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Abstract: Directed self-assembly of block copolymers is a bottom-up approach to nanofabrication
that has attracted high interest in recent years due to its inherent simplicity, high throughput, low cost
and potential for sub-10 nm resolution. In this paper, we review the main principles of directed
self-assembly of block copolymers and give a brief overview of some of the most extended applications.
We present a novel fabrication route based on the introduction of directed self-assembly of block
copolymers as a patterning option for the fabrication of nanoelectromechanical systems. As a proof
of concept, we demonstrate the fabrication of suspended silicon membranes clamped by dense arrays
of single-crystal silicon nanowires of sub-10 nm diameter. Resulting devices can be further developed
for building up high-sensitive mass sensors based on nanomechanical resonators.

Keywords: block copolymers; directed self-assembly; graphoepitaxy; nanolithography;
nanomechanical devices; nanowires

1. Introduction

In standard micro/nanofabrication, structures and devices are created by depositing a variety of
thin films, followed by pattern definition by lithography and etching to remove undesired regions
of material. Decades of development in each of these three main steps have generated technological
advances that have enabled a relentless miniaturization of microelectronics devices, keeping Moore’s
Law and the race towards shrinkage alive [1,2].

The driving force of this steady reduction in feature size has been the evolution of lithography,
as improvements in optical lithography have provided sufficient resolution to reach the 10 nm
semiconductor node by means of deep ultraviolet (DUV) immersion lithography [3–6]. However,
for further scaling, light diffraction limitations have led to the exploration of new lithographic
solutions [7], which include extreme ultraviolet lithography (EUV) [8], nanoimprint lithography [9],
multi-beam electron-beam lithography [10] and directed self-assembly (DSA) of block copolymers
(BCPs) [11].

As of today, EUV has taken over the main spot for advanced lithography at the industry level and
has already been introduced in production lines of nanoelectronic devices. As EUV and its combination
with multiple patterning presents exponentially increased costs due to its extreme complexity, research
in other less conventional lithographic techniques still remains of great interest.

It is in this scenario where DSA is considered as an attractive alternative for the fabrication of
nanoscale structures, thanks to its high resolution, low cost, ease of integration and scalability [12–14].
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Being an affordable high-resolution method with the possibility of scaling up, it has drawn a lot of
attention in industrial semiconductor processing since the late 1990s [15–17], long before the commercial
availability of EUV [18–20]. However, the present main limitation for its further incorporation into
high-volume manufacturing is its capability to meet industry defect density standards [21,22].

DSA is based on the ability of BCPs to phase separate spontaneously. BCPs are macromolecules
consisting of covalently bonded homogeneous blocks (or chains) of chemically different monomers.
Due to the dis-affinity and repulsion forces between these blocks, and in order to present minimal
free energy, BCPs segregate into microdomains after a thermally-driven phase separation process.
They generate self-assembled patterns within the nano/microscale [23], which facilitates their use
in high-resolution nanopatterning [24]. After self-assembly, one of the blocks is removed and the
remaining polymer is used as mask to pattern the substrate underneath [25]. Furthermore, DSA has been
incorporated into conventional 300-mm pilot lines with existing tracks for logic applications [26–28],
and also in a variety of other applications, such as non-volatile memory, sensors, photovoltaics,
solar cells, graphene patterning or liquid separation membranes [29–31].

2. Principles of the DSA of Block Copolymers

2.1. Phase Segregation in Diblock Copolymers

The simplest BCPs are linear A-b-B diblock copolymers, where A and B are two different polymeric
blocks, joined together by a covalent bond. Three parameters determine the period, morphology and
phase behavior: the total number of monomers forming the BCP (degree of chain polymerization, N),
the relative volume fraction of each block (f) and the Flory-Huggins interaction parameter (χ) [23,32].
This parameter is inversely proportional to temperature [33], depends on BCP chemistry and gives an
idea of how strong the repulsive force between the blocks is.

The microphase segregation strength of BCPs is usually expressed by the product χN [34] and,
in order to observe an ordered state, it needs to be above the critical lower limit of χN = 10.5 [35].
For values below that, clear phase segregation does not occur. Therefore, to obtain structures with small
period from BCPs with low N, high immiscibility between blocks is desired [36]. Finally, for a certain
χN, polymer self-assembly will occur in different shapes depending on f. For instance, the microphase
separation of an A-b-B diblock copolymer can take place in geometries like closed-packed spheres,
hexagonally packed cylinders, body-centered spheres, gyroid or lamellae, depending on the relative
volume fraction of blocks A and B [37].

