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Abstract: We compute desorption rates for isolated polymers adsorbed to a solid wall with a rare event
sampling technique called multilevel splitting, also known as forward flux sampling. We interpret
computed rates with theories based on the conjecture that the product tdesD

R2
g

of the desorption time

tdes and diffusivity D divided by squared radius of gyration Rg scales with exp(h/Rg) where h is the
equilibrium ratio of adsorbed surface concentration of polymer Γ to bulk concentration of polymer c.

As the polymer–wall interaction energy is increased, the slope of ln
(

tdesD
R2

g

)
vs. NVMF

kBT nearly approaches

unity, as expected for strongly-adsorbing chains, where N is the degree of polymerization and VMF

is the height-averaged monomer–wall interaction energy for a strongly adsorbed chain. However,
we also find that this scaling law is only accurate when adsorption strength per monomer exceeds
a threshold value on the order of 0.3–0.5 kBT for a freely jointed chain without or with excluded
volume effects. Below the critical value, we observe that tdesD

R2
g

becomes nearly constant with N,

so that tdes ∝ Nα, with α ≈ 2. This suggests a crossover from “strong” detachment-controlled to a
“weak” diffusion-controlled desorption rate as VMF/kBT drops below some threshold. These results
may partially explain experimental data, that in some cases show “strong” exponential dependence
of desorption time on chain length, while in others a “weak” power-law dependence is found.
However, in the “strong” adsorption case, our results suggest much longer desorption times than
those measured, while the reverse is true in the weak adsorption limit. We discuss possible reasons
for these discrepancies.

Keywords: polymer desorption; forward flux sampling; Langevin dynamics simulations

1. Introduction

To the best of our knowledge, the rate of desorption of an isolated chain from an interface has
not been predicted using detailed theory or simulation, and even experiments measuring desorption
rates are rare [1–3]. In their textbook, Fleer et al. noted that in most cases, even in the absence of a
kinetic barrier to desorption, polymer adsorbed at levels up to a significant fraction of saturation of the
surface yields an equilibrium concentration in solution too small to drive sufficiently fast diffusion to be
measurable [4]. The reason for the minuscule rate of desorption of long polymers from surfaces is that,
if each monomer can adsorb with an adsorption free energy εPW that is an appreciable fraction of kBT or
more, then the total adsorption energy of the polymer with N monomers will be of order NεPW >> kBT.
The chain will then readily pay the entropic penalty to adsorb enough monomers that desorption of a
chain becomes an exceedingly rare event. There are, however, situations in which one should expect
exceptions. First, the adsorption energy per monomer may be very feeble, εPW << kBT, in which case
even chains of modestly high molar mass are bound with energies NεPW < 10 kBT, or so. These chains
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could desorb at a measurable rate. A second possibility is that only a fraction of the monomers can
adsorb. This could occur for a variety of reasons. The polymer could be a heteropolymer, such as a
protein in which only very hydrophobic, or hydrophilic, residues can bind. The adsorption might
be due to charge interactions, wherein only charged monomers are attracted to charged sites on the
surface, and if charge density is low on both polymer and surface, adsorption might be relatively weak.
A case where this is known to be relevant is that of polyelectrolytes that adsorb onto either a bare
surface or one coated with polymer, such as occurs in the layer-by-layer (LbL) process. Depending on
pH and salt concentration, there may be a relatively small number of charges per polymer able to bind
to the pre-existing layer, thus making the adsorption partially reversible, as in fact is experimentally
well known in LbL coating [5]. A related situation might be one in which monomers stick to a surface
by van der Waals interactions, but are electrostatically repelled from the surface. In this case, the total
free energy of adsorption is reduced, allowing faster desorption. Yet another situation might be one in
which desorption somehow becomes cooperative, in that monomers that desorb are somehow kept
from re-adsorbing, allowing monomers to desorb sequentially. This situation might arise if there is
some force, for example, a hydrodynamic force, that acts on the polymers, so that desorbed monomers
have little chance to re-adsorb, and so are removed sequentially from the surface rather than needing
many monomers to simultaneously overcome their desorption barriers [6].

