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Abstract: Soybean oil is beneficial to improve the compatibility between polylactide (PLA) and
succinylated lignin (SAL), which leads to the preparation of a host of biobased composites containing
PLA, SAL, and epoxidized soybean oil (ESO). The introduction of SAL and ESO enables the relatively
homogeneous morphology and slightly better miscibility obtained from triply PLA/SAL/ESO
composites after dynamic vulcanization compared with unmodified PLA. The rigidity of the
composites is found to decline gradually due to the addition of flexible molecular chains. According to
the reaction between SAL and ESO, the Tg of PLA/SAL/ESO composites is susceptible to the movement
of flexible molecular chains. The rheological behaviors of PLA/SAL/ESO under different conditions,
i.e., temperature and frequency, exhibit a competition between viscidity and elasticity. The thermal
stability of the composites displays a slight decrease due to the degradation of SAL and then the
deterioration of ESO. The elongation at break and notched impact strength of the composites with
augmentation of ESO increase by 12% and 0.5 kJ/m2, respectively. The triply biobased PLA/SAL/ESO
composite is thus deemed as a bio-renewable and environmentally friendly product that may find
vast applications.

Keywords: lignin; polylactide composite; epoxidized soybean oil; dynamic vulcanization

1. Introduction

Lignocellulosic biomass is deemed as one of the most encouraging renewable and sustainable
resources to lessen the increasing fuel demands [1–4], the growing concern for the effects of greenhouse
gas emissions from fossil fuels, and the increasing accumulation of non-degradable waste from the high
consumption of petroleum-based materials in many applications [5–8]. In particular, lignin is regarded
as one of the main components of lignocellulosic biomass, which is composed of three biopolymeric
compounds, namely cellulose, hemicellulose, and lignin, taking advantage of its unique property as
the only aromatic polymer existing in the nature [9]. At present, lignin is deemed as a by-product of the
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pulp and paper industry, where it is typically recovered as waste material during pulping treatments.
The limited exploitation of such a widespread renewable resource appeals to spending more time
researching the most important efficient approaches to enhance lignin utilization as a precursor for the
design and production of materials in view of the abundant aromatic structures. The application and
development of lignin will contribute to the boom of bio-composites [10,11].

Lignin, a highly irregular, amorphous, and cross-linked biopolymer [12,13], is composed of
three phenylpropanoid units, namely p-coumaryl alcohol (H units), coniferyl alcohol (G units),
and sinapyl alcohol (S units), and various functional groups [14–17], which constitute a highly polar,
complex, and heterogeneous biomacromolecule with a large quantity of hydroxyl (-OH) by the
random permutation of units and groups that are linked to the major interunit linkages including
β-O-4, α-O-4, β-5, β-β, 5-5, β-1, and 4-O-5 [18,19]. The diversity and complexity of lignin and the
interconnected structure give rise to the low degree of compatibility and reactivity. Nevertheless,
the chemical modification of lignin is a cost-effective way to improve the compatibility by increasing
the intermolecular covalent bonds. Obviously, it is a convenient and inexpensive way to produce
promising polymers by blending lignin with other polymers. However, developing the blend of
petroleum-based polymer with lignin may accelerate the depletion of fossil-based reserves and
deterioration of the environment. In light of this consideration, it is promising to search for potential
bio-renewable/biodegradable polymers to replace traditional synthetic polymers. In this context,
poly(lactide) (PLA) is considered to be the first choice for blending with lignin. It is anticipated that a
new kind of biodegradable and biocompatible bio-composites will be developed.

PLA has been chosen because this polymer is derived from corn starch and sugarcane biomass and
is known as a promising bio-polymer with outstanding biodegradability and biocompatibility [20,21].
Currently, extensive attention is given to PLA since it is considered as a potential replacement for
petroleum-based sources with renewability and good mechanical properties. However, its high cost
and poor impact strength hinder the wide-ranging commercial applications of the polymer [22]. PLA
endowed with modified lignin is expected to yield inexhaustible composites having relatively good
compatibility between the matrix and filler. Unexpectedly, the toughness of PLA/lignin composites is
expected to be improved by polymer blending, owing to the hindrance of the intrinsic brittleness of
PLA and lignin itself.

Plant oils are an inexpensive, green, and sustainable feedstock to toughen PLA/lignin composites
in comparison with other renewable polymers [23], such as biomass-sourced polyesters, natural rubber
and its derivatives, and biobased polyamide [24–29]. Castor oil and soybean oil have been considered
as a toughening agent for PLA [30,31]. In order to obtain good immiscibility between plant oils and
PLA, the phase morphology and interfacial adhesion are constituted by dynamic vulcanization [32–35].