An example of a diblock copolymer is polystyrene-block-poly(methyl methacrylate), PS-b-PMMA,
formed by a chain of PS and a chain of PMMA covalently bonded. This BCP is amongst the most
studied for nanolithography applications, as both blocks are polymers with well-known etch properties,
easy to handle, present reasonable temperature ranges for annealing and similar affinity to air [38–40].
Extensive characterization of self-assembled PS-b-PMMA thin films has been carried out regarding
annealing conditions, kinetics, defectivity, line-edge roughness and nanomechanical properties of the
blocks [22,41–49].

2.2. Self-Assembly on Thin Films

When a diluted solution of BCP is spin-coated on a substrate in the form of a thin film and
self-assembly is induced, microphase separation takes place in short-range order, generating condensed
arrays of random periodic structures. In this situation, phase behavior is strongly influenced by surface
energetics [50], and domain orientation will arise determined by the relative strength of the surface
affinity to each block of the BCP. If the substrate shows higher affinity to one of the blocks, it will attract
the domains with lower interaction energy stronger than the others, in an effort to keep free energy
minimum at the polymer-substrate interface. This can cause the BCP to self-assemble in an undesired
morphology that might be useless for nanolithography applications, for example.
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To avoid this, the most straightforward way to control pattern orientation in the self-assembly
of a BCP thin film is to balance the surface free energy between domains by spin-coating a random
copolymer composed of the same monomer units as the block copolymer (PS-r-PMMA for PS-b-PMMA)
in between substrate and BCP [38,51] (Figure 1). This thin film is known as neutral layer or brush, and by
tweaking its composition the interface energy can be modified to favor the affinity of the substrate
to one block or the other. Then, by applying a certain temperature higher than the glass transition
temperature of both blocks or by placing the sample in a solvent atmosphere [52], homogeneous phase
separation can be achieved.

Figure 1. Schematic of the self-assembly of lamellar PS-b-PMMA. (a) If the substrate shows preferential
interaction with PS or PMMA, self-assembly in horizontal lamellae guarantees minimal free energy at
the interface; (b) a random copolymer brush (PS-r-PMMA) can be used to impel neutral affinity to the
substrate, coercing the generation of vertical PS and PMMA lamellae.

2.3. Enabling Lithography: DSA of BCPs

In order to be useful for lithographic purposes, BCPs must be someway guided into the desired
long-range order and morphology. To do so accurately, templates known as guiding patterns (GPs)
are used to direct the self-assembly, whilst BCP properties (molecular weight and composition) and
thermodynamics control the feature size, shape and uniformity of the resulting features. As the
density of GPs is generally lower than the pitch of the self-assembled microdomains, BCPs are a
valuable pattern multiplication method that is able to provide resolution enhancement to pre-patterned
templates [53,54].

GPs are normally fabricated by top-down techniques, following two different approaches:
chemoepitaxy and graphoepitaxy (Figure 2) [11,55,56]. Chemoepitaxy involves the creation of dense
chemical patterns on a neutral substrate to generate preferential wetting sites for one of the blocks [57].
Multiple processes and techniques have been successfully used to selectively tune the surface free energy
of a neutral surface, including photolithography [58], electron-beam lithography (EBL) and oxygen
plasma functionalization [59–63], direct EBL exposure [64] and scanning-probe lithography [65–67].

Graphoepitaxy, on the other hand, is based on the definition of 3D features on the substrate,
within DSA takes place [68–72]. These topographical templates can be physically tailored, and bottom
and walls along the trenches chemically modified to impose different affinity to each of the polymer
blocks, enforcing their orientation along the topography [73,74].
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Figure 2. Schematic of DSA by chemo- and graphoepitaxy. (a) In chemoepitaxy, areas of the substrate
are chemically activated to show stronger affinity to one of the blocks, directing the self-assembly;
(b) in graphoepitaxy, the substrate is topographically structured to direct the self-assembly.

2.4. Present Directions

The low value of χ in PS-b-PMMA limits minimum attainable resolution (to about 22 nm) [20,75].
Solutions to overcome this limitation come from chain modification of well-known BCPs [76,77],
the use of additives [78] or the pursuit of novel molecular architectures of high-χ BCPs, which combine
polymers that are strongly immiscible, giving access to sharper phase-separation at smaller natural
periods [79,80].