Thus, while the simplest case of desorption of long chains of strongly-adsorbing monomers is well
known to have trivial, negligible, desorption kinetics on experimental time scales, there are interesting
situations in which we do not expect this to hold, and a method to calculate the actual rate may be
important. Even in cases for which desorption is likely to be exceedingly slow, there may be reasons to
nonetheless wish to know the rate. For example, polymers coating implanted materials in the body may
be dangerous or toxic, and one wishes to be confident that their desorption rate is completely negligible.
Since calculations of desorption rates are, with the few exceptions described below, almost unknown
in the literature, we wish to advance understanding of desorption by applying the rare-event sampling
method forward flux sampling (FFS) to compute desorption rates for uncharged homopolymers in the
absence of flow or any external field. We test chains of varying length, varying polymer–wall interaction
energy, and various internal potentials governing chain configuration. A rare-event sampling method,
such as FFS, is needed to determine the desorption rate, since direct simulation will almost never
reveal even a single desorption event for strongly bound chains, even when using coarse-grained
simulation methods.

In the remainder of this Introduction, we position our work within the existing literature. First,
we review experimental studies of polymer desorption from solid/liquid interfaces. Second, we review
theories of polymer adsorption thermodynamics and desorption rates. Third, we review previous
molecular simulations of polymer desorption. Then, we describe the forward flux sampling method,
how its accuracy is analyzed, and modeling details. Then, we move onto the Results, Discussion,
and Conclusions.

1.1. Experimental Measurements of Desorption Rate for Adsorbed Chains

While there are many experimental studies of polymer adsorption onto solid–liquid interfaces,
including measurements of adsorption isotherms and of rates of adsorption, few experimental studies
provide quantitative measurements of desorption rates. Studies by Granick and coworkers [2,3]
from the early 1990s used Fourier-transform infrared spectroscopy in total internal reflection mode to
measure desorption rates in two systems. The first, by Frantz and Granick [2] studied the desorption
of protio-polystyrene from silicon surfaces into the cyclohexane solvent, driven by replacement by the
isotopic deutero-polystyrene. Desorption times ranged from minutes to 100 h, exponentially increasing
with increasing chain length from N = 1000 to 12,000 monomers [2]. In the second study, by Johnson,
Douglas, and Granick [3], the adsorption of polystyrene (PS) from into carbon tetrachloride solvent onto
an oxidized silicon surface was followed immediately by adsorption of stronger-binding poly(methyl
methacrylate) (PMMA), which formed an “overlayer” that gradually displaced the already adsorbed
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polystyrene, leading to its desorption [3]. In this second study, a power-law scaling of desorption
time with degree of polymerization N with exponent around 2.3 was observed; this was attributed
to relatively rapid displacement of PS by stronger-binding PMMA, so that the time for “desorption”
was dominated by diffusion of the desorbed chain through an “overlayer” of entangled polymers.
However, the times required for desorption ranged from a minute or so up to 15 h as chain lengths
increased from ~100 to ~1000 monomers. These times are much too long to be simple diffusion times,
even diffusion through an entangled mesh, given the solvated state of the polymer and the short
distances involved (<1 µm). In both of these studies, adsorbed chains were not dilute on the surface,
and competition for adsorption sites likely accelerated the desorption rate.

In the only experimental study we know of where chains were dilute and isolated from each
other, that of Skaug, Mabry, and Schwartz [1], desorption was observed by optical imaging of stained
poly(ethylene oxide) chains. The chains were observed “hopping” from one fixed location to another
along the surface, with a hopping time proportional to N0.6 with times ranging from 0.1 to 1 s, with N
ranging from 40 to 1000.

1.2. Theories of Isolated Polymer Adsorption Thermodynamics and Expected Desorption Rate for Strongly
Adsorbed Chains

In the limit of strong adsorption, an isolated polymer chain flattens onto the surface like a pancake
into a layer of thickness comparable to that of a Kuhn length of the polymer chain, and each monomer
experiences the same “mean-field,” or height-averaged, potential VMF, which in this case is the
thermodynamic (i.e., Boltzmann-weighted) average interaction between the wall and each monomer,
i.e.,

VMF(σPW , εPW) =
1
Z

∫ 2σPW

z=0
VW(z; σPW , εPW) exp

(
−

1
kBT

VW(z; σPW , εPW)
)

dz (1)

where VW is a potential that depends on the distance z between the monomer and the wall and σPW

and εPW are parameters of the Lennard Jones-like monomer-wall potential described below. In the
above, Z is the normalization constant, which is the same integral without VW(z; σPW , εPW). Note that
VW(z; σPW , εPW) is close to zero at z = 2σPW . For convenience in plotting results, we have taken
here the attractive potential VMF to be positive by introducing the minus sign before the integral.
Our underlying kinetic scaling assumption is that the logarithm of the average desorption time tdes,
normalized by the diffusivity D and radius of gyration Rg of the free chain, is related to the free energy
F of the adsorbed state relative the free state, via:

ln

 tdesD
R2

g

 ∝ − F
kBT

(2)