Traditionally, dynamic vulcanization is a process where the rubber is vulcanized in the presence of
the molten thermoplastic under shear forces and the rubber particles are dispersed in the thermoplastic
matrix, even at a high content, in order to improve the ultimate mechanical properties, reduce the
permanent tension, improve the fatigue resistance, and so on [36]. In addition, it is found that
many polymer blends/composites with high mechanical properties are fabricated by using dynamic
vulcanization, which is a very powerful way to control the phase morphology, enhance the interfacial
adhesion, and improve the tensile and impact strengths of polymers [32,34,35]. The objective of this
work is to fabricate new PLA composites with modified lignin and epoxidized soybean oil (ESO) of
different concentrations by dynamic vulcanization [37,38] and to elucidate the relationship between
the structure and property of such composites. By adjusting the volume of ESO during the process of
blending, fully sustainable and renewable PLA/succinylated lignin (SAL)/ESO composites are obtained
to probe the interfacial interaction, miscibility, and compatibilities of the materials, for the sake of
accomplishing widespread application in the future, such as bio-composites and functional materials.
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2. Materials and Methods

2.1. Materials

Poly(lactic acid) (PLA 4032D) with a weight-average molecular weight (Mw) and a polydispersity
index of 17.62 × 104 g/mol and 2.1 was procured from Natureworks (Blair, NE, USA). Alkaline lignin
was supplied by Shandong Quanlin Paper Co., Ltd. (Gaotang, China), and was subject to H2SO4

pretreatment. Soybean oil epoxide (ESO) with a density of 0.997 g/mL was purchased from MACKLIN.
Gamma-valerolactone (GVL), 4-dimethylaminopyridine, succinic anhydride (SA), and isopropyl ether
were purchased from Aladdin Co., Ltd. (Shanghai, China)

2.2. Synthesis of Succinylated Lignin Adducts

Lignin (3.0 g) was dissolved in GVL (2.5 g) to form a homogeneous solution under magnetic stirring.
Then, the solution was stirred for 5 h at 140 ◦C to activate the lignin. Next, 3.0 g succinic anhydride
(SA) and 0.15 g 4-dimethylaminopyridine were added into the mixture and stirred for another 1 h
at 100 ◦C. The crude reaction solution was added dropwise to the isopropyl ether. The yielded SAL
precipitate was centrifuged, washed thoroughly with deionized water, and freeze-dried before further
utilization [39]. The synthesis route of succinylated lignin is presented in Scheme 1.
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Scheme 1. Schematic illustration of the reaction between lignin and succinic anhydride in the presence
of 4-dimethylaminopyridine.

2.3. Dynamic Vulcanization of ESO and SAL with PLA

The dynamic vulcanization of ESO and SAL with PLA was performed in a HAAKE PolyLab QC
torque rheometer (Haake co., Karlsruhe, Germany). At first, SAL and PLA were placed in an oven at
80 ◦C for 8 h. Then, PLA, SAL, and ESO were uniformly mixed according to the mass ratio (listed
in Table 1) in the torque rheometer at 190 ◦C with a roller rotation rate of 60 rpm for 8 min. After,
the predetermined mixture cooled to room temperature and was cut into granules, for the preparation
of the composites.

Table 1. Composition of PLA, succinylated lignin (SAL), and epoxidized soybean oil (ESO).

Entry PLA
(%)

SAL
(%)

ESO
(%)

PLA 100 0 0
PLA/SAL/ESO1 93 5 2
PLA/SAL/ESO2 92 5 3
PLA/SAL/ESO3 91 5 4
PLA/SAL/ESO4 90 5 5
PLA/SAL/ESO5 89 5 6
PLA/ESO 94 0 6
PLA/lignin/ESO 90 5 5
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2.4. Preparation of Composites

The prepared granules were placed in an oven at 100 ◦C for 8h, and the mixed materials were
extruded on a micro twin-screw extruder (SJZS-10A, Ruiming Experiment Apparatus Manufacturing
Co., Ltd., Wuhan, China) with a main screw speed of 160 r/min and a feeding speed of 8 r/min,
at heating temperatures of 180, 190, and 200 ◦C. A micro-injection machine (SZS-20, Ruiming
Experiment Apparatus Manufacturing Co., Ltd., Wuhan, China) was used to injection mold the
compound into a spline at 190 ◦C according to ASTM D-790. The injection molded samples were then
placed in a thermostatic biochemical chamber (temperature 23 ◦C, humidity 80%) for 24 h to eliminate
internal stress. In addition, the blend was injection molded into a disc having a diameter of 2 mm and
a thickness of 2 mm by extrusion molding for dynamic rheological testing.

