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Abstract: Understanding and modeling the viscoelastic behavior of polymers and polymer-based
materials for a wide range of quasistatic and high strain rates is of great interest for applications in
which they are subjected to mechanical loads over a long time of operation, such as the self-weight
or other static loads. The creep compliance and relaxation functions used in the characterization of
the mechanical response of linear viscoelastic solids are traditionally determined by conducting two
separate experiments—creep tests and relaxation tests. This paper first reviews the steps involved in
conducting the interconversion between creep compliance and relaxation modulus in the time domain,
illustrating that the relaxation modulus can be obtained from the creep compliance. This enables the
determination of the relaxation modulus from the results of creep tests, which can be easily performed
in pneumatic equipment or simple compression devices and are less costly than direct relaxation tests.
Some existing methods of interconversion between the creep compliance and the relaxation modulus
for linear viscoelastic materials are also presented. Then, a new approximate interconversion scheme
is introduced using a convenient Laplace transform and an approximated Gamma function to convert
the measured creep compliance to the relaxation modulus. To demonstrate the accuracy of the fittings
obtained with the method proposed, as well as its ease of implementation and general applicability,
different experimental data from the literature are used.

Keywords: viscoelasticity; creep and relaxation; interconversion; stages of creep; mechanical analysis;
mechanical characterization; structure–property relationships

1. Introduction

The linear viscoelastic functions that describe the creep and relaxation behavior of polymers and
polymer-based materials are mathematically equivalent, and each function contains essentially the same
information on the creep and relaxation properties of those materials. Through an appropriate mathematical
operation, a linear viscoelastic material function can be converted into another material function.

Polymers and polymer-based materials are extensively used as structural materials in the
aerospace and automotive industries, civil engineering [1], and biomechanics. Due to this, a variety
of methods applicable to the interconversion of static (creep) and dynamic (relaxation) functions
(concerning appropriate experimental data of various polymeric and composite materials) have been
investigated over the last few decades to provide a better characterization of those materials [2].

Despite the conceptual simplicity of the viscoelastic properties of polymeric materials, there are
operational difficulties in obtaining them from experiments. In this context, interconversion procedures
are especially useful due to the difficulty in running constant-strain relaxation tests on stiff materials and
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the fact that constant-stress creep tests are much easier to carry out [3]; in many cases, constant-stress
creep tests can be performed with a simple deadweight system. Concerning relaxation modulus tests,
the difficulty involved in the sudden application of a constant strain level was highlighted by Kim [4].
Moreover, it is necessary to adjust the load level during the test to guarantee that the strain is kept
constant. Therefore, a method of interconversion becomes an important tool as it allows for more
efficient utilization of resources in a rheology laboratory.

In the context of temperature and frequency dependence studies, the interconversion procedure
can also be an important tool to help predict the behavior of polymer-based materials [5].

Different methods have been proposed to solve the interconversion expression of linear
viscoelasticity. In this context, reference is made to an extensive theoretical treatment of the subject
given in [6,7]. Other studies, such as [8–10], have focused on numerical approaches using Prony series
or power laws to characterize the creep and relaxation moduli of polymeric materials.

When studying the mechanical behavior of viscoelastic materials, it is usually assumed that
the strains and the stresses are deterministic functions. However, Wang et al. [11] highlighted the
importance of considering the uncertainty in the propagation of the frequency response for the robust
design of viscoelastic damping structures. According to De Lima et al. [12], among the various methods
devised for uncertainty modeling, the stochastic finite element method has received major attention,
as it is well adapted for application to complex engineering systems. Despite their potential importance,
the experimental quantification of uncertainties and the corresponding stochastic modeling are not
addressed in the present study.

In the first part of this paper, a general theoretical background of the viscoelastic behavior of
polymeric composites is provided, and a brief review of interconversion methods is presented and
discussed. In the second part, based on the works of Crevecoeur [13,14] and the study conducted in [15],
this paper proposes a new interconversion procedure, which involves the combination of Laplace
transform theory with an approximated Gamma function to convert the measured creep compliance to
the relaxation modulus. The main goal of this paper is to demonstrate (i) the mathematical procedure
to interconversion from creep to relaxation functions and (ii) the good fitting for creep and relaxation
data provided by the proposed methodology.