A wide variety of high-χ BCPs have been synthetized in the last few years, including organic
and inorganic species [36,81–85]. Examples include organic polystyrene-b-poly(2-vinyl pyridine)
(PS-b-P2VP) [86,87] or polystyrene-b-poly(propylene carbonate) (PS-b-PPC) [88], and inorganic
polystyrene-b-poly(trimethylsilylstyrene) (PS-b-PTMSS) [89] or polystyrene-b-polydimethylsiloxane
(PS-b-PDMS) [90], for instance.

The inclusion of inorganic blocks in BCPs is particularly interesting as they increase dis-affinity
and provide higher etch contrast during selective block removal and pattern transfer [81–83,91].
The implementation and processing of such BCPs is not easy, nonetheless. For example, the lower
surface energy of inorganic blocks can make it necessary to increase the number of etching steps
for the pattern transfer due to the presence of preferential wetting layers at both air/polymer and
substrate/polymer interfaces [92]. High-χ BCPs usually present low tolerance to high temperatures
and tend to organize differently on the substrate surface than at the air surface, commonly requiring
solvent annealing [93–95] or an overcoat of polymer to assure structures are standing up in the final
BCP film [84,96,97].

Additionally, recent research on DSA has also been greatly focused on the study, understanding
and mitigation of defects [98–107]. Minimization of defects is crucial for the incorporation of DSA into
high-volume manufacturing, either as a primary patterning option or in combination with already
established techniques like DUV or EUV.

3. Block Copolymers for the Fabrication of Functional Devices

Line-space pitch multiplication and contact via level patterning are the two pivotal applications of
DSA in high-volume manufacturing. In line-space applications lamellar BCPs have been used as mask
for the definition of arrays of silicon fins that constitute the central body of non-planar fin field-effect
transistors (FinFETs). Multiple works have demonstrated the capability of DSA to fabricate silicon
fins [108–113], with probably the two most well-known being the LiNe and IBM lift-off chemoepitaxial
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processes. In the LiNe process a cross-linked polymer mat is deposited on the substrate and then
patterned by photolithography to define the GPs. Afterwards, the interspatial regions where the base
polymer was removed after patterning are refilled with a neutral brush layer, followed by self-assembly
of the BCP [114–116]. On the other side, in the IBM lift-off process sacrificial features are created by
photolithography, followed by neutral layer deposition and lift-off, leaving both neutral brush and
substrate areas with preference to one of the two blocks, exposed [58,117].

Regarding graphoepitaxial approaches, the most common strategy is to use topographical GPs in
the shape of trenches, balancing the surface free energy between BCP domains and bottom of the trench,
while un-grafted GP walls show stronger affinity to one of the blocks [39,118–121]. As consequence,
when DSA is performed, domains are aligned perpendicularly to the bottom surface and parallel to
the walls. However, this methodology presents several drawbacks. First, defects might occur due to
local variation of affinity in areas of the sidewall. Second, high-resolution lithography is required for
the fabrication of the GPs, as only few lamellae are normally possible to align parallel to the GP walls
with low defectivity. Finally, great control in the deposition of the brush layer is needed to only graft it
on the bottom of the trench and not on the sidewalls.

In contact via level patterning cylindrical or lamellar BCPs can be integrated directly into
conventional CMOS lithography to generate contact-hole shrinking, contact multiplication or contact
uniformity enhancement [122,123]. Firstly, GPs are pre-patterned using optical lithography (or EBL),
followed by dry etching for their structuring. Afterwards, the surface of the cavity that serves as GP
is tuned to be attractive to PMMA. Then, the BCP is spin-coated filling the GP and self-assembly is
carried out by thermal annealing. Finally, PMMA is etched away, and the remaining PS is used as
mask for pattern transfer of shrunk uniform holes [124,125].

The fabrication of silicon vertical structures in the form of nano-sized pillars is another promising
target of DSA processes in nanoelectronics. Pillar fabrication has been demonstrated by combination of
DSA with tone-inversion [126,127], by sequential infiltration synthesis in BCPs [128,129], and directly
by pattern transfer of the BCP template [130]. As we approach the most extreme semiconductor
nodes in terms of scaling, alternative architectures and devices such as vertical gate-all-around
field-effect transistors (GAA FETs) or single-electron transistors (SETs) are entering into discussion [131],
which could be potentially fabricated by DSA.