2.5. Characterization and Measurements

2.5.1. Fourier Transform Infrared Spectroscopy

FTIR spectra were recorded on a NEXUS-570 spectrophotometer (Thermo Fisher Scientific Co.,
Ltd., Waltham, MA, USA) over a wavenumber range of 4000 to 500 cm−1 with a resolution of 4 cm−1,
and a scanning number of 32 times. Each sample was ground, mixed with KBr at a mass ratio of about
1/100, and pressed into pellets before FTIR analysis.

2.5.2. Nuclear Magnetic Resonance Spectroscopy

NMR spectra were recorded on a Bruker Ascend 400 MHz spectrometer. The lignin samples were
phosphitylated with 2-chloro-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaphospholane, using cholesterol as the
internal standard, according to the standard protocol before 31P NMR analysis. The experimental
parameters, i.e., scans, delay, and spectral width, were 128, 15s, and 80 ppm (180−100 ppm), respectively.
Quantitative 1H NMR analysis was recorded on a Bruker Ascend 400 MHz spectrometer (Bruker
Corporation, Karlsruhe, Germany) at room temperature using DMSO-d6 as the solvent, with 32
scans and a delay of 10 s. The 13C-NMR spectra were recorded on a Bruker Ascend 400 MHz
spectrometer (Bruker Corporation, Karlsruhe, Germany) using an inverse-gated decoupling sequence
with a relaxation time of 4 s and a number of scans of at least 10,000. The samples were dissolved in
DMSO-d6 and measured at 60 ◦C.

2.5.3. Dynamic Mechanical Analysis

The rectangular samples of the composites were studied by a TA Instruments DMA (Q800,
TA Co., Ltd., New Castle, PA, USA) under tensile mode. Frequency sweep was performed over a
range from 5 to 45 Hz, at 30 ◦C, with a vertical displacement amplitude of 15 µm, to obtain dynamic
mechanical properties.

2.5.4. Differential Scanning Calorimetry

DSC measurements of about 8 mg sample were carried out on a TA Instruments Q10
(TA Instruments, TA Co., Ltd., New Castle, PA, USA). The samples were heated from room temperature
to 200 ◦C and kept there for 5 min to eliminate thermal history. The samples were then quenched
to 30 ◦C and finally reheated to 200 ◦C for the study of the crystallization and melting behavior of
the composites.

2.5.5. Thermogravimetric Analysis

TGA measurement of samples of 10–50 mg was recorded on a TA Instruments Q50 (TA Co., Ltd.,
New Castle, PA, USA) under nitrogen gas flow of 10 mL/min, with a heating rate of 10 ◦C /min and a
preset temperature of 800 ◦C.
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2.5.6. Rheological Analysis

The rheological properties were measured using a TA rheometer (AR 2000, TA Co., Ltd., New Castle,
PA, USA) with a nitrogen purge. A 25 mm parallel-plate with a 1000 µm gap was selected for the test.
A strain amplitude of 1% was found to be suitable to ensure the linear viscoelastic regime and was
thus used for both the frequency sweep and temperature ramp sweep modes.

2.5.7. Mechanical Properties

Tensile tests were measured with an electronic universal mechanical testing machine (WDW-10C,
Shanghai Hualong Test Instrument Co., Ltd., Shanghai, China) according to ASTM D-638.
The experimental parameters were 10 mm/min crosshead speed at room temperature and 25 mm gauge
length between the two pneumatic clamps. The average of five measurements was reported in the
analysis of the mechanical properties.

2.5.8. Scanning Electron Microscopy

The morphologies of the PLA/SAL samples were observed by Quanta FEG230 scanning electron
microscope (FEI Co., Ltd., Hillsboro, OR, USA) equipment with an acceleration voltage of 25 kV. SEM
images were recorded after the surfaces of the samples were coated with gold.

3. Results and Discussion

3.1. The Characterization of SAL Adducts

The esterification of lignin was recorded by means of FTIR spectroscopy. As shown in Figure 1,
SAL exhibited a signal characteristic of the occurrence of the esterification between lignin and succinic
anhydride. The wide absorption band at 3429 cm−1 originated from O-H stretching vibrations in
aromatic and aliphatic O-H groups, whereas the bands at 2942 and 2845 cm−1 were attributed to the
C-H asymmetric and symmetric vibrations in the methyl and methylene groups. The peaks at 1595 and
1520 cm−1 were ascribed to the C-C of the aromatic skeletal vibrations. Bands at 1460 and 1420 cm−1

were linked to the C-H deformation in the –CH2- and –CH3 groups and C-H aromatic ring vibrations,
respectively. Some characteristic bands found at 1325, 1220, and 1110 cm−1 corresponded to syringyl
and condensed guaiacyl absorptions, guaiacyl ring breathing, C-C, C-O stretching, and aromatic
C-H in-plane deformation. Non-conjugated carboxylic acids were observed at the 1730 cm−1 band.
In the case of lignin and SAL in Figure 1, it was observed obviously that the signal around 3401 cm−1

corresponding to aromatic and aliphatic OH stretching vibration was enhanced compared with lignin.
The intensified carboxylic groups at 1730 cm−1 in SAL were associated with more carboxylic groups.
The assignments and analyses of the peaks proved the successful esterification.
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Figure 1. FTIR spectra of lignin (a) and succinic anhydride-based lignin (b).



