at 110 ◦C for 12 h. After cooling, 200 mL of deionized water was
added to obtain a yellow precipitate. After extraction, the crude product was purified with a silica gel
column (petroleum ether: ethyl acetate = 3:1) to give compound 5 (R = H). In a 250 mL three-neck
flask equipped with a magnetic stirrer, 2.98 g of compound 5 (R = H) was dissolved in 100 mL of
THF, and triethylamine (3 g, 30 mmol) was added and stirred. Acryloyl chloride (2.7 g, 30 mmol) was
added and the reaction was carried out at 0 ◦C for 2 h. Filter and then remove the solvent, column
chromatography (petroleum ether: ethyl acetate = 10:1) gave an orange solid of monomer M-1-Azo.

Polymers 2020, 12, x FOR PEER REVIEW 3 of 10 

 

from Xilong Science Co., Ltd. (Shantou, China). The purified water used in all the experiments was 
prepared with a water purification system AXLM1820 (Asura Technology Development Co., Ltd., 
Chongqing, China). 

2.2. Characterization 

1H NMR spectra of samples were performed on a 400 MHz NMR instrument  (AVANCE III HD 
400 MHz, Swiss Bruker, Brooke, Switzerland) and tetramethylsilane was used as an internal standard 
in deuterated chloroform (CDCl3). The ultraviolet-visible (UV-vis) spectra were recorded on a 
PerkinElmer Lambda 365 spectrometer (PerkinElmer, Waltham, MA, USA). The molecular weight 
and molecular weight distribution were conducted on an Agilent 1260 HPLC system (Agilent 
Technologies Inc., Santa Clara, CA, USA) , tetrahydrofuran (THF) was used as eluent at 20 °C at a 
flow rate of 0.5 mL/min while using a refractive index (RI) detector and polystyrene calibration. The 
photo-liquefied photos were acquired by the microscope (XP-300C) (Shanghai Caikon Optical 
Instrument Co., Ltd. Shanghai, China). The ultraviolet light source is provided by Mightex (Mightex, 
Toronto, Ont., Canada). 

2.3. Synthesis of Monomer 

The overall synthesis procedures of monomers M-n-Azo (n = 1–5) were shown in Figure 1. The 
synthesis route for each individual monomer are shown in Figures S1–S5. Taking M-1-Azo as an 
example, in a 100 mL three-neck flask equipped with a magnetic stirrer. 4-hydroxyazobenzene (1.98 
g, 10 mmol) was dissolved in 20 mL of N,N-dimethylformamide (DMF), 3.45 g of K2CO3 and 50 mg 
of KI was then added, followed with addition of 6-bromo-1-hexanol (2.17 g, 12 mmol) dropwisely, 
and the reaction was carried out at 110 °C for 12 h. After cooling, 200 mL of deionized water was 
added to obtain a yellow precipitate. After extraction, the crude product was purified with a silica 
gel column (petroleum ether: ethyl acetate = 3:1) to give compound 5 (R = H). In a 250 mL three-neck 
flask equipped with a magnetic stirrer, 2.98 g of compound 5 (R = H) was dissolved in 100 mL of THF, 
and triethylamine (3 g, 30 mmol) was added and stirred. Acryloyl chloride (2.7 g, 30 mmol) was 
added and the reaction was carried out at 0 °C for 2 h. Filter and then remove the solvent, column 
chromatography (petroleum ether: ethyl acetate = 10:1) gave an orange solid of monomer M-1-Azo. 

 
Figure 1. Schematically illustration of the synthesis of monomers M-n-Azo (6) and azopolymers
P-n-Azo (7), n = 1–5.



