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Abstract: Pyrolysis of waste low-density polyethylene (LDPE) is considered to be a highly efficient,
promising treatment method. This work aims to investigate the kinetics of LDPE pyrolysis using
three model-free methods (Friedman, Flynn-Wall-Qzawa (FWO), and Kissinger-Akahira-Sunose
(KAS)), two model-fitting methods (Arrhenius and Coats-Redfern), as well as to develop, for the first
time, a highly efficient artificial neural network (ANN) model to predict the kinetic parameters of
LDPE pyrolysis. Thermogravimetric (TG) and derivative thermogravimetric (DTG) thermograms
at 5, 10, 20 and 40 K min−1 showed only a single pyrolysis zone, implying a single reaction.
The values of the kinetic parameters (E and A) of LDPE pyrolysis have been calculated at different
conversions by three model-free methods and the average values of the obtained activation energies
are in good agreement and ranging between 193 and 195 kJ mol−1. In addition, these kinetic
parameters at different heating rates have been calculated using Arrhenius and Coats-Redfern
methods. Moreover, a feed-forward ANN with backpropagation model, with 10 neurons in two
hidden layers and logsig-logsig transfer functions, has been employed to predict the thermogravimetric
analysis (TGA) kinetic data. Results showed good agreement between the ANN-predicted and
experimental data (R > 0.9999). Then, the selected network topology was tested for extra new input
data with a highly efficient performance.

Keywords: pyrolysis; low density polyethylene (LDPE); kinetics; activation energy;
thermogravimetric analysis (TGA); artificial neural networks (ANN)

1. Introduction

Nowadays, plastic wastes have become an annoying global problem, especially in countries
where a huge quantity of plastic wastes is produced and disposed. There are many academic research
centers attempting to find a suitable way to recycle such vast wastes. Miskolczi et al. [1] mentioned
that 65%–70% of plastic wastes in the world are disposed in landfills, and the remaining 30%–35%
are incinerated. Both landfills and incineration are expensive and unfavorable for different reasons,
including, but are not limited to, environmental concerns [2]. Therefore, recycling, which is the
economic reuse of material and energy from wastes, is a favorable alterative. Although the term
“recycling” was applied mostly to municipal solid wastes (MSW), it has been used for industrial and
other generated wastes as well. Plastic wastes are increasing dramatically. MSW is considered to be
the main source of plastic wastes and low-density polyethylene (LDPE) represented about 22.7 wt% of
plastics in MSW [3].

Since the combustion as a “primary” recycling method is subjected to some problems
environmentally, “secondary” recycling (like grinding) is again limited to only 20 wt% of
the plastic wastes [4]. Therefore, most of the current research effort is focusing on “tertiary”
recycling, which requires more advanced techniques such as pyrolysis and catalytic degradation [4].
Thermal decomposition of plastic wastes by pyrolysis has certain advantages over other forms of waste
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treatment methods since all its products can be used as fuel [5]. Another advantage of pyrolysis is the
notable volume reduction of the gaseous products [5], and it can be conducted at a low temperature
when the catalyst is used [6,7].

Kinetic parameters such as activation energy of the pyrolysis process are mandatory for the
reactor design. Therefore, evaluation of the thermogravimetric analysis (TGA) data for the pyrolysis of
LDPE has attracted the attention of some researchers. Activation energy (E) of the LDPE pyrolysis
was targeted to be calculated from TGA data at different heating rates using different model-free
methods. Some of the reported E values are presented in Table 1. Different values by different methods
were reported.

Table 1. Values of activation energy of low-density polyethylene pyrolysis.

Reference Activation Energy (kJ mol−1)

Diaz Silvarrey and Phan [2] 267.61 ± 3.23
Lyon [8] 130–200

Saha and Ghoshal [9] 190
Aboulkas et al. [10] 215
Aboulkas et al. [11] 215–221
Aguado et al. [12] 261 ± 21
Sorum et al. [13] 340

Wu et al. [14] 194–206

For example, Das and Tiwari [15] investigated the LDPE pyrolysis at different heating
rates. They used five different iso-conversional models: Friedman, Flynn-Wall-Qzawa
(OFW), Kissinger-Akahira-Sunose (KAS), Starink and advanced iso-conversional (AIC) models.
Different ranges of E values were reported for each method: Friedman (178–256 kJ mol−1),
OFW (165–242 kJ mol−1), KAS (162–242 kJ mol−1), Starink (148–222 kJ mol−1), and AIC
(170–231 kJ mol−1).