Ignoring entropic contributions to the adsorption free energy F of the adsorbed pancake, we obtain
a simple “strong-adsorption” scaling law from the number of monomers N confined in the mean-field
potential VMF:

ln

 tdesD
R2

g

 ∝ −NVMF(z; σ, ε)
kBT

(3)

Eisenriegler, Kremer, and Binder (1982) derived scaling exponents for the desorption time from the
Gaussian polymer field theory for an ideal chain near the crossover point from adsorption to depletion
by renormalization group theory [7]. For a self-avoiding walk, at the crossover point, the number
of adsorbed monomers scales as Ntrain ∝ Nφ, and the exponent φ relating the number of adsorbed
monomers to the total number of monomers N in the chain is approximately 0.6, as one might expect
at the cross-over point where the chain configuration and monomer density are relatively unaffected
by the presence of the wall. Thus, at the cross-over point, the fraction of monomers that are adsorbed
shrinks to zero as the chain becomes longer. These studies may be relevant to the weakly adsorbed limit.
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1.3. Previous Molecular Simulations of Polymer Desorption

Published works that are the most similar to what we propose here include that of Wang,
Rajagopalan, and Mattice [8], who performed Monte Carlo (MC) simulations on a cubic lattice of the
desorption of an adsorbed film of multiple polymers, from a surface. Their results show a desorption
time scaling as N2.5, suggestive of diffusive control of desorption, with desorption time ranging from
400 to 400,000 MC steps for chain lengths ranging from 5 to 85 units. While consistent with one of the
experimental studies of Johnson et al. [3], the chains in the simulations of Wang et al. were too short to
be entangled, and hence their results, while showing a similar scaling law as in [3], must be explained
by simple diffusion, without entanglement effects. Note that an average of 5.6 “trains” of sequential of
monomers of average length 9.6 segments adsorbed on the surface from chains of length 85. Given that
each unit of the MC chain adsorbed to the surface with energy of 1.0 kBT, the speed of desorption
of these chains is rather surprising since the energy cost of desorbing so many monomers ought
to be extraordinarily high, naively an exponential of the number of adsorbed monomers. It seems
likely that competition for adsorption sites by incoming chains made the desorption rate many orders
of magnitude faster than it would have been for an isolated chain on the surface. The relatively
fast hopping of isolated chains in the experiments of Skaug et al. [1], thus remains unexplained,
or incompletely explained, by simulations such as these. Dutta, Dorfman, and Kumar [6] simulated
desorption of isolated Kremer–Gest bead-spring chains in a shearing flow, but found that in the absence
of flow, the chains did not desorb during the simulation, so the kinetics of desorption without flow
could not be measured in this study, limiting its relevance to our work.

Källrot and Linse (2007) studied desorption of polymers which had adsorbed under an attractive
potential and were then switched to a repulsive potential, but these results are of limited use for
understanding desorption from an attractive wall. Paturej, Milchev, Rostiashvili, and Vilgis (2012)
studied the detachment time of polymers under tension, with a pulling force generated by viscous
drag on the string of tensile blobs extending from the surface, countered by the restoring force from the
blob at the end of the string in contact with the surface. They developed a theoretical prediction giving
a detachment time that scales as N2 for strong adsorption and overdamped dynamics, and their Monte
Carlo simulation results yielded a scaling exponent on N of 1.96 ± 0.03, while their Langevin-like
simulation which they describe as underdamped, yielded a scaling exponent of 1.75 ± 0.1 [9]. In a later
study (2014) which included hydrodynamic interactions (HI) among polymer beads via dissipative
particle dynamics, they found HI did not have a significant effect on the forced desorption process [10].

Mökkönen, et al. (2015) calculated the rate for a one-dimensional (1D) ideal bead-spring polymer
to translocate from one basin to another in a symmetric, quartic (i.e., given by a fourth order polynomial)
double-well potential [11]. After using the “nudged elastic band method” to find the saddle point as
the maximum energy point along the minimum energy path, they used harmonic transition state theory
with corrections and found close agreement of their predictions with brute-force Brownian dynamics
and Langevin dynamics simulation. Mökkönen, et al. (2016) further improved their calculation
method with a re-crossing correction and found it was more computationally efficient than forward
flux sampling for achieving an equal degree of uncertainty in the rate calculation. Park and Sung
showed that in such a double-well system, the activation energy reaches a plateau when N > NC
where NC is a critical polymer size above which the transition state ceases to be a coil and is instead
a stretched chain reaching from basin to basin [12,13]. These results for escape from one half of the
double-well potential may have implications for polymer escape from highly convex surfaces (e.g., a
nanoparticle) whose curvature leads to a maximum free energy followed by a decreasing free energy
with increasing radial distance far from the surface, rather than a plateau as in desorption from a
planar surface. For desorption from a flat surface, because the free energy should reach a plateau
for the desorbed state, there would be no such NC such that a polymer with N > NC can span two
thermodynamically favorable basins.