Polymers 2020, 12, 632 6 of 18

The successful modification of lignin with SA was also confirmed by NMR analysis, as shown
in Figure 2. Obviously, the broad proton signal at δ 6.0–7.8 were attributed to aromatic protons,
while the resonance peaks at δ 4.8–3.0 were assigned to the methoxy group in the aliphatic/aromatic
region. Proton signals from hydroxyl groups were easily affected by hydrogen bonding, leading to the
uncertainty in the changing trend of hydroxyl groups. By comparison, after functionalization with SA,
it was deemed that the COOH groups of SAL were increased and the corresponding OH groups were
transformed to form COOH groups. The signals of -CH2 or -CH3 in SAL were found to be enhanced
owing to the occurrence of a reaction. The comparative 13C NMR spectra of lignin and SAL in Figure 3
indicated that the increased signals at 160–190 ppm of C=O groups in SAL samples were attributed to
the new formation of ester and COOH groups. In addition, new d signals appearing at 30–20 ppm in
SAL samples were assigned to the form of side chains.
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The reaction of lignin with SA was anticipated to increase the carboxylic acid groups and decrease
the hydroxyl groups in lignin. In this regard, quantitative 31P NMR spectroscopy was shown to be a
powerful method to evaluate the functional groups distribution in lignin and SAL. As shown in Figure 4
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and Table 2, after modification of lignin with SA, the total hydroxyl group content was increased from
4.67 mmol/g to 6.31 mmol/g. Theoretically, the total hydroxyl groups in lignin would not change
after the modification as the consumption of one mole of aliphatic or aromatic hydroxyl group would
generate one mole of the carboxylic acid hydroxyl group. This increases possibly accounted for the
separation of lignin with low hydroxyl groups during the modification and subsequent purification
process. The values of aliphatic hydroxyl groups and aromatic hydroxyl groups in SAL were lower
than those in the raw lignin, implying low chemical selectivity to the chemical modification of aliphatic
and aromatic hydroxyl groups in lignin. Notably, the value of the carboxyl acid hydroxyl groups in the
SAL was up to 4.5 mmol/g, much higher than the 0.54 mmol/g for the raw lignin, further indicating the
successful chemical reaction between the hydroxyl groups in lignin with SA.
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Functional Groups Acidified Lignin (mmolg−1) Carboxyl Lignin (mmolg−1)

Aliphatic-OH 1.182 0.321
S [a]-OH 1.684 0.818
G [b]-OH 1.077 0.509
H [c]-OH 0.188 0.152
-COOH 0.539 4.509

total 4.67 6.309
[a] S: sinapyl alcohol. [b] G: coniferyl alcohol. [c] H: p-coumaryl alcohol.

3.2. Processing and Rheological Behaviors

Several comprehensive reviews already dealt with the basic influencing factors of the torque
value [40], which is analogous to the apparent viscosity (ηa) of materials and contingent on the
molecular weight, as well as the chain structure of the polymer. The torque curves of all samples during
dynamic vulcanization are displayed in Figure 5. The torque of pristine PLA showed a monotonous
decrease with increasing the mixing time, which was attributed to the partial thermal degradation
of PLA chains during processing [41]. Compared with neat PLA, PLA/ESO composites exhibited a
lower equilibrium torque value. Furthermore, the torque values of PLA/SAL/ESO composites with
5 wt% SAL showed a decline with increasing the content of ESO. This indicated that the degradation
of PLA mainly led to the change of the torque value due to the addition of SAL and ESO. It was also
observed that the torque values of PLA/SAL/ESO composites gradually decreased with increasing the
ESO content, which indicated the formation of short chains or branching chains in the reaction system.
However, the torque curves of PLA/SAL/ESO composites displayed a new peak when the dosage of
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ESO exceeded 2%. This observation may be explained by the reaction between carboxylic groups of
SAL and epoxy groups of ESO, which led to either crosslinking or branching structures, as shown in
Scheme 2.Polymers 2020, 12, x FOR PEER REVIEW 8 of 18 
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Scheme 2. Dependence of SAL/ESO structures during the curing process of ESO and SAL.