Recently, most researchers have been aiming to develop an artificial neural network (ANN) model
for the prediction of different data since it showed a powerful performance to represent linear and
non-linear relationship and hence save time. Therefore, ANN is used as another alternative technique
to support the prediction of TGA data.

Conesa et al. [16], who are the pioneers in using ANN for TGA data, initiated a new method to
study the thermal decomposition kinetics of different materials at different heating rates using TGA data.
They applied the multilayer ANN model for the published experimental data. Yıldız et al. [17] studied
the co-combustion of coal blends of various composition by applying ANN to the non-isothermal TGA
data from 298 to 1273 K. In their network, temperature, blend ratio and heating rate were used as the
input variables. Their results showed a good prediction indication. Çepelioĝullar et al. [18] developed
an ANN model to predict the thermal behavior of TGA data of refuse-derived fuel with new input data.
Heating rate and temperature were used as the input parameters and weight loss was set as the output
parameter. For the best network topology, ANN model was optimized by checking different numbers
of neurons, number of training data sets and type of transfer function. ANN with 7–6 neurons for both
hidden layers and tansig-logsig non-linear function was reported as the best network.

Charde et al. [19] supported the TGA experimental investigation of the degradation of
polycarbonate/CaCO3 composites using ANN for a quick determination of kinetic parameters.
While conversion, temperature and time were the input variables, one of the kinetic triplets was the
only output variable. The least mean squared error (MSE) and the highest Regression coefficients were
used as the criteria for selecting the best ANN topology network.

Chen et al. [20] studied the co-combustion characteristics of different blends at different ratios of
O2/CO2 using TGA. Mass loss percent was predicted as a function of gas mixing ratio, temperature
and heating rate.
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Recently, Naqvi et al. [21] implied an ANN model to predict the pyrolysis of high-ash sewage
sludge and showed a good agreement between the predicted and experimental values.

This study aims to build knowledge of LDPE pyrolysis kinetics using TGA. The activation energy,
as a function of conversion, of the thermal decomposed LDPE at four different heating rates has been
estimated by three Model-free methods. In addition, the activation energy has been calculated using
two Model-fitting techniques for each heating rate as well. Furthermore, pyrolytic behavior of LDPE
has been predicted for the first time by a highly efficient developed ANN model (R ≈ 1.0).

2. Materials and Methods

2.1. Materials

LDPE black pellets, whose properties are presented in Table 2, were used. LDPE pellets were
ground into powders by a grinding mill before feeding to the TGA system. Samples, weighting of
10 mg, were used throughout this study to avoid any error of discrepancy during the reproducibility of
the collected data.

Table 2. Physical properties of black low-density polyethylene.

Manufacturer Ipoh SY Recycle Plastic, Perak, Malaysia

Polymer Type Recycled LDPE
Appearance (at 25 ◦C) Solid

Physical State Pellets
Colour Black

Density (Kg/m3) 910–940
Melting Temperature (◦C) 115 ± 10

2.2. Thermal Decomposition of LDPE

TGA experiments were performed by a Perkin-Elmer TGA-7 thermal gravimetric analyzer (Perkin
Elmer, Shelton, CT, USA). It consists of the following components: Thermogravimetric Analyzer,
and 1020 system controller with 1020 thermal analysis software. TGA permits the measurement
of weight changes in a sample material as a function of time or temperature. TGA was initially
programmed from an initial temperature to a final temperature and weight changes due to chemical
reaction in the sample were measured. The samples were purged with pure nitrogen gas and heated at
5, 10, 20 and 40 K min−1 in the temperature range of 298–873 K.

2.3. Kinetic Theory

Rate of reactions (r) can be expressed as follows [22]:

r =
dα
dt

= K(T) f (α) (1)

α =
wo −w
wo −w f

(2)

where α is conversion, t is time, K is the reaction rate constant, T is temperature, and wo, w and wf are
the weight of the sample at initial time (t = 0), time t and at the end of the TGA experiment, respectively.
The K value can be found from the Arrhenius relationship:

K(T) = A exp
(
−

E
RT

)
(3)

where A is the pre-exponential factor, E is the activation energy and R is the universal gas constant. For
nth-order reactions:

f (α) = (1− α)n (4)
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Substituting Equations (3) and (4) into equation (1) yields:

r =
dα
dt

= A exp
(
−

E
RT

)
(1− α)n (5)

Estimation of the kinetic parameters from TGA data depends mainly on Equation (5). They can
be obtained by different methods which are either “model-fitting” or “model-free” methods. They use
either differential method (by including the term, dα/dt) or integral method by doing the integration.