This review exposes a fundamental gap in the literature, as no published work analyzes the
most basic problem of desorption of isolated chains from a simple flat surface in the absence of
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flow. In recent years, forward flux sampling has drastically progressed due to a repeatable workflow,
innovations to reduce system constraints, and the application of the method to new fields [14].
In addition, FFS simulations use an unbiased potential and can address both equilibrium and
non-equilibrium systems. Many groups have used FFS for simulating nucleation, magnetic switching,
gene switching, protein or DNA behavior, and membrane transport [14]. In the polymer field,
FFS has been applied to polymer translocation [15], structural relaxation [16,17], and conformational
rearrangement [18–20]. However, to the best of our knowledge FFS has not yet been applied to polymer
desorption from a surface. We aim to fill this gap using forward flux sampling. Since this is a rare
event with a high energy barrier it is well suited for FFS.

2. Methods

Forward flux sampling computes the rate of transition from state A to state B [21,22].
The computation has three essential steps:

1. Sample “equilibrium”-distributed configurations from starting basin A.
2. Compute the rate at which these configurations enter the initial transitional state L0.
3. Compute the probability that paths entering state L0 will also enter B before returning to A.

The final transition rate from state A to state B computed in an FFS simulation is a product of a
“base rate” r(A→ L0) of configurations “transitioning” from the starting basin A across an interface
“0” into state L0, times a product of probabilities, one for each transition from interface i to i+1.
Each interface i will be defined by a prescribed number of “contacts” λi, where the number of “contacts”
is defined later. A “state” i is defined by having numbers of contacts between λi and λi+1, and basins
A and B are defined by having contact numbers respectively greater than (for A), and less than (for B),
a prescribed number to be defined below for A and for B. For the probabilities of transition, we only
need a “yes” or “no” answer to the question whether a chain has made the transition before collapsing
back to basin A. For the “base flux,” however, we cannot count within the “rate” every vibration of a
configuration across a thin interface, since this will allow highly correlated configurations to count
many times towards the transition rate. Therefore, we must create a gap over which the configuration
must jump for it to count as a “transition” from basin A across the “initial” interface into state L0;
see Figure 1. The gap has to be large enough that after the configuration has retreated back across
interface 0 towards basin A, it must retreat far enough for the chain configuration to decorrelate before
another crossing of interface_0 can count in the net rate. In the limit where the gap becomes very large,
the jump crosses all the way from A to B and the crossing rate becomes the final rate of transition.
If this could be accomplished within a reasonable simulation time, there would be no need for FFS.
What is sought, therefore, is that the gap be made big enough that the distribution of transition times
from A to 0 is approximately uncorrelated, and hence be exponentially distributed, while keeping it
small enough to make the simulations affordable.

With this explanation of the overall rationale, we now define how we accomplish Steps 1, 2, and
3 above.

2.1. Step 1: Sample Equilibrium-Distributed Configurations from A

We first generated polymer coil configurations for a chain of N monomers in the absence of the
wall by a random series of torsional rotations followed by simulation for sufficient time to measure the
end-to-end distance autocorrelation time τends. We then continued the simulation and sample one
configuration after each time period 2τends. Each of these configurations represented an independent
equilibrium configuration of the chain. Since our simulations were carried out in the overdamped limit,
no momentum sampling was required, as rapid sampling of the Maxwell–Boltzmann distribution was
carried out during the simulation.

As discussed in more detail later, we then translated each equilibrium coil to a position close to
the wall and simulated each for 100 N picoseconds. Chains that had contact number greater than either
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10 or 0.1N (whichever is smallest) at this point were kept as adsorbed, where “contact number” is the
number of beads “contacting” the wall, as defined precisely later, in Equation (14). Some chains whose
contact number fell below the threshold were simulated for an additional pre-initialization time to
obtain a contact number exceeding the threshold. The wall-contacting configurations at this point were
taken as an approximation to “equilibrium-distributed” sample configurations from A. Our reaction
coordinate will be defined as the contact number C, which decreases as the chain desorbs from the
surface, and can be used to define discrete levels of desorption as illustrated in Figure 1.