Figure 6 shows the storage modulus (G′), loss modulus (G”), and complex viscosity (η*) of pure
PLA and PLA/SAL/ESO composites at 170 ◦C. It is noted that the η* value decreased gradually with
increasing frequency, indicating that both PLA and PLA/SAL/ESO composites belonged to the typical
pseudoplastic fluid. Another observation was that the values of G′ and G” were enhanced progressively
with increasing frequency and showed a relatively smooth trend eventually, which brought it into
correspondence with the linear viscoelasticity theory of polymers. At low frequency, the variation of
shear force was slow, and the movement of molecular chains emulated the variation of stress, which led
to the viscosity of materials owing to the high G” value. However, at high frequency, the increasing rate
of G′ changed fast, and G′ attained a higher value than that of G”. As a consequence, the movement of
the molecular chain was inconsistent with the change in stress, causing the material to show elasticity
rather than viscosity. The result extended the knowledge that the G′, G”, and η* values of PLA/SAL/ESO
composites were lower than those of pure PLA, which resulted from the lower viscosity of composites
and the relatively weak interface effect and coefficient of friction [42].
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Figure 6. Frequency ramp sweep curves for pure PLA, PLA/ESO, and PLA/SAL/ESO composites at
170 ◦C: (a) storage modulus (G′), (b) loss modulus (G”), and (c) complex viscosity (|η*|).

Figure 7 shows the temperature ramp sweep results of pure PLA and PLA/SAL/ESO composites.
It is seen from this Figure 7 that the values of G′ of all PLA/SAL/ESO composites decreased drastically
with increasing temperature from 180 to 210 ◦C, which was attributed to the transform from a rubbery
plateau to a flow behavior. In the temperature range of 210 to 240 ◦C, the presence of a slow decrease
was observed due to the complete melting of PLA. However, the values of G′ of pure PLA and PLA/ESO
composites were found to decline at a certain ratio with increasing frequency. It was revealed that G′

for all the PLA/SAL/ESO composites was lower than that of pure PLA and PLA/ESO. This resulted
from the formation of flexible molecular chains and the better interfacial interaction and miscibility.
The above observations clearly showed that the G′ of PLA/SAL/ESO composites was more sensitive to
the low temperature range. In addition, the G” and η* values of all samples were found to decrease
dramatically with increasing temperature from 180 to 240 ◦C. This indicated that PLA composites
gradually turned into a viscous state. Nevertheless, the values of G” were still higher than those of G′

at a specific temperature, indicating the viscous flow of PLA rather than elastic deformation.
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Figure 7. Temperature ramp sweep curves for pure PLA, PLA/ESO, and PLA/SAL/ESO composites:
(a) storage modulus (G′), (b) loss modulus (G”), and (c) complex viscosity (|η*|).

3.3. Dynamic Mechanical Analysis

The storage modulus (E′), loss modulus (E”), and tanδ of neat PLA and its composites are shown
in Figure 8. It is seen from Figure 8a that pure PLA showed higher E′ values than PLA/ESO and
PLA/SAL/ESO composites, indicating the higher rigidity of pure PLA. It was also found that the value
of E′ of PLA/SAL/ESO composites gradually decreased with the addition of ESO, suggesting that the
rigidity of the composites gradually declined because of the plasticization of ESO and the flexibility of
the molecular chains.
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Figure 8. Dynamic mechanical properties of PLA, PLA/ESO, and PLA/SAL/ESO composites showing:
(a) storage modulus (E′), (b) loss modulus (E”), and (c) tanδ.

Particular emphasis is placed on understanding the E” concept, which stands for the degradation
or the loss of energy as heat according to the cycle of sinusoidal distortion, as shown in Figure 8b.
It appeared that the of pure PLA showed a lower E” value than the other samples at a certain
temperature range, which demonstrated that the motion of the polymer happened to be transformation.
This testified further that the viscosity of the PLA/SAL/ESO composites was higher than that of PLA.
As a consequence of the addition of SAL and ESO, the interfacial interaction between PLA and SAL
with ESO was improved due to the plasticizing effect of ESO.

The tanδ curves displayed in Figure 8c also reveal the comparison of the glass transition temperature
(Tg). Both the PLA/SAL/ESO and PLA/ESO composites exhibited lower Tg than pure PLA, which
was ascribed to the addition of SAL and ESO. A decline in Tg was also found for PLA/SAL/ESO
with increasing the loading of ESO due to the poor interfacial interaction between PLA and SAL
caused by the addition of ESO and the poor dispersion of homogeneous particles. At the same time,
the compatibility between the polymer matrix and fillers in the PLA/SAL/ESO composites became
slightly worse, as a consequence of the limited interfacial interaction.