Usually, when most of model-free equations are derived, the reaction order (n) is assumed to be
first-order reaction [23]. However, the model-fitting methods are used for different reaction orders
(n = 1, 2 or 3) [24]. Table 3 shows kinetic equations of three of the most used model-free methods and
Table 4 represents equations of two widely used model-fitting methods [11,18,21,23–26].

Most of the published works for calculating kinetics parameters from TGA data focus on either
model-free or model-fitting methods. However, in this work, both methods have been presented and
compared with the available published data. One set implies multiple thermograms at different heating
rates and constant conversion (model-free methods: Friedman (Equation (6)), FWO (Equation (7))
and KAS (Equation (8)). The other set implies only one single thermogram (model-fitting methods:
Arrhenius (Equation (9)) and Coat-Redfern (Equation (11)).

Table 3. Equations of the selected model-free methods.

Method Equation Integral (I) or Differential (D) Plot

Friedman ln
(
β dα

dT

)
= ln(A) + ln(1− α) − E

R
1
T (6) D ln

(
βdα

dT

)
vs. 1

T

Flynn-Wall-Qzawa (FWO) ln(β) = ln
(
−

AE
R ln(1−α)

)
− 5.331− 1.052 E

R
1
T (7) I ln(β) vs. 1

T

Kissinger-Akahira-Sunose (KAS) ln
( β

T2

)
= ln

(
−

AR
E ln(1−α)

)
−

E
R

1
T (8) I ln

(
β/T2

)
vs. 1

T

Table 4. Equations of the selected model-fitting methods.

Method Equation Plot

Arrhenius ln (
dW
dt
W ) = ln A− E

R
1
T

(9) ln
( dW

dt
W

)
vs. 1

T

Coats-Redfern
ln

[
1−(1−α)1−n

T2(1−n)

]
= ln

[
AR
βE (1−

2RT
E )

]
−

E
R

1
T n , 1 (10) ln

[
1−(1−α)1−n

T2(1−n)

]
vs. 1

T

ln
[
− ln(1−α)

T2

]
= ln

[
AR
βE (1−

2RT
E )

]
−

E
R

1
T n = 1 (11) ln

[
− ln(1−α)

T2

]
vs. 1

T

2.4. Topology of ANNs

The traditional way of modelling any engineering process is to develop a model depending on
parameters whose values are estimated from the process data. However, developing a model and
estimating the parameters are not easy tasks in many cases. The task may turn out to be increasingly
difficult when the system is complex with non-linear relationships. In such cases, the ANN becomes
an alternative option.

An ANN architecture is typically organized in three layers of neurons: input, hidden and output.
Each layer has a weight matrix, a bias vector and output vector [27]. Initially, one must fix all the
variables that might have an influence on the result of the process. The data collection, usually done
outside the ANN environment, must be representative and all the data must fall within the defined
variation margin for each variable.

The architecture of ANN consists of number of layers, transfer function of each layer and the
connection between the layers. The best architecture depends on the problem type to be modelled
by the network. For better performance of ANNs, genetic algorithm should be implemented for
optimizing parameters of the ANN such as number of neurons in hidden layers, number of hidden
layers, the learning rate and the momentum rate [15].
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The performance of an ANN model in predicting an output variable can be evaluated based on
the following statistical correlations [28–31]:

R =
Σ[((W%)exp − ((W%)exp)) ∗ ((W%)est − (W%)est)

]
√

Σ((W%)exp − ((W%)exp) )
2
∗ Σ((W%)est − (W%)est))

2
(12)

Root mean square error (RMSE) =

√
1
N

∑
((W %)est − (W %)exp)

2 (13)

Mean absolute error (MAE) =
1
N

∑∣∣∣∣(W %)est − (W %)exp

∣∣∣∣ (14)

Mean bias error (MBE) =
1
N

∑
((W %)est − (W %)exp) (15)

where R is the average correlation factor and (W %)exp, (W %)est, and (W%) are the experimental,
ANN-estimated and average values of weight left %, respectively. In this investigation, mass loss of
LDPE has been targeted to be predicted by a developed ANN model.