2. Theoretical Background

2.1. Constitutive Relations

The creep and relaxation properties of polymeric and polymer-based materials allow for prediction
of their response when subjected to a step function of stress or strain as a function of time. To predict
the response of a material to any history of stress or strain as a function of time, the constitutive
integrals of linear viscoelasticity must be used. The creep function is defined as a strain variation as a
function of time under constant stress. In the linear range, the Boltzmann superposition principle is
valid and expressed as

ε(t) =
∫ t

0
D(t− τ)

∂σ(τ)

∂τ
dτ (1)

where ε(t) is the strain, t is the time, σ is the stress, and D is the creep compliance function.
If the roles of stress and strain are interchanged and the above arguments are repeated, a

complementary relationship is obtained:

σ(t) =
∫ t

0
E(t− τ)

∂ε(τ)

∂τ
dτ (2a)

where E is the relaxation modulus function.
Thus, if the response of a material to a step function of stress or strain has been determined

experimentally, the response to any load history can be found for analysis or design.
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It must be noted that the relaxation and creep functions are not arbitrary functions, and the
restrictions on the form of these functions have been derived based on physical principles [16].

2.2. The Relation between Creep and Relaxation in the Time Domain

A simple relationship between the creep function D(t) and the relaxation function E(t) is
convenient to simplify the viscoelastic material characterization. Both functions appear in the Boltzmann
superposition integrals (1) and (2), described above.

The two integral expressions may be manipulated with the aid of integral transforms, such as the
Laplace transform

f (s) =
∫
∞

0
f (t)e−stdt, t > 0 (2b)

where s is the transform variable, e−st is the transformed kernel function, and f is the rational function
of s.

By integration of (1) and (2) and using the convolution theorem, the following relations are obtained:

σ̃(s) = sE(s)ε(s) (3)

ε̃(s) = sD(s)σ(s) (4)

where σ is the stress operator in the Laplace domain, ε is the strain operator in the Laplace domain,
and E and D are the rational functions of s.

By appropriate mathematical operations, (3) and (4) are manipulated, yielding

E(s)D(s) =
1
s2 (5)

The relation (5) between the Laplace-transformed relaxation and creep functions is useful in
directly evaluating one transformed function when the other function is known at a particular value of
the transform parameter [3].

Applying the inverse of the Laplace transform to (5) and using the convolution theorem and the
Laplace operator relation f (t) = 1/s2 yields∫ t

0
E(t− τ)D(τ)dτ = t (6)

or ∫ t

0
D(t− τ)E(τ)dτ = t (7)

Further, differentiating (6) and setting the time to zero (t = 0), the initial condition between D(t)
and E(t) yields

D(0)E(0) = 1 (8)

The convolution integrals relating the creep compliance and the relaxation modulus (Expressions (6)
and (7)) are the Volterra expressions of the first kind.

3. Interconversion Methods: A Brief Review

Several approximate methods of interconversion between transient relaxation and creep functions
are available in the literature. Most of them are based on power laws or exponential functions. In this
section, some of these methods are presented and discussed.
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3.1. Power-Law-Based Interrelationship by Leaderman (1958)

For many linear viscoelastic materials, the relaxation modulus and the creep compliance function
are approximately represented by simple power laws over their transition zones. The simplest form of
a power law is the pure power-law (PPL), which is described by the following time loading description
for the relaxation modulus [17]:

E(t) = E1t−n (9)

and the following time loading description for the creep compliance:

D(t) = D1tn (10)

where E1, D1, and n are material constants.
From (9) and (10), by Laplace transform operations, the following relation occurs:

E(t)D(t) =
sin(nπ)

nπ
(11)

The main advantage of the power-law-based approach is its simplicity. As is well known,
the power-law functions are graphically represented by straight lines on log–log scales, and the
exponent n is identified as the material regression coefficient representing the creep or relaxation rate.

3.2. Log–Log Slope-Based Interrelationship by Park and Kim (1999)

Park and Kim [5] introduced an approximate interconversion method that uses the local log–log
slope of the source function and is based on the concept of equivalent time determined by rescaling
the physical time. The rescaling factor, α, which can be interpreted as a shift factor on a logarithmic
time axis, is defined as the local slope of the source function on log–log scales.

From (9) and (10), one may obtain the following expressions relating D(t) and E(t) :

D(t) =
1

E(αt)
(12)

E(t) =
1

D
( t
α

) (13)

The rescaling factor, α, is then given by

α =

(
sin(nπ)

nπ

) 1
n

(14)

This method produces good results when the source functions are characterized by broadband
and smooth behavior on doubly logarithmic scales [3].