Polymers 2020, 12, 901 4 of 9

2.4. Synthesis of Azopolymers

The synthesis procedures of azopolymers P-n-Azo (n = 1–5) were shown in the last step of Figure 1.
All five azopolymers were prepared by the same method. Taking P-1-Azo as an example, M-1-Azo
(352 mg, 1 mmol) was dissolved in 2 mL anisole, followed by the addition of CuBr (15 mg, 0.1 mmol),
2-bromoisobutyryl bromide (EBIB; 5.8 mg, 25 µmol) and PMDETA (35 mg, 0.2 mmol). The solution
was frozen in liquid nitrogen, evacuated for 20 min using a vacuum pump, and then thawed under a
nitrogen atmosphere. This cycle was repeated three times. Subsequently, the solution was reacted at
80 ◦C for 12 h. A basic alumina column was used to remove copper from the reaction solution, following
which the solution was precipitated three times to give a yellow powder. The other monomers were
polymerized in a similar manner.

3. Results and Discussion

3.1. Nuclear Magnetic Spectrum of Monomers

Figure 2 shows the 1H NMR spectra (Swiss Bruker, Brooke, Switzerland) of monomers M-n-Azo
(n = 1–5). The chemical shift of protons in each compound was assigned in detail in the support
information. A characteristic chemical shift of alkyl groups in the bellow spectra was observed, which
clearly demonstrated that alkyl based electronic donating groups, methyl group, ethyl group, isopropyl
group and tert-butyl group were successfully bared on the para position of azobenzene moieties.Polymers 2020, 12, x FOR PEER REVIEW 5 of 10 
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3.2. Characterization of Azopolymers

Molecular weight and molecular weight distribution of all azopolymers are measured and shown
in Table 1.

Table 1. Molecular weight and molecular weight distribution of azopolymers.

Azopolymers a) P-1-Azo P-2-Azo P-3-Azo P-4-Azo P-5-Azo

Mn (g/mol) 4.2 × 103 6.1 × 103 4.4 × 103 5.8 × 103 6.2 × 103

Mw (g/mol) 5.4 × 103 8.5 × 103 5.7 × 103 7.2 × 103 7.7 × 103

Mz (g/mol) 7.2 × 103 11 × 103 7.0 × 103 8.8 × 103 9.2 × 103

PDI 1.29 1.39 1.31 1.24 1.24
a) Mn, number-average molecular weight; Mw, weight-average molecular weight; Mz, Z-average molecular weight;
PDI, polydispersity index.

3.3. Photoisomerization Properties of Azopolymers

Previous study has demonstrated that the introduction of a soft segment with proper length
between the azo unit and the polymer backbone could increase the movable space of the azobenzene
unit and consequently facilitate the photoisomerization process [30]. The azopolymers investigated
in this study all contained six methylene groups between the azobenzene unit and the polyacrylate
backbone. The photoisomerization behavior of azopolymers was investigated by using UV−vis
spectroscopy. All P-n-Azo polymers showed distinct trans-to-cis photoisomerization in ethyl acetate
before and after UV irradiation (Figure 3a–e). Before irradiation, P-n-Azo polymers exhibit a typical
strong π−π* absorption band in the UV range and a weak n−π* absorption band in the visible light
range. Upon UV-light irradiation (365 nm, 29 mW cm−2), all azopolymers decreased the π−π* band
and increased the n−π* band, thus demonstrating trans-to-cis isomerization of P-n-Azo, which is well
known for azo chromophores.

Interestingly, the structure of the azobenzene unit significantly affected the photoisomerization
behaviors of obtained azopolymers, as demonstrated in Figure 3. The azopolymer P-1-Azo shows
the slowest photoisomerization rate, it takes 120 s to complete the isomerization upon UV irradiation
(Figure 3a). For azopolymer P-2-Azo, containing azobenzene with a methyl group in the para
position as electron-donating group, shows a much quicker photoisomerization rate, it took only
70 s to complete the isomerization process (Figure 3b). Moreover, as the electron-donating ability of
substituents increased, the time required for photoisomerization of azopolymers continually deceased.
For P-3-Azo and P-4-Azo, containing azobenzene with an ethyl group and isopropyl group in the para
position as the electron-donating group, it took 60 and 50 s to complete the isomerization process,
respectively (Figure 3c,d). For P-5-Azo, containing a tert-butyl group as electron-donating substituents
in the azobenzene moieties, it showed the fastest photoisomerization rate, it took 40 s to complete the
isomerization process (Figure 3e). These results clearly demonstrated that the photoisomerization
behavior of azopolymers was closely related with the chromophore structure and electron-donating
capacity of the substitutes.
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3.4. Photoinduced Solid-to-Liquid Properties of Azopolymers