3.4. Melting and Crystallization Behaviors

Complete details of the materials are provided in Figure 9 to probe the interaction between the
SAL, ESO, and PLA phase on the glass transition temperature (Tg) and melting temperature (Tm).
The Tg value of PLA/ESO composites became lower than that of pure PLA, due to the plasticizing
effect of ESO on the composites. When both SAL and ESO were added to PLA, it was discovered that
the onset Tg of PLA/SAL/ESO composites gradually shifted to a lower temperature with increasing
ESO concentration, compared to that of pure PLA. On the basis of the results, it was concluded that
molecular level reciprocity between the blending components triggered the variation of Tg in the blend
composition [43]. Owing to the reaction between SAL and ESO, which improved the compatibility of
the three components, SAL, ESO, and PLA, the increase of molecular pliability caused the phenomenon.
In addition, ESO could act as a plasticizer to improve the mobility of molecular chains, leading to a
decrease of the Tg value.
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Figure 9. DSC melting (a) and crystallization (b) curves of PLA, PLA/ESO, and PLA/SAL composites.

The Tm was a remarkable indicator that enabled the analysis of phase miscibility of PLA, SAL,
and ESO [44]. As shown in Figure 9 and Table 3, an identical consequence was obtained in this
work where the Tm value of PLA/SAL/ESO composites was impaired slightly compared with pure
PLA. The reduction in Tm was primarily ascribed to the deterioration of the crystalline phase of PLA
affected by the molecular miscibility with SAL and ESO. With the addition of SAL and ESO, the triply
composites gradually became more amorphous due to the complexity of SAL and ESO.

Table 3. The DSC data of PLA, PLA/ESO, and PLA/SAL/ESO composites.

Entry Tg (◦C) Tc (◦C) Tm (◦C)

PLA 63.1 108.4 168.9
PLA/ESO 60.3 102.2 167.4
PLA/SAL/ESO1 61.6 103.3 167.6
PLA/SAL/ESO2 61.5 101.1 167.6
PLA/SAL/ESO3 60.5 101.1 167.5
PLA/SAL/ESO4 60.1 101.4 167.1
PLA/SAL/ESO5 59.9 102.3 167.0

3.5. Thermal Stability

The TGA profiles of PLA, PLA/ESO, and PLA/SAL/ESO composites are displayed in Figure 10
and Table 4. It is clearly observed that the thermal stability of the composites gradually deteriorated
with increasing the ESO content from 0 to 6 wt%, according to the data of T5% and Tmax. PLA/ESO
composites had a similar thermal behavior. Inevitably, it was found that the PLA/SAL/ESO composites
showed poorer thermal stability than PLA and PLA/ESO, possibly resulting from the degradation of
molecular chains, when the compatibility region between PLA, ESO, and SAL was poor [45]. With the
addition of SAL, the residue of PLA/SAL/ESO composites was higher than those of PLA and PLA/ESO
composites. However, different PLA/SAL/ESO composites displayed a similar trend, indicating that
the amount of ESO played a weak role in the thermal stability of the materials. Concerning the char
residues, the presence of SAL was responsible for the increase of the carbon-based residues of materials,
and SAL was a charring material only under pyrolytic conditions [46]. When the SAL existed in
the composites, the char formation together with the strong interaction resulted in the enhancement
of residues.



Polymers 2020, 12, 632 13 of 18

Polymers 2020, 12, x FOR PEER REVIEW 13 of 18 

 

3.5. Thermal Stability 

The TGA profiles of PLA, PLA/ESO, and PLA/SAL/ESO composites are displayed in Figure 10 
and Table 4. It is clearly observed that the thermal stability of the composites gradually deteriorated 
with increasing the ESO content from 0 to 6 wt%, according to the data of T5% and Tmax. PLA/ESO 
composites had a similar thermal behavior. Inevitably, it was found that the PLA/SAL/ESO 
composites showed poorer thermal stability than PLA and PLA/ESO, possibly resulting from the 
degradation of molecular chains, when the compatibility region between PLA, ESO, and SAL was 
poor [45]. With the addition of SAL, the residue of PLA/SAL/ESO composites was higher than those 
of PLA and PLA/ESO composites. However, different PLA/SAL/ESO composites displayed a similar 
trend, indicating that the amount of ESO played a weak role in the thermal stability of the materials. 
Concerning the char residues, the presence of SAL was responsible for the increase of the carbon-
based residues of materials, and SAL was a charring material only under pyrolytic conditions [46]. 
When the SAL existed in the composites, the char formation together with the strong interaction 
resulted in the enhancement of residues. 