3.3. Exponential-Based Interrelationship by Schapery and Park (1999)

The use of the Dirichlet series, also known as the Prony series, is a popular method to represent
the relaxation function, mainly due to its ability to describe a wide range of viscoelastic responses,
associated with the relative simplicity of its exponential basis functions and rugged computational
efficiency. In the Dirichlet model approach, the generalized Maxwell model is used as an analogy to
represent the creep and relaxation functions.

The generalized Maxwell model (or Wiechert model) consists of a spring and n Maxwell elements
connected in parallel. The relaxation modulus derived from this model is given by
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E(t) = E0 +
m∑

i=1

Eie−(t/τi) (15)

where E0 is the equilibrium modulus, Ei is the relaxation strength, and τi is the delay time.
The analytical description of the creep compliance function of the generalized Maxwell model is

expressed by the sum of exponential terms

D(t) = D0 +
m∑

i=1

Di
[
1− e−(t/τi)

]
(16)

where D0 is the glassy compliance and Di is the retardation strength.
In this scheme, because both the source and the target functions are represented in the Prony series,

the complete target function can be determined by solving a system of linear algebraic expressions
given by [3]

[A]{E} = [B] (17)

where

[A] =

p∑
k=1

m∑
i=1

D1
(
e− tk/ρi − 1

)
+

n∑
j=1

D jτ j

ρi − τ j

(
e− tk/ρi − e− tk/τ j

) (18)

and

[B] = 1−
p∑

k=1

E1

D1 +
n∑

j=1

D j
(
1− e− tk/τ j

) (19)

The main inconvenience of the Dirichlet series adjustment is the potential problem of numerical
instability resulting from the generation of negative dependent terms.

4. The Convolution Theorem

It is well known that the convolution theorem can be used to solve integrals and integral–differential
expressions. The basic mathematical definition of convolution is the integral over all space of one
function at x multiplied by another function at u-x, concerning to x, where x can represent anything,
including time, frequency, or even a three-dimensional space, depending on the application [18].

“The convolution theorem for s-transforms states that for any (real or) complex causal signals x and y,
the convolution in the time domain is equivalent to a multiplication in the s domain.”

Given the functions of time t, f (t) and g(t), the convolution (*) of f (t) and g(t) is a function of t
defined by

( f ∗ g)(t) =

∞∫
−∞

f (t− τ)g(τ)dτ (20)

Applying the s-Laplace transform to the second member of (20) and changing the order of the
integrals yields

f
{
( f ∗ g)(t)

}
=

∞∫
0

t∫
0

f (t− τ)g(τ)e−stdτdt (21)

Finally, changing variables in the inner integral (substituting υ = t − τ, dν = dt (τ a constant))
(21) yields

f
{
( f ∗ g)(t)

}
= F(s)G(s) (22)
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5. Exponential-Power-Law (EPL) Interconversion

It has been shown in [19] that the creep curve of polymers and polymer-based materials can be
well described by the following expression:

ε(t) = k·tβ·e
t
ti (23)

where ε(t) is the calculated strain, β is a constant related to strain hardening (β < 1 and α� β), k is a
constant related to the main stress influence, and ti is the instability time.

Indeed, the advantages of (21) in providing a good fitting to a creep curve are summarized
as follows: (i) it is a very simple approximation, as only three parameters have to be determined to
fit the given creep data (k, ti, and β); (ii) it provides a good quality of extrapolations because it does
not involve addition or subtraction operations; (iii) it combines the three stages of creep; and (iv) it is
generally applicable.

As previously shown by the authors [15], the main advantage of using the exponential-power-law
(EPL) method as given by expression (21) is its ability to cover the full path of the creep behavior and
its capacity to estimate the respective transition points between stages.

Conversion between the creep compliance, fitted with (21), and the relaxation modulus may be
required to estimate the fatigue resistance of composite structures; to that end, the relaxation behavior
and the corresponding transition points should be known.