3. Results and Discussion

3.1. TG-DTG Analysis of LDPE

The TG and DTG thermograms of the LDPE pyrolysis at different heating rates are shown
in Figures 1 and 2, respectively. Generally, thermograms were identical at different heating rates.
However, the thermal decomposition on-set, peak and final temperatures, extracted from the TG and
DTG curves, were observed at higher temperatures as heating rate increased from 5 to 40 K min−1

as shown in Figures 1 and 2. This range of heating rates is considered as a reasonable and moderate
range compared with low range of heating rates (5, 10, 20 K min−1) [21] and high range of heating
rates (100, 300, 500 K min−1) [24]. In addition, the decomposition rate increased as the heating rate
increased. These figures show clearly that there was only one main reaction region for the pyrolysis
of LDPE, which can be fitted by first-order straight line. Furthermore, the on-set, end-set and peak
values, summarized in Table 5, increased as the heating rate increased as well.
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Figure 1. Thermograms of low-density polyethylene pyrolysis at different heating rates.
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Figure 2. Derivative thermogravimetric curves of LDPE pyrolysis at different heating rates.

Table 5. The on-set, end-set and peak values of the LDPE pyrolysis at different heating rates.

Heating Rate (K/min) On-Set (K) End-Set (K) Peak (K)

5 665 750 741
10 668 755 744
20 688 782 765
40 700 794 785

3.2. Model-Free Kinetics Calculation

As mentioned earlier, Equation (5) is considered as the most essential equation from which the
rest of kinetic equations can be derived.

In this section, three different type of iso-conversional (model-free) models were used to calculate
some kinetic parameter (E and A). These models are reliable methods to obtain kinetic parameters
from non-isothermal TGA data [9]. The fitted linear equations of Friedman, FWO and KAS at different
conversions (ranging from 0.1 to 0.9) are shown in Figures 3–5, respectively.
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Table 6 shows the values of kinetic parameters (E and A) with the correlation coefficient (R2)
obtained from the three methods (Friedman, FWO, and KAS) for the whole conversion range. Due to
various mathematical formulation and approximations, the results differ slightly from each other at
different conversions. However, the average values of the calculated activation energies were very
close and ranging from 193 to 195 kJ mol−1 with R2 > 0.95. In addition, it can be reported that the
obtained E values are neither function of conversion nor heating rate and this is in a good agreement
with literature [11,23,26].
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Table 6. Kinetic parameters of LDPE pyrolysis at different conversions calculated by three model-free
methods: Friedman, FWO and KAS.

Conversion
Friedman FWO KAS

E
(kJ/mol)

A
(min−1)

R2 E
(kJ/mol)

A
(min−1)

R2 E
(kJ/mol)

A
(min−1)

R2

0.1 197 2.63 × 1013 0.9772 193 8.14 × 1012 0.9532 191 5.51 × 1012 0.9474
0.2 185 4.85 × 1012 0.9265 198 2.17 × 1013 0.9575 196 1.49 × 1013 0.9523
0.3 186 6.68 × 1012 0.9288 198 2.46 × 1013 0.9629 196 1.65 × 1013 0.9582
0.4 206 1.97 × 1014 0.9387 195 1.70 × 1013 0.9498 193 1.09 × 1013 0.9435
0.5 198 5.20 × 1013 0.9793 194 1.55 × 1013 0.9527 191 9.74 × 1012 0.9467
0.6 194 3.06 × 1013 0.9844 194 1.97 × 1013 0.9567 192 1.23 × 1013 0.9511
0.7 188 1.17 × 1013 0.9674 196 3.07 × 1013 0.9612 194 1.94 × 1013 0.9562
0.8 196 4.31 × 1013 0.9345 197 4.15 × 1013 0.9665 195 2.62 × 1013 0.9621
0.9 198 4.50 × 1013 0.9559 192 2.16 × 1013 0.9720 190 1.28 × 1013 0.9681

Average 194 4.63 × 1013 0.9547 195 2.23 × 1013 0.9592 193 1.43 × 1013 0.9540

3.3. Model-Fitting Kinetics Calculation

If the activation energy is assumed to be constant over a specific temperature range, then its
average value can be obtained from the slope of the plot of ln[(dW/dt)/W] versus 1/T (Arrhenius
Equation (9)) and ln [-ln(1-α)/T2] against 1/T (Coats-Redfern (Equation 11)). The values of kinetic
parameters (E and A) obtained by the two model-fitting methods are shown in Table 7.