Furthermore, besides DSA for logic, research efforts in BCP technology have lately centered their
attention on other emerging areas that were looking for large area nanostructuring techniques. Many of
these fields are low demanding regarding BCP defectivity levels and, in many cases, self-assembly does
not require to be directed, but rather take place on a free surface without guidance. Applications include,
but are not restricted to, hard-disk drive and magnetic storage devices [126,132–135], nanophotonics
and plasmonics materials [136–138], or chemical sensors [139]. Most often, BCPs are still used as
templates for patterning, as in the case of graphene structuring [140–143], the fabrication of nanoporous
membranes [144–148] or energy storage, photovoltaics and batteries [149–152]. In other applications,
however, BCPs can present a more active role and can be used as stabilizing agent, for surface
functionalization [153–156] or to aid in nanoparticle self-assembly [157].

4. DSA of BCPs for the Fabrication of Nanoelectromechanical Devices

Nanoelectromechanical systems (NEMS) are interesting building blocks for the realization of
sensors as the properties conferred by their extremely reduced dimensions, large surface area-to-volume
ratios and minimal masses allow obtaining ultrahigh sensitivity [158]. In particular, nanowires and
membranes are functional structures to fabricate nanomechanical resonators. Being very small, they are
easy to control electrostatically and show large resonant frequencies which, for instance, make them
ideal for the fabrication of high-resolution mass sensors [159,160], where the shift in resonant frequency
is an indication of a change in mass [161–164]. A wide spectrum of materials and techniques has
been studied for their fabrication, including traditional micro/nanoelectronics top-down techniques
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and bottom-up nanofabrication approaches using atoms or molecules as aggregated blocks [165].
However little to no results can be found on the exploration of DSA of BCPs for the definition of NEMS.

Here we present a DSA process based on the graphoepitaxy of lamellar PS-b-PMMA, which enables
the fabrication of ultra-thin silicon membranes suspended by high-density arrays of silicon nanowires
(SiNWs) (Figure 3). Each step of the fabrication process is compatible with standard CMOS technology
and can be scalable to high-volume manufacturing.

Figure 3. Main steps of the process flow developed for the fabrication of suspended SiNWs and
membranes. (a) Silicon oxide GPs are created by EBL; (b) graphoepitaxy of PS-b-PMMA is performed
in such a way that lamellae become perpendicular to walls and bottom of the trenches; (c) PMMA is
selectively removed by dry etching; (d) remaining PS and SiO2 are used as mask to define SiNWs and
silicon membranes, respectively; (e) structures are released from the BOX.

Nanowires obtained through this process display sub-10 nm diameters. Such small dimensions
and reduced mass shoot their resonant frequencies up to values where their characterization as
resonators themselves would not be trivial. To soften these conditions, devices were devised as a
combination of arrays of sub-10 nm SiNWs and larger silicon membranes. The addition of these bigger
structures as part of the final design reduces the resonant frequency of the system by increasing the
total mass [166,167].

Firstly, SiO2 structures are created on top of a silicon-on-insulator (SOI) substrate by EBL,
generating walls and trenches that will aid as GPs for graphoepitaxy. In addition, these structures
not only serve as GPs for DSA, but also as mask to define the membranes. Then, graphoepitaxy of
lamellar PS-b-PMMA is performed after previously grafting a neutral layer all over the GP surfaces.
After selectively removing PMMA, PS and SiO2 are directly transferred onto the device layer of the SOI
substrate by dry etching, creating the SiNWs and the silicon membranes. Finally, devices are released
and suspended by attacking the buried oxide (BOX) in hydrofluoric acid.

4.1. Creation of Oxide GPs by EBL

As DSA was going to be carried out by graphoepitaxy, topographical GPs were created on top
of the substrate to control and lead the BCP to self-assemble in the desired direction and orientation.
We decided to define GPs by EBL, mainly due to its flexibility for prototyping. The starting substrates
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were SOI 2 × 2 cm2 chips with an ultra-thin top Si layer of 25 nm (BOX thickness of 152 nm),
which defined final device thickness.

First, chips were cleaned by oxygen plasma at 600 W and dehydrated in a short baking step.
Later, a single layer of 2% hydrogen silsesquioxane (HSQ) solution in methyl isobutyl ketone (MIBK)
(XR-1541, Dow Corning, Midland, MI, USA) was spin-coated at 1500 rpm for 1 min, followed by a bake
of 4 min at 80 ◦C on a hot-plate. When areas with HSQ are exposed with enough dose, it cross-links
and transforms into a SiOx material, similar to silicon oxide [168].