Laplace Transform of EPL

Using the Laplace transform properties summarized in Table 1, each term of the EPL expression
(21) can be transformed as

f
{
e

t
ti

}
=

1

s− 1
ti

(24)

f
{
tβ
}
=

β!

sβ+1
(25)

Table 1. Laplace transform properties.

f(t) ^
f(t)

eαt 1
s− α

tn, n > −1 n!
sn+1

After mathematical manipulations, the EPL expression (21), in L domain, is transformed into

ε(s) = k·
β!

sβ+2 + tisβ+1
(26)

From (22), the creep compliance can be written as

D(s) = D0·
β!

sβ+2 + tisβ+1
(27)

where D0 is the compliance in the glassy state, given by D0 = k/σ.
From the relationship given by (5), the relaxation modulus is defined in the Laplace domain as

E(s) = D0
−1
·
sβ+2 + tisβ+1

s2β!
(28)
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After necessary simplifications, it follows that

E(s) =
σ
k
·
sβ + tisβ−1

β!
(29)

Applying the inverse of the Laplace transform to (29), one finds

E(t) =
σ

k tβ

[
t−1

βΓ(β)Γ(−β)
−

ti

βΓ(β)Γ(1− β)

]
(30)

Here, the operator Γ is the Euler Gamma function.
The first definition of the Γ-function resulted from the idea of extending the positive integer

factorial n! = n(n− 1)(n− 2) . . . to real numbers [20].
The Γ-function is an extension of the factorial function with an argument shifted by one, to real

numbers and the complex numbers, as follows:

Γ(z) = (z− 1)! =

∞∫
0

tz−1e−tdt, <(z) > 0 (31)

The Γ-function defined above can be integrated by parts to show the recurrence or functional
relation, yielding

z! = Γ(z + 1) = zΓ(z) (32)

The Γ-function does not have a closed-form solution and needs to be approximated.
The Stirling approximation is the most well-known and cited approximation of the Γ-function [20]

and is defined as
z! = Γ(z + 1) ∼

(z
e

)z
·(2πz)

1
2 (33)

Here, the signal “∼” means that the two quantities are asymptotic, i.e., their ratio tends to one as z
tends to infinity. Despite its effectiveness, the Stirling formula is not the most accurate, especially for
values in the range 0 < z < 1.

Burnside’s asymptotic formula for factorial z provides a more efficient estimation of the Γ-function
compared to (28). Furthermore, Gosper’s formula [21] provides a slightly more accurate estimation of
the Γ-function than Stirling’s formula.

An important property of the Γ-function is Euler’s reflection formula, where, for all non-integer z,
one finds

Γ(z)Γ(1− z) = −zΓ(−z)Γ(z) = (−z)!Γ(z) w
π

sinπz
(34)

As shown in [22], a Γ-function of negative values may be written as follows:

Γ(−z) =
Γ(−z + 1)
−z

=
Γ(1− z)
−z

(35)

Applying the numerical approximation discussed above, the relaxation modulus of the EPL creep
function given by (25) becomes

E(t) =
σ

k tβ
·
sin(πβ)
π

·

(
ti
β
+

1
t

)
(36)

Based on the creep test data provided in [23] for specimen T28-S15 (a glass-fiber-reinforced
polymer (GFRP) laminate tested in three-point bending), Figure 1 presents a graphical representation of
the time variation of the expression (25) and the approximation (31)—it can be seen that these functions
present a perfect match.
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6. Application

This section presents the application of the method described above to the creep and stress
relaxation tests presented by Garrido et al. [23], Sorvari et al. [24], and Hernández-Jiménez et al. [25].

6.1. Creep Compliance and Relaxation Modulus Fitted from Garrido et al. (2015)

6.1.1. Creep Compliance Fitting

The GFRP laminates used in [23] were manufactured by vacuum infusion, using E-glass
fiber rovings and mats embedded in orthophthalic polyester resin. The fiber layup followed an
[0/0/30/-30/90/0]S arrangement, resulting in a laminate with a nominal thickness of 7 mm, a nominal fiber
volume fraction of 45%, and a fiber weight of 9000 g/m2. The glass transition temperature of the material
was measured as Tg = 69.3 ◦C. Further mechanical properties can be found in the referenced paper.

The flexural creep behavior was measured and considered to be representative of the overall
bending creep behavior by providing a combination of the compressive and tensile creep responses of
the laminate. The creep experiments were carried out at 20, 24, and 28 ◦C, for stress levels corresponding
to 15%, 25%, and 35% of the laminate’s flexural strength, with test durations ranging between 1000
and 2200 h. The specimens were labeled as “Ti − S j”, i.e., specimens tested at temperature i and stress
level j.