Figure 1. Definition of states A, L0, L1, . . . , B (shown by boxes) over the range of contact numbersbetween
0 and N. State A represents the adsorbed polymer and state B the desorbed polymer. Intermediate
transitional states are named Li. State A encompasses contact numbers from N down to 10 or 0.1N
(whichever is smallest).

2.2. Step 2: Compute the Rate at Which the Configurations from A Cross Interface 0 and Enter the Initial
Transitional State L0

Before the rate r(A→ λ0) of A→ λ0 can be computed, we need to programmatically define
the minimum contact number λA defining state A and the maximum contact number λ0 for the
configuration to belong to state L0. There are two closely related pitfalls we wish to avoid when setting
λA and λ0.

1. Avoid counting multiple entrances into L0 that are actually correlated vibrations around λ0.
2. Avoid counting only entrances into L0 by a few privileged chains rather than all transitioning

chains, to avoid bias by exclusion.

To avoid pitfall 1, we create a gap between λ0 and λA (described below), and to avoid pitfall 2,
we also require that all adsorbed chains in the basin A cross λ0 at least once during Step 2, the initial
rate-measurement step. A set R of at least 100 simulation runs, each with an independently adsorbed
chain is simulated. If any of these chains, which start in A, fail to cross λ0, the rate-measurement time
trate for all these chains in set R is doubled. This process is repeated until all chains cross λ0.

We assigned λA and λ0 as follows. Firstly, the time-averaged contact number (which will be
defined precisely later, in Equation (14)) is calculated for a given chain simulation i, or run i, by averaging
over all time steps j = 1,2, . . . :

〈C〉i ≡
1
T

T∑
j=1

C
(
Xi

(
t j
))

(4)

The minimum contact number is also calculated over the time of each chain’s run:

Ci,min = min
j

C
(
Xi

(
t j
))

(5)
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We wish λA to represent the “outer edge” of basin A, and it should then be just small enough
that most adsorbed chains, most of the time, have contact numbers above λA. We also wish λ0 to
definitely lie below the typical value for chains in basin A but large enough that, with a long enough
simulation, all chains will eventually reach it. To obtain these two quantities λA and λ0 that satisfy
these requirements, we find that a robust procedure is to first take λ0 as the average of two quantities:(1)
the minimum over the set R of the simulation-averaged contact number for each chain’s run, and (2)
the median over R of the simulation minimum over each run; i.e.,

λ0 ≡

min
i∈R

(〈C〉i) + median
({

Ci,min : i ∈ R
})

2
(6)

We then assign λA by averaging λ0 and the minimum of the sample averages, which makes λA
somewhat larger than λ0:

λA ≡

λ0 + min
i∈R

(〈C〉i)

2
=

3
4

min
i∈R

(〈C〉i) +
1
4

median
({

Ci,min : i ∈ R
})

(7)

In order to avoid counting vibrations around λ0 as “crossings” of λ0, forward crossings of λ0 are
counted only once per forward crossing of λA. In a simulation, after the contact number drops below
λA, (which constitutes a forward crossing of λA towards λ0, since forward progress is achieved by
reducing the contact number λ), only the next time the contact number further drops below λ0, is a
forward crossing of λ0 counted. For an additional forward crossing of λ0 to be counted again within
the same run, the contact number must first rise again above λA and then fall again below above λA.
This eliminates the vibration problem of pitfall 1.

If each simulation i ∈ R has at least one forward crossing of λ0, then λA and λ0 are determined
using the method described above and the rate of crossing of λ0 is computed by dividing the total
number of forward crossings of λ0 by the total simulated time, excluding any time spent in B and
time spent transitioning from B to A. (This exclusion is only important for weakly adsorbed chains
that desorb spontaneously within a single simulation.) If this condition is not met, and one or more
simulations fails to cross λ0, then, as mentioned above, the run duration trate is doubled, and this whole
process is repeated.

2.3. Step 3: Compute the Probability That Paths Entering L0 Will Also Enter B Before Returning to A

The trick of forward flux sampling is to overcome the improbability of the λ0 → B transition
by decomposing it into a sequence of more probable steps λ0 → λ1 → · · ·λn → B . The boundary of
each level between λ0 and λB is determined adaptively (i.e., on the fly) to achieve a target advancing
probability. We launched 100 trial simulations by picking random configurations from the forward
crossings at λ0 that ran until they reached either λA or λB. (For configurations chosen from forward
crossings at λ0, the simulations would invariably end at λA, but in subsequent simulations starting from
forward crossings at λi, the probability of reaching B increases.) Each simulation has a minimum contact
number; by positioning λ1 at the 10th percentile of these 100 contact number minima, we ensured that
approximately 10% of attempted transitions λ0 → λ1 were successful. With λ1 positioned, we would
run at least 1000 simulations to attain a more accurate estimate of P(λ0 → λ1).