Model-fitting methods include the reaction mechanism to get more kinetics parameters. In this
work, only first order reaction mechanism is selected, since it is the most dominant mechanism [25,32].

The average calculated values of activation energies by Arrhenius (202 kJ mol−1, R2 < 0.96) and
Coats-Redfern (196 kJ mol−1, R2 < 0.92) methods are slightly larger than the calculated values by the
three model-free methods (Friedman, FWO and KAS) by less than 4%. However, all calculated values,
by all the five models, are very close to some of the published values [9,10,15,16]. In addition, the A
values, calculated by all five methods, increase as the E value increases and this is in a total agreement
with the published data [24].

Table 7. Kinetic parameters of LDPE pyrolysis at different heating rates by two model-fitting methods:
Arrhenius and Coats-Redfern.

Heating Rate (K/min)
Arrhenius Method Coats-Redfern Method

E
(kJ/mol)

A
(min−1)

R2 E
(kJ/mol)

A
(min−1)

R2

5 207 1.42 × 1014 0.9673 193 4.22 × 1010 0.9295
10 200 2.29 × 1013 0.985 193 6.75 × 1010 0.9436
20 213 9.13 × 1013 0.9724 197 8.66 × 1010 0.9413
40 187 1.11 × 1012 0.9649 201 1.61 × 1011 0.9459

Average 202 6.43 × 1013 0.9724 196 8.92 × 1010 0.9401

3.4. Pyrolysis Prediction by ANN Model

To our knowledge, a highly efficient ANN model was targeted to be developed for the first time
to predict the thermal decomposition of LDPE. In the current study, a Feed-Forward Back-Propagation
Neural Network (FFBPNN) was developed to predict the weight left % based on 154 experimental data
sets. Heating rate (K min−1) and temperature (K) are the input variables for the proposed ANN model
and the weight left % is the only output parameter from the network. The data sets were randomly
divided into three groups as follows: 70% of the data sets were used for training, 15% for validation
and 15% were used for testing.

Table 8 shows a performance comparison between different ANN structures based on numbers
of hidden layers, numbers of neurons and transfer functions. The value of correlation coefficient (R)
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is considered as the main criterion for selecting the most efficient network structure for estimating
the percentage weight left as the output variable. As shown in table below, a better performance was
achieved as number of hidden layers increases. However, number of neurons in each hidden layer
should be optimized to avoid over/under-fitting.

The final and best ANN structure is ANN12, shown in Figure 6, has 10 neurons in two hidden
layers with logsig-logsig transfer functions. Levenberg-Marquardt algorithm was used for the network
since this algorithm is recommended for moderate-size data [31]. However, the ANN program was
run with different algorithms like Bayesian Regularization and Scaled Conjugate Gradient to confirm
and test its performance. As shown in Figure 7, all the comparative results are near the diagonal,
which indicates a full agreement between ANN-predicted values (Y-axis) and experimental values
(X-axis).

Table 8. Performance of different ANN structures.

Model Network Topology 1st Transfer Function 2nd Transfer Function R

ANN1 NN-2-10-1 TANSIG - 0.99943
ANN2 NN-2-15-1 TANSIG - 0.99981
ANN3 NN-2-5-1 TANSIG - 0.99724
ANN4 NN-2-10-1 LOGSIG - 0.99865
ANN5 NN-2-15-1 LOGSIG - 0.98047
ANN6 NN-2-5-1 LOGSIG - 0.99544
ANN7 NN-2-15-15-1 TANSIG TANSIG 0.99978
ANN8 NN-2-15-15-1 LOGSIG TANSIG 0.99961
ANN9 NN-2-15-15-1 TANSIG LOGSIG 0.99989

ANN10 NN-2-10-15-1 TANSIG LOGSIG 0.99990
ANN11 NN-2-10-10-1 TANSIG LOGSIG 0.99993
ANN12 NN-2-10-10-1 LOGSIG LOGSIG 1.00000
ANN13 NN-2-15-15-1 LOGSIG LOGSIG 0.99998
ANN14 NN-2-10-15-1 LOGSIG LOGSIG 0.99997
ANN15 NN-2-15-10-1 LOGSIG LOGSIG 0.99996