As the main goal of this paper is to verify the fitting accuracy of the EPL expression and its
interconversion method, only data from the 28 ◦C experiment are used.

The first step is to fit the creep curve to three levels of stress. This procedure is necessary to quantify
the influence of stress on the material creep behavior. From the data spectra, the EPL expression
coefficients are fitted and shown in Table 2.

Table 2. EPL coefficients.

Specimen
Stress

k β
ti

(MPa) (h)

T28-S15 64.30 0.124 0.164 398,500
T28-S25 99.20 0.305 0.127 365,000
T28-S35 142.30 0.329 0.153 344,922

Figures 2–4 show the fitting of the full path of creep from the EPL expression to the three specimens
tested at 28 ◦C: T28-S15, T28-S25, and T28-S35.
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As described in [15], the points represented in these figures are as follows:

• t1ary is the transition point between transient and steady creep;
• t2ary is the inflection point of the creep curve;
• t3ary is the second transition point (flow time);
• ti is the instability time;
• tm is the maximum possible lifetime.
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Figure 4. T28-S35: (a) data fitting; (b) full path of creep and transition points.

Based on D0, the compliance in the glassy state is given by D0 = k/σ. Table 3 summarizes the
values of D0 and the parameters used to obtain the creep compliance for each stress level.

Table 3. Parameters to obtain the creep compliance by EPL expression.

Specimen
Stress D0

β
ti

(MPa) (1/MPa) (h)

T28-S15 64.30 0.00193 0.164 398,500
T28-S25 99.20 0.00307 0.127 365,000
T28-S35 142.30 0.00231 0.153 344,922

6.1.2. Relaxation Modulus Prediction

Since the creep tests were conducted under constant stress, the relaxation modulus can be
expressed in terms of the EPL constants using the EPL relaxation expression (31), leading to the
parameters summarized in Table 4.

Table 4. Parameters to obtain the creep compliance by EPL expression.

Specimen
Stress E0

β
ti

(MPa) (MPa) (h)

T28-S15 64.30 518.55 0.164 398,500
T28-S25 99.20 325.25 0.127 365,000
T28-S35 142.30 432.52 0.153 344,922

Figure 5 shows the full path of the creep compliance and the relaxation modulus by EPL expressions.
As shown in Figure 5, both the creep compliance and the relaxation modulus present stress

dependence. According to [26], this dependence becomes more critical as the temperature approaches
the glass transition temperature.

As reported above, the creep compliance and the relaxation modulus are not each other´s reciprocals
but they are instead related. Figure 6 shows the relationship between these viscoelastic properties.
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6.2. Relaxation Modulus Fitted from Sorvari et al. (2006)

Sorvari et al. [24] presented numerical procedures to evaluate the creep compliance from relaxation
tests with nonideal loading and noise in simulated experimental data. From several ramp tests,
the relaxation modulus was determined under the step strain assumption. The interconversion
methods were numerically tested using synthetic data. The following procedure was applied to
simulate the determination of creep conformity from the relaxation modulus: (i) the virtual relaxation
test was made, from which the stress was determined; (ii) the relaxation modulus was computed;
and (iii) the creep compliance was determined from a convenient method (for more details, see [24]).
According to the authors, the procedure described above was carried out in different simulation cases
with varying material parameters and noise.
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The relaxation modulus was chosen to be

G(t) = G0 + G1e−t/λ (37)

where G0 is the initial shear modulus, G1 is the constant shear modulus, and λ is the relaxation time.
From the given simulation, the coefficients of (32) were G0 = 0.4 MPa, G1 = 0.5 MPa, and λ = 1

to 100 s. In this paper, the relaxation modulus for λ = 2 s and λ = 4 s is fitted. The average relative
error was 1.53% for λ = 2 s and 1.78% for λ = 4 s. In both cases, the r-Pearson coefficient was higher
than 0.95.

The relaxation modulus is expressed in terms of the EPL constants using the EPL relaxation
expression (31), leading to the parameters summarized in Table 5.

Table 5. Parameters of the relaxation modulus by EPL expression.