The process in the preceding paragraph is repeated for the λ1 → λ2 transition and so on, iteratively,
until the probability of advancing to B exceeds 10%. The B or end basin in every case was defined
as C < λn = 10−5. At this point P(λn → B) can be measured in the same way as the preceding levels.
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The rate for the complete process A→ B is then constructed by multiplying the rate from step 2 with
the product of probabilities from step 3:

r(A→ B) = r(A→ λ0)
n−1∏
i=0

P(λi → λi+1)P(λn → λB) (8)

The number of levels required to measure desorption varies depending on how unlikely it is
for an A→L0 transition to become an A→B transition. Typically, in our simulations, the number of
levels varied between 10 and 100. If A→L0 occurs once every nanosecond for chains starting in A,
and FFS determines that A→B takes a second, then the probability of converting A→L0 into A→B is
10−9. Given a 10% advancing probability for each level, this implies that 9 levels are required to reach B.

For all intermediate levels λi with 1 < i < n, the levels were set on the fly as described in the
following paragraph. Aside from these initial runs being used to position λ0 and λ1, the initial rate
was measured as the number of forward crossings of λ1 with history traceable to λ0 more recently than
previous crossing of λ1, summed over all 100 initial runs, and divided by the total time of the 100 runs
excluding any time spent in B and time spent transitioning from B to A.

Randomly selecting snapshots to run at each level can exacerbate the problem of “genetic drift”
by randomly denying some snapshots any attempts. For example, if 1500 simulations were launched
by randomly selecting from 500 configurations, then the probability that a particular configuration is
not selected even once is 499/500 to the power of 1500, giving around 0.05. Thus 25 configurations
out of the 500 at each level would be randomly wiped out because they are passed over, on average.
An alternative selection method that reduces genetic drift due to random selection is called fixed
selection in which each snapshot at a level is selected for the same number of simulations, except for any
remainder after division. The remainder is allocated among the snapshots at random. Fixed selection is
more equitable in assigning attempts, and it can be used without introducing any bias [23]. We know of
no downside to using fixed selection, and we believe it should always be preferred to random selection.
We note that fixed selection does not eliminate genetic drift entirely, because the number of successful
attempts will still fluctuate randomly, but genetic drift is reduced relative to random selection.

2.4. Error Analysis Accounting for Correlations

We can identify the number of uncorrelated estimates of pi ≡ P(λi → λi+1) at each level and use
the standard error of the mean to quantify the uncertainty in our estimate for pi. To estimate the
standard error of the mean of pi we must account for correlations among the runs.

To do so, first we define descendant groups. At each level i, forward flux sampling yields a
set of chain configurations or “snapshots”, one for each run that has reached this level from level
i − 1. These are the configurations that will be replicated and used as starting states for the next set of
simulations launched towards reaching level i+1. By looking back n levels, we can group together
all snapshots at λi that have a common ancestor at λi−n. The group for n = 1 contains siblings only.
The group for n > 1 contains siblings and cousins up to their (n − 1)th cousins. This is illustrated in
Figure 2. We use such groups of descendants at each level, which we henceforth refer to as nth-order
descendant groups, G(n)

i to check for intragroup correlations relative to the entire setMi of snapshots
at level i.

We next define P(n)
i as the set of all pairs of intragroup snapshots for the nth-order descendant

groups at level i. If an nth-order descendant group has k members, then that group has k(k − 1)/2 pairs
of members, and P(n)

i is the set of these pairs, along with the pairs from all other descendant groups at
level i. Thus, the number of intragroup pairs among the six descendent groups in the bottom level of
Figure 2d, added up from left to right, is 1 + 0 + 0 + 1 + 10 + 6 = 18. (A group with one member has no
pairs.) We define pi,j as the fraction of copies of snapshot j that reach from level i to i + 1.
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Figure 2. Snapshots (circles) are colored in the bottom row of each sub-figure by descendant groupG(n)i ,
where for (a) n = 0 (b) n = 1, (c) n = 2, (d) n = 3. Each row represents a level, and each circle corresponds
to an observed snapshot at the level. The common nth-order ancestor snapshot of each group is
also colored, and the lineage paths are colored as well. Parts (b–d) show the 1st, 2nd, and 3rd-order
descendant groups, respectively.