  

Figure 10. TGA and DTG curves of PLA, PLA/ESO, and PLA/SAL/ESO composites. 

Table 4. TGA weight loss of PLA, PLA/ESO, and PLA/SAL/ESO composites. 

Entry T5% (°C) Tmax (°C) Residues at 500 °C (%) 

PLA 360.7 399.4 0 

PLA/ESO 358.1 395.4 0 

PLA/SAL/ESO1 337.4 395.1 3.3 

PLA/SAL/ESO2 342.3 394.2 2.9 

PLA/SAL/ESO3 338.6 393.6 3.3 

PLA/SAL/ESO4 334.3 393.1 3.1 

PLA/SAL/ESO5 345.9 393.8 2.3 

3.6. Mechanical Properties 

The mechanical properties were also analyzed, and the stress-strain curves are displayed in 
Figure 11. It was found that the corresponding Young´s modulus of PLA/SAL/ESO composites was 
higher than that of pure PLA and PLA/ESO composites, which was ascribed to the addition of SAL, 
endowing rigidity to PLA/ESO composites owing to its aromatic nature. It is worthwhile to mention 
that PLA/ESO composites had a higher Young´s modulus than pure PLA due to the interaction 
between PLA and ESO. As expected, it was found in the stress-strain curves that the Young´s 
modulus of PLA/SAL/ESO composites gradually decreased with increasing ESO concentration, 
When the addition of SAL was constant, ESO acted as a toughening agent to improve the mechanical 

100 200 300 400 500

0

20

40

60

80

100

 PLA
 PLA/ESO
 PLA/lignin/ESO1
 PLA/lignin/ESO2
 PLA/lignin/ESO3
 PLA/lignin/ESO4
 PLA/lignin/ESO5

W
ei

gh
t l

os
s (

%
)

Temperature (oC)

TGA

250 300 350 400 450 500

0

1

2

3

4
DGA

W
ei

gh
t l

os
s d

er
iv

at
iv

e 
(%

)

Temperature (oC)

 PLA
 PLA/ESO
 PLA/lignin/ESO1
 PLA/lignin/ESO2
 PLA/lignin/ESO3
 PLA/lignin/ESO4
 PLA/lignin/ESO5

Figure 10. TGA and DTG curves of PLA, PLA/ESO, and PLA/SAL/ESO composites.

Table 4. TGA weight loss of PLA, PLA/ESO, and PLA/SAL/ESO composites.

Entry T5% (◦C) Tmax (◦C) Residues at 500 ◦C (%)

PLA 360.7 399.4 0
PLA/ESO 358.1 395.4 0
PLA/SAL/ESO1 337.4 395.1 3.3
PLA/SAL/ESO2 342.3 394.2 2.9
PLA/SAL/ESO3 338.6 393.6 3.3
PLA/SAL/ESO4 334.3 393.1 3.1
PLA/SAL/ESO5 345.9 393.8 2.3

3.6. Mechanical Properties

The mechanical properties were also analyzed, and the stress-strain curves are displayed in
Figure 11. It was found that the corresponding Young’s modulus of PLA/SAL/ESO composites was
higher than that of pure PLA and PLA/ESO composites, which was ascribed to the addition of SAL,
endowing rigidity to PLA/ESO composites owing to its aromatic nature. It is worthwhile to mention
that PLA/ESO composites had a higher Young’s modulus than pure PLA due to the interaction between
PLA and ESO. As expected, it was found in the stress-strain curves that the Young’s modulus of
PLA/SAL/ESO composites gradually decreased with increasing ESO concentration, When the addition
of SAL was constant, ESO acted as a toughening agent to improve the mechanical properties of
PLA/SAL/ESO composites to overcome the intrinsic brittleness of PLA and SAL with increasing the
content of ESO [47]. It is pointed out that the yield point of PLA/SAL/ESO composites was found to
decline compared with pure PLA and PLA/ESO composites. In other words, the mechanical properties
of PLA/SAL/ESO composites were reduced with increasing the ESO loading due to the existence of
SAL particles, which prevented the formation of a long range continuous phase of PLA [48]. Table 5
shows that the tensile strength, flexural strength, and flexural modulus exhibited a trend of declining
with increasing the content of ESO. However, the elongation at break and notched impact strength
increased gradually with the augmentation of ESO. It is seen from Figure 11 that the elongation at
break of PLA/lignin/ESO composites was lower than those of PLA/SAL/ESO composites, which was
attributed to the poor compatibility between PLA and lignin in the presence of ESO. Overall, SAL
played a great role on the SAL particles dispersing in PLA with the addition of ESO.
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Figure 11. Tensile stress-strain curves of pure PLA, PLA/ESO, and PLA/SAL/ESO composites.