The trans−cis photoisomerization behaviors of azopolymers can consequently induce the
macroscopic motion and phase change of polymeric materials [29]. Figure 4 showed the photoinduced
solid-to-liquid transition of the series of synthesized azopolymers. When P-1-Azo powders were
illuminated with 365 nm ultraviolet light (Figure 4a). The irregularly shaped P-1-Azo solid powders
changed into liquified drops. Adjacent liquified drops fused into single drops. This observation
indicates that ultraviolet illumination induced flow of the azopolymer. In addition, powders of the rest
four azopolymers with electron-donating substituents in the azobenzene moieties also underwent a
liquefied process upon ultraviolet illumination (Figure 4b–e), suggesting that all of the synthesized
azopolymers underwent a photoinduced solid-to-liquid transition upon ultraviolet illumination.

Similarly, the structure of azobenzene unit significantly affected the photoinduced solid-to-liquid
transition properties of obtained azopolymers, as demonstrated in Figure 4a. The azopolymer P-1-Azo,
did not contain the electron-donating group, showed the slowest liquefaction rate and it took 30 min to
complete the solid-to-liquid transition process upon UV irradiation. In contrast, those azopolymers
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with electron-donating substituents in the azobenzene moieties shows a relative faster liquefaction
rate. For azopolymer P-2-Azo, which contains a methyl group in the para position of azobenzene
as electron-donating group, it took only 16 min to complete the liquefaction process (Figure 4b).
Furthermore, as the electron-donating ability of substituents increased, the time costed for liquefaction
of azopolymers continually deceased. For P-3-Azo and P-4-Azo, containing azobenzene with an ethyl
group and isopropyl group in the para position as the electron-donating group, it took 15 and 12 min to
complete the liquefaction process, respectively (Figure 4c,d). For P-5-Azo, containing a tert-butyl group
as electron-donating substituents in the azobenzene moieties, it showed the fastest photo-induced
solid-to-liquid transition when irradiated with UV light and it took 10 min to complete the liquefaction
process (Figure 4e). These results clearly demonstrated that the trend of photoinduced solid-to-liquid
transition of azopolymers was determined by the chromophore structure and electron-donating
capacity of the substitutes and totally in agreement with the photoisomerization process.
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4. Conclusions

In the present study, in order to understand the structure–property relationship and reveal the
influence of chromophoric electron-donating groups on photoinduced solid-to-liquid transition properties,
a series of azopolymers P-n-Azo with side chains containing azobenzene unit bearing alkyl-based
electron-donating groups, methyl, ethyl, isopropyl and tert-butyl groups were synthesized. The
photoisomerization and photoinduced solid-to-liquid properties of newly synthesized azopolymers were
investigated. The electron-donating ability of alkyl groups significantly affected the photoisomerization
process of azopolymers in solution, as the electron-donating ability increased, the time required
for photoisomerization of azopolymers continually deceased. Similarly, the electron-donating ability
of alkyl groups remarkably affected the photoinduced solid-to-liquid transitions of azopolymers
as well. The liquefaction rate of azopolymers drastically increased as the electron-donating ability
of substituents increased. This work clearly demonstrated that the electron-donating group in the
azobenzene group of the polymer side chain played an essential role on the photoinduced solid-to-liquid
transitions of azopolymers, and hence, gives insight into how to design novel azopolymers based on the
structure–property relationship for practical applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/4/901/s1,
Figure S1: Scheme for synthesis of monomer M-1-Azo, Figure S2: Scheme for synthesis of monomer M-2-Azo,
Figure S3: Scheme for synthesis of monomer M-3-Azo, Figure S4: Scheme for synthesis of monomer M-4-Azo,
Figure S5: Scheme for synthesis of monomer M-5-Azo.
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