We now define the measure of intragroup correlation for the descendant groups. The descendant
groups may be considered “correlated” for values of n up to a limit at which the correlation falls
below a threshold, which we take to be e−1. To measure the intragroup correlation, we adapt Fisher’s
intraclass correlation coefficient [24]. Then, we define p(n)i to be the average advancing probability
for level i corrected to remove over-averaging of configurations correlated through common ancestry,
using the following equation:

p(n)i =
1∣∣∣∣G(n)
i

∣∣∣∣
∑

g∈G(n)i

1∣∣∣g∣∣∣
∑
j∈g

pi, j (9)

where the metric “|X|” is the number of elements of the set, which in the above is either set g or
G
(n)
i . The inner sum, which is divided by the number of members

∣∣∣g∣∣∣ in the descendant group of
snapshots g reduces the contributions of multiple descendants of a common ancestor to just one
averaged contribution. We can now calculate the intragroup correlation r(n)i in pi,j for the nth-order
descendant groups as:

r(n)i =
|Mi|∣∣∣∣P(n)

i

∣∣∣∣
∑

( j,k)∈P(n)i

(
pi, j − p(n)i

)(
pi,k − p(n)i

)
∑

j∈Mi

(
pi, j − p(n)i

)2 (10)
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We can identify the smallest uncorrelated descendant groups G(L)
i as the Lth-order descendant

groups at level i for which:

L = min
{
n | r(n)i ≤

1
e

}
(11)

The standard error of the mean to quantify the uncertainty in our estimate for pi is now taken as:

σpi =

√√√√√√√ 1∣∣∣∣G(L)
i

∣∣∣∣(∣∣∣∣G(L)
i

∣∣∣∣− 1
) ∑

g∈G(L)i

p(L)i −
1∣∣∣g∣∣∣

∑
j∈g

pi, j


2

(12)

A simpler and more conservative approach than the one just described is to assume that any
common ancestor leads to correlation between descendants. Both types of error bars will be shown
later as 95% confidence intervals. The thick error bars in those figures are based on the standard
error of the mean with the number of independent estimates of pi at each level based on the smallest
uncorrelated descendant groups. The thin error bars are based on the more conservative standard
error of the mean with number of independent estimates of pi at each level based on the number of
groups which shared no common ancestor.

2.5. Contact Number and Polymer-Wall Potential

Next, we define the adsorbed state, the interaction potential, and other simulation parameters.
Later, we also describe the algorithmic details of simulation setup and analysis.

Our adsorbed state is defined by the wall contact number C, which is defined by a continuous
switching function of the distance z from the wall

s(z) =
1−

( z−d0
r0

)n

1−
( z−d0

r0

)m (13)

where we take d0 = 0.35 nm, r0 = 0.7 nm, n = 6, m = 14. The parameter m must be larger than n
for the function s(z) to have a plateau. n is made large enough to yield a smooth plateau; d0 and r0

are chosen to control the onset point and the length of the plateau, and m is made large enough to
yield a rapid cutoff. These parameters produce the function given by the dashed line in Figure 3 that
switches smoothly, but rapidly, from 1 to 0. (We calculated s using the Plumed plugin and inputting
the switching function as that of rational type.) Then the contact number is,

C =
N∑

i=1

s(zi) (14)

where zi is the z component of the position of bead i, and N is the number of beads in the chain.
We define the desorbed state as C ≤ 10−5. This ensures the polymer is at a sufficient distance that it has
had time to reach a random coil configuration upon reaching the final state, rather than remaining
deformed due to its prior adsorption to the wall. To model the wall, we use the Steele 10-4-3 potential,
which has been used previously for simulation of polymer at a fluid-solid interface [6].

VW(z; σPW , εPW) = 2πεPW

2
5

(
σPW

z

)10
−

(
σPW

z

)4
−

√
2σ3

PW

3
(
z +

(
0.61
√

2

)
σPW

)3

 (15)

where z is the distance of a bead from the wall, and σPW and εPW are the bead–wall interaction parameters.
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Figure 3. Switching function s(z) (dashed line) given by Equation (13) that weights the degree to
which a monomer counts as “adsorbed,” thereby adding to contact number. Monomer-wall potential
(thick solid line) VW given by Equation (15) for εPW = 1 kBT. Zero potential is plotted as the thin,
horizontal line.