GP designs were patterned in a Raith 150TWO tool (Raith GmbH, Dortmund, Germany) at
30 kV, with a 10 µm aperture and dose of 940 µC/cm2. After exposure, HSQ was developed in
tetramethylammonium hydroxide (TMAH) 25% at 50 ◦C for 75 s, followed by a strong rinse in
deionized water, a dip in isopropanol (IPA) and dried in N2.

Square and rectangular oxide-like GPs were fabricated (Figure 4a) maintaining trenches for
graphoepitaxy with widths between 350 nm and 550 nm to ensure defect-free perpendicular alignment
of PS-b-PMMA. Final GP height after exposure and development under these conditions was ∼30 nm.

Figure 4. (a) Scanning electron microscopy (SEM) top-view micrographs of HSQ GPs after development;
(b) SEM top-view micrographs after graphoepitaxy within GPs. Parallel PS-b-PMMA lamellae
(28 nm pitch) can be observed perpendicular to the walls and bottom of the trenches; (c) SEM top-view
micrograph of a 500 nm trench after graphoepitaxy of PS-b-PMMA (28 nm pitch).

4.2. Graphoepitaxy of PS-b-PMMA

As introduced in Section 3, usually in graphoepitaxy a neutral layer is deposited on the bottom of
the trench, in order to balance the free energy between surface and BCPs [169,170] (Figure 5a). In this
case, self-assembly occurs in vertical lamellae parallel to the walls and perpendicular to the bottom,
in an interesting morphology for the pattern transfer of lines and spaces. Nevertheless, as mentioned,
high-resolution lithography to fabricate the trenches and extreme control in the deposition of the
neutral layer to graft it only at the bottom are needed.

In the process flow we present, we suggest a much less-demanding methodology in terms of GP
resolution and brush deposition (Figure 5b). Here, by spin-coating a thick layer of random copolymer,
we completely cover the GPs, grafting the brush on all the surfaces of the trench. As bottom and both
walls present neutral affinity, after BCP annealing, PS and PMMA lamellae become perpendicularly
aligned to bottom and sidewalls. This approach is much less strict, as extremely fine lithography is not
needed anymore for the definition of the GPs, and the grafting of the brush layer is not constrained to
the bottom of the trench.
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Figure 5. Graphoepitaxy of lamellar PS-b-PMMA within silicon oxide trenches. (a) If the bottom of the
trench is neutral, but walls are affine to one block, vertical lamellae self-assemble parallel to the walls;
(b) if walls and bottom are neutral, vertical lamellae self-assemble perpendicular to the three surfaces.

After surface activation, a thick layer of a 1.5 wt. % solution in propylene glycol methyl ether
acetate (PGMEA) of a random copolymer brush (PS60%-r-PMMA) was spin-coated at 1500 rpm for
30 s. The random BCP completely filled the gaps between the GPs, coating all surfaces. After a 5-min
annealing step at 230 ◦C in a tube furnace with nitrogen atmosphere, the chips were rinsed again in
PGMEA. This ensured that all the non-grafted brush was diluted and washed away, leaving behind a
thin film of PS60%-r-PMMA attached to walls and bottom of the trenches. Subsequently, a 0.5 wt. %
PGMEA solution of lamellar PS-b-PMMA (natural pitch L0 = 28 nm) was spin-coated at 1500 rpm for
30 s and annealed at 265 ◦C for 10 min in a tube furnace with a continuous flow of N2.

Atomic force microscopy (AFM) characterization showed that polymer thickness inside the
trenches, including BCP and brush layer, filled the gap completely, regardless of the width of
the gap of the GP (350 nm to 550 nm). In the areas outside the trenches, the BCP thin film was
discontinuous, adopting the form of islands, due to the reduced thin film thickness obtained at
0.5 wt. %. Effective perpendicular alignment with respect to the GPs, demonstrates that the brush
layer successfully covered bottom and trench walls (Figure 4b,c).

4.3. Selective PMMA Removal and Pattern Transfer

After DSA, PMMA domains were selectively removed by reactive-ion etching (RIE) in Ar/O2

plasma (AMS 110DE, Alcatel Micro Machining Systems, Annecy, France). ICP power was set at 200 W
and chuck power at 5 W, eliminating PMMA from all gaps with enough selectivity to still leave ∼20 nm
of PS unconsumed.

Pattern transfer onto the device layer of the SOI substrate, using as mask the remaining PS (for
nanowires) and SiO2 GPs (for membranes), was carried out in a mixed mode Bosch process based on
SF6 and C4F8 for 18 s (Figure 6). ICP power was set at 1200 W and chuck power at 10 W.