Table 5. Mechanical properties of PLA, PLA/ESO, and PLA/SAL/ESO composites.

Entry
Tensile

Strength
(MPa)

Elongation at
Break (%)

Flexural
Strength

(MPa)

Flexural
Modulus (MPa)

Notched Impact
Strength (kJ/m2)

PLA 72.5 ± 1.2 6 ± 0.5 102.3 ± 2.3 3123 ± 80 3.5 ± 0.2
PLA/SAL/ESO1 54.5 ± 0.5 5 ± 0.6 90.8 ± 2.0 3171 ± 75 3.6 ± 0.3
PLA/SAL/ESO2 53.5 ± 0.8 8 ± 0.6 77.1 ± 1.9 3022 ± 56 4.1 ± 0.2
PLA/SAL/ESO3 51.2 ± 0.5 13 ± 1.0 68.9 ± 1.8 2848 ± 83 4.3 ± 0.1
PLA/SAL/ESO4 47.8 ± 0.6 15 ± 1.3 60.5 ± 2.3 2803 ± 79 4.8 ± 0.2
PLA/SAL/ESO5 47.1 ± 0.5 17 ± 1.8 53.9 ± 2.1 2720 ± 72 4.3 ± 0.3

PLA/ESO 60.4 ± 1.3 9 ± 0.9 78.1 ± 2.4 2990 ± 58 4.1 ± 0.2
PLA/lignin/ESO 45.9 ± 0.5 5 ± 0.5 58.8 ± 1.3 2793 ± 49 4.0 ± 0.1

SEM is essential in probing particle size and interfacial interaction. The micrographs of pure PLA,
PLA/ESO, and PLA/SAL/ESO composites are shown in Figure 12. Some particles and cracks were
uniformly dispersed on the surface of PLA [49], leading to a weaker molecular interaction. Figure 12a,g
reveals that the addition of ESO improved the dispersion of PLA and interfacial interaction with PLA,
indicating that ESO had a positive impact on the miscibility of PLA. However, higher ESO loading gave
rise to wire drawing of the surface in PLA/ESO composites. It is seen that PLA/lignin/ESO composites
showed a clear interface with some holes and fiber pulling, which illustrated the weaker interfacial
adhesion between lignin and PLA owing to the addition of unmodified lignin in Figure 12h. When
it came to the excessive addition of SAL to PLA/ESO composites, it was found that PLA/SAL/ESO
composites exhibited better interfacial morphology with increasing the ESO content at constant SAL
loading. Compared with pure PLA, the composites had a smaller particle size and smoother surface,
as shown in Figure 12b–d. The reason was attributed to the reactive compatibilization between the
carboxyl (-COOH) of SAL and epoxy groups of ESO, which improved the properties of PLA/SAL/ESO
composites by dynamic vulcanization. At a 4% ESO volume, PLA/SAL/ESO composites showed
a relatively homogeneous morphology with a much smoother surface, demonstrating a superior
interfacial interaction. When the ESO loading was higher than 4%, unreacted ESO was regarded as a
reinforcing agent to improve the interface interaction and miscibility of PLA/SAL/ESO composites
owing to the formation of a smaller cavity from the SAL particles [50]. Although some holes were
observed, they played a supporting role for the mechanical properties of composites to relieve the
deformation of the materials.
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(d) PLA/SAL/ESO3; (e) PLA/SAL/ESO4; (f) PLA/SAL/ESO5; (g) PLA/ESO; (h) PLA/lignin/ESO.

4. Conclusions

Fully sustainable PLA/SAL/ESO composites were fabricated by dynamic vulcanization of
PLA/SAL/ESO precursors. The morphology and properties of the PLA/SAL/ESO composites were
dependent on the interfacial interaction and miscibility of SAL determined by ESO. The phase
morphology changed from phase-separation for pure PLA behaving relatively homogeneously for
PLA/SAL/ESO3 (PLA: SAL: ESO3=0.91: 0.05: 0.04, wt%). The compatibility was enhanced and the
dispersed particle size on SAL and ESO declined with increasing the content of ESO. At a high
concentration of ESO, the formation of smaller holes resulted in a rougher interface of the phase, but
the cavity played a supporting role for the materials by relieving the effect of stress. Obviously, there
was no doubt that the rigidity of PLA/SAL/ESO composite gradually declined due to the addition of
flexible molecular chains. The PLA/SAL/ESO composites was susceptible to the movement of flexible
molecular chains and the weaker interfacial interaction with increasing the content of ESO, which was
ascribed to the high concentration of ESO, which was considered as a reinforcing agent.
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