The prediction performance of the current ANN12 model was then evaluated by the values
of R, RMSE, MAE and MBE. Table 9 lists these values for the training, validation test and all data
sets. All statistical measurements of deviations are significantly low for the selected ANN model,
which implies that the selected ANN model can effectively predict the output parameter (R > 0.9999).
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After checking the ANN with 154 data sets in the three stages (training, validation, and test),
the final and best architecture NN-2-10-10-1 has been tested to predict the output parameter of 28 new
input data sets covering 7 experiments for each heating rate (5, 10, 20, or 40 K min−1) as presented in
Table 10. In this stage, only the new input data sets were fed to the system, and the ANN produce the
new predicted-output according the final architecture NN-2-10-10-1. Figure 8 shows the comparison
between the ANN-predicted values with the measured ones, which confirms the high performance of
the selected network. In addition, Table 11 lists the statistical parameters (R, RMSE, MAE and MBE) of
this stage. As presented, R is very high (>0.9999) with very low values of RMSE, MAE and MBE which
implies the highly efficient performance of the developed ANN model.
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Figure 7. Linear Regression plots of (a) training data, (b) validation data, (c) test data, and (d) complete
data set of the selected ANN model.

Table 9. Statistical parameters of the ANN12 model.

Set
Statistical Parameters

R RMSE MAE MBE

Training 0.99999 0.09786 0.04177 0.00583
Validation 0.99999 0.04578 0.03291 −0.01063

Test 0.99999 0.05197 0.03713 0.002655

All 0.99999 0.08621 0.03975 0.002897
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Table 10. Performance evaluation of the selected network for extra new input data at different
heating rates.

No.
Input Data Predicted-Output Data

Heating Rate (K min−1) Temperature (K) Weight Left (%)

1 5 528.036 99.87579
2 5 578.09 99.6904
3 5 628.072 99.328
4 5 678.062 96.50681
5 5 728.025 49.30348
6 5 778.043 0.048376
7 5 828.05 −0.01156
8 10 528.014 100.0249
9 10 578.026 99.66833
10 10 628.017 98.99761
11 10 678 96.5807
12 10 728.002 64.78094
13 10 778 0.450783
14 10 828.018 0.344112
15 20 528.148 99.97255
16 20 578.205 99.85724
17 20 628.006 99.64173
18 20 678.273 98.72066
19 20 728.203 88.68082
20 20 778.291 0.577601
21 20 828.075 −0.04285
22 40 528.194 99.98355
23 40 578.397 99.8972
24 40 628.452 99.74232
25 40 678.12 99.26672
26 40 728.501 94.30099
27 40 778.047 30.7278
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Table 11. Statistical parameters of the ANN12 model for the tested extra new input data.

Set
Statistical Parameters

R RMSE MAE MBE

simulated 0.99998 0.17017 0.07941 0.04903

4. Conclusions

The TG & DTG thermograms obtained from TGA study of the LDPE pyrolysis showed the same
shapes and trends at different heating rates. From the TGA data, it has been observed that the data
conforms only to one reaction region, which can be fitted by a first-order straight line.

In this work, two approaches have been implemented to model the TGA kinetic data. In the
first approach, five different methods, to approximate the TGA data with straight line regression,
have been used to calculate the values of the decomposition kinetic parameters. However, in the
second one, a highly efficient ANN model has been developed, for the first time, to predict the thermal
decomposition of LDPE.

In the first approach, three Model-free (Friedman, FWO, and KAS) and two Model-fitting
(Coats- Redfern and Arrhenius) methods have been used to obtain the LDPE pyrolysis kinetic
parameters (E and A). The values of the calculated activation energies by Friedman, FWO, and KAS
were ranging between 193 and 195 kJ mol−1 which are slightly lower than those obtained by the
Model-fitting methods (Arrhenius 202 kJ mol−1 and Coats-Redfern methods 196 kJ mol−1). However,
these values are still very close to the published data.

An ANN with the architecture of 2-10-10-1, with two hidden layers (Logsig-Logsig), has been
found as the most efficient network which could predict the output variable (weight loss %) very
precisely with regression coefficient value of (R ≈ 1.0). Then, the proposed network topology has been
tested with extra new input data and results were in close agreement with the experimental values
with very high R (>0.9999) and very low RMSE, MAE and MBE.
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