Figure 6. (a) SEM top-view micrograph of SiNWs obtained after pattern transfer of PS-b-PMMA;
(b) zoomed-in micrograph.
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As shown by transmission electron microscopy (TEM) characterization (Figure 7),
nanowire dimensions are smaller than the expected half-pitch of the BCP, which indicates a certain
degree of isotropy in the pattern transfer. This can be explained by a combination of several phenomena:
inefficient passivation, poor diffusion, re-deposition of material and high electric field gradients that
deflect ions towards the sidewalls [171–173].

Figure 7. TEM micrograph of a lamella across several transferred SiNWs (before release). C serves as
protective layer. SiNW height is determined by the thickness of the device layer of the SOI substrate.

4.4. Disposal of Undesired SiNWs

Microphase segregation after DSA not only took place in between GP sidewalls, where the BCP
was guided in the proper direction, but also in areas with residual BCP thickness along the border of
the GPs. To eliminate these undesired structures, additional EBL and RIE steps were performed.

To do so, PMMA 950K (2% in Anisole, MicroChem Corp., Westborough, MA, USA) was deposited
at 2000 rpm for 1 min and baked for 1 min at 180 ◦C on a hot-plate. Rectangular areas where
nanowires wanted to be removed were exposed by EBL at 20 kV, with an aperture of 20 µm and
dose of 180 µC/cm2. Samples were developed for 30 s in a MIBK/isopropanol 1:3 solution and 30 s in
isopropanol. After development, samples were dry etched for 20 s following the same recipe used for
the pattern transfer onto silicon, and lastly, the PMMA mask was stripped in O2 plasma.

4.5. Release of the Structures

In the final stage, structures were released from the substrate in low-pressure gas-phase HF (SPTS
µEtch), to avoid potential collapse. Prior to etching, samples were baked at 250 ◦C for 2 min to remove
humidity. The process was performed by introducing 1250 sccm of N2, 300 sccm of EtOH and 310 sccm
of HF at a pressure of 126 Torr. Processing time was ~3 min but independently adjusted for each chip,
to guarantee full release of the structures in the design without completely releasing the GPs that serve
as clamping.

Ultra-thin silicon membranes suspended by dense arrays of SiNWs were successfully achieved
after the final release from the BOX (Figure 8). Likewise, the mask of HSQ from the GPs was also
totally etched away.
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Figure 8. SEM micrographs of two of the multiple different silicon membranes obtained, suspended by
high-density arrays of SiNWs.

Final obtained structures were composed of arrays of SiNWs with lengths between 350 nm and
500 nm, combined with either a single or a pair of silicon membranes. These were designed rectangular
or squared-shaped, with lateral dimensions ranging from 0.5 µm to 5 µm. The systems, according to
finite element analysis simulations, present Eigenfrequencies in the 25–200 MHz range, depending of
individual dimensions.

5. Conclusions

In this work we have introduced the opportunities that microphase separation of BCPs offers for
patterning at the nanoscale. We have discussed how BCP microdomains placement and alignment can
be directed by DSA methods, such as chemoepitaxy and graphoepitaxy, and demonstrated a process
flow based on the latter for the fabrication of nanomechanical functional structures.

Obtained devices evidence DSA of BCPs enables the structuring of extremely high resolution
features in a cost-effective manner. Moreover, the possibility of defining dense arrays of structures such
as nanowires, which could be difficult by other high-resolution techniques like EBL due to proximity
effects, is also proven.

DSA of BCPs is presently experiencing a delay in being adopted by high-volume manufacturing
industries, like the semiconductor industry, due to difficulties in achieving a sufficiently low level
of defectivity. However, we believe that DSA of BCPs is a viable solution to address application
areas where the density of defects is not critical and the required functionality cannot be obtained
by lithography with a reasonable cost of ownership. In this framework, we have addressed the
manufacturing of nanoelectromechanical systems, and in particular dense arrays of suspended silicon
nanowires, as an example of how DSA can be used in areas other than nanoelectronics. Although
the process flow that we have developed combines DSA with electron beam lithography as a proof
of concept (and therefore, with an overall low fabrication throughput), it can be easily adapted to
other higher throughput top-down lithography techniques such as deep ultraviolet optical lithography.
Other application areas will require similar efforts such as the ones presented here to take advantage of
DSA integration into the manufacturing chain of functional nanometer scale devices.
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