Relaxation Time-λ
k β

ti

[s] [s]

2 7 0.980 100
4 5 0.982 97

Figures 7 and 8 show the full path of the relaxation modulus obtained from the EPL expressions.
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6.3. Relaxation Modulus Fitted from Hernández-Jiménez et al. (2002)

Hernández-Jiménez et al. [25] presented a study of stress relaxation in samples of methylmethacrylate
(PMMA) and polytetrafluorethylene (PTFE) polymers; in this study, it was pointed out that there is not
only one time of relaxation as predicted by the classic Maxwell model, but rather two distributions of
relaxation time.

Two different types of commercial-grade polymer samples from Dupont were used. Standard test
samples of dimensions 100 mm × 25 mm × 3 mm for PTFE and 100 mm × 25 mm × 4 mm for PMMA
were used and deformed under tension at a crosshead speed of 3 mm/min. In the stress relaxation
test, when the deformation was 5%, the testing machine crosshead was stopped and kept in a constant
position, and the values of the applied load, F(t), were registered over time. From F(t), the respective
stress, σ(t), was obtained by dividing it by the normal cross-section of the sample. Finally, the time
relaxation modulus function was obtained by dividing the calculated stress by the constant strain of
the sample, ε0 = 0.05.

The relaxation modulus is expressed in terms of the EPL constants using the EPL relaxation
expression (31), leading to the parameters summarized in Table 6.

Table 6. Parameters of the relaxation modulus by EPL expression.

k β ti

(s)

0.0515 0.045 6600

Figure 9 shows the relaxation modulus fitted by the EPL expressions. The average relative error
was 1.85%, and the r-Pearson coefficient was 0.95.
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7. Accuracy and Validation

To perform an accuracy test and further validate the EPL fitting and its interconversion, sampled
points from the relaxation curves identified in [27] were used, corresponding to cylindrical asphalt
mixture specimens at three aging conditions (three replicates for each experimental combination).
Direct tension relaxation modulus tests were conducted at 21 ◦C using the trapezoidal loading pattern
at a low level of strain.

The standard sigmoid (SS) and generalized logistic sigmoid (GLS) fitting expressions are

E(t) = 18.99 +
623.61

1 + e2.53+1.017 (log t)
(38)
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E(t) = 21, 32 +
649.63[

1 + 0.67e2.02+0.83 (log t)
]1.50

(39)

It must be noted that these functions may not provide exact representations of experimental
data. However, for a given set of constants, they are exact and thus provide a means for checking the
accuracy of the approximate interrelationships deduced in this paper, which is evidenced by the good
matching between the experimental and fitting curves.

Figure 10 shows the evaluation of the relaxation modulus fitted by the approximation given by the
EPL model to the data expressed by the SS and GLS expressions. The EPL coefficients are summarized
in Table 7.

The results illustrated in Figure 10 show a close match between Sigmoid and EPL models, meaning
that the proposed model yields a high predictive accuracy. Furthermore, the EPL models show their
ability and easiness to fit and simulate the creep and relaxation behavior of polymeric materials.Polymers 2020, 12, x FOR PEER REVIEW 16 of 18 
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Table 7. Parameters to obtain relaxation modulus by EPL expression.

Method k β
ti

[h]

SS 0.910 0.140 3.70 × 102

GLS 12.500 0.495 8.70 × 102
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8. Conclusions

This paper first presented a brief review of some methods of interconversion between linear
viscoelastic properties of polymeric composites in the time domain. Their theoretical background
was presented, and the relation between creep and relaxation and the constitutive integrals of linear
viscoelasticity was summarized. It was shown that most of the classical methods of interconversion
are based on the power-law and exponential methods of fitting. Despite their ease of application,
these methods are not efficient in representing the full-path curve of the creep behavior of polymers
and polymer composites, namely their three creep stages.

In the second part of the paper, a new approximate interconversion scheme that uses a convenient
Laplace transform and an approximated Gamma function to convert the measured creep compliance to a
relaxation modulus was presented. Data available in the literature were used to assess the consistency of
the viscoelastic functions via the new interconversions presented in this work. The exponential-power-law
(EPL) method of creep fitting (based on [13,14] and described in [15]) was converted to the EPL relaxation
modulus expression, and the creep data provided in [23] were successfully fitted. To validate the EPL
interconversion, the relaxation models identified in [27] were used as a reference. The results obtained
show that the EPL fitting method proposed herein is very simple to implement and quick to apply,
due to the small number of coefficients that need to be determined. In addition, the method is stable
and accurate, as attested by the achieved Pearson correlation coefficient, greater than 0.97 for all test
data considered.
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