The criterion for desorption that C drop below some pre-defined value such as C ≤ 10−5 seems
reasonable, except that it has a degree of arbitrariness to it. While we expect trends to remain similar
if this value is changed, precise desorption times will depend on this choice. However, even in an
experiment, one must define when a chain is “adsorbed” and when it is not. How far should monomers
be from the surface before the chain counts as desorbed? Desorbed monomers that are close to the
surface may re-adsorb, and the polymer may drift from the surface, but then drift back towards it.
Experimentally, the desorption criterion should be based on some measurement condition, such as
spatial resolution of the measured distance from the surface, or some means of removing chains that
get far enough from the surface to prevent re-adsorption. Ultimately, the choice of desorbed state
would need to be guided by some specific experimental criterion, which would allow a more precise
comparison between the calculations and measurements. Here, we content ourselves with assessing
the enormous range of desorption times obtained as chain length and monomer adsorption strength
are varied, and leave consideration of the much weaker dependence of desorption time on the precise
boundary between adsorbed and desorbed states.

2.6. Langevin Equation of Motion and Polymer Models

We ran the simulations in LAMMPS at a temperature of 300 K and using a time step of 40 fs.
Polymer configurations were evolved using the Langevin equation of motion:

m
..
xi = ∇xi V −

m
tdamp

.
xi + R (16)

with a damping parameter tdamp of 250 fs and a bead mass m of 45 g/mole (converted to mass per particle
using Avogadro’s number). The choice of tdamp was made to keep the results in the over-damped limit,
as discussed later. The bead mass m of 45 g/mole was a slight typographical error in the simulation,
since for specificity we are simulating poly(ethylene oxide), or PEO, whose repeat unit has a mass
of 44 g/mole, but the mass is irrelevant except for its role in setting the diffusivity, since we verified
that we were in a non-inertial dynamics regime (see Figures S1 and S2). The acceleration and velocity
of bead i are

..
xi and

.
xi, respectively. The random force R is computed by the Langevin thermostat in
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LAMMPS. The conservative force on particle i, namely∇xi V, is a combination of bead–bead interactions,
bead–wall interactions, and bond stretch, bending, and torsion-like potentials, and is given by:

V =
∑
i, j

VLJ
(
ri, j, σPP, εPP

)
+

N∑
i=1

VW(zi; σPW , εPW) +
N−1∑
i=1

kb(ri,i+1 − lb)
2

+
N−2∑
i=1

kA(θi,i+1,i+2 − θA)
2 +

N−3∑
i=1

kD(ri,i+3 − rD)
2

(17)

where σPP, εPP, σPW , εPW , kb, lb, θA, kD, and rD are model parameters, ri, j is the distance between bead i
and bead j, and θi, j,k is the bending angle formed by beads i, j, k. VLJ is the standard Lennard Jones
interaction potential between beads. N is the number of beads in the chain. The parameter values for
the chain models considered are in Table 1. Unless otherwise noted, the bond length is lb = 0.33 nm
and bond stretching constant kb = 16, 000 kJ/mole. In cases without excluded volume between beads,
εPP = 0. In cases with excluded volume, εPP = 0.2 kJ/mole and σPP = 0.43 nm. For freely-jointed
chains (FJC), kA = 0, whereas for freely-rotating chains (FRC), kA = 2000 kJ mole−1 radian−1 and
θA = 111.58◦. θA was chosen to yield a persistence length of 1 nm for an ideal freely-rotating chain.
σPP, εPP, and lb were adopted from a coarse-grained model for PEO, and kb and kA were chosen to
approximate stiffness while retaining numerical stability. The Lennard Jones potential was used only
when the excluded volume (EV) interactions were present, and torsional potential (T) was only used
for chains with torsion.

Table 1. Parameter values for the chain models considered. N/A means not applicable—that the
value was irrelevant because its potential was set to zero. A blank space means the value was varied.
The double quote means the value is repeated from the cell above. N, and εPW are not listed in the
table because they were allowed to vary for each chain model. Simulation temperature was 300 K.

nm kJ/mol nm kJ/mol/nm2nm kJ/mol/rad2 deg. kJ/mol/nm2 nm

σPP εPP σPW kb lb kA θA kD rD

FJC 1 N/A 0 0.47 16,000 0.33 0 N/A 0 N/A
FRC 2 “ “ “ “ “ 2000 “ “ “

FJC+EV 3 0.43 0.2 “ “ “ 0 “ “ “
FRC+EV “ “ “ “ “ 2000 112 “ “

FRC+EV+T 4 “ “ “ “ “ “ “ 60 0.6
1 freely-jointed chains, 2 freely-rotating chains, 3 excluded volume, 4 torsional potential.

We verified that the Lennard-Jones excluded volume interaction was sufficient to prevent chains
from crossing each other. The parameters except σPP and εPP were borrowed from a Dry Martini model
for PEO which had the correct dependence of gyration radius on N for a PEO polymer [25].

The mobility of an isolated bead is given by the inverse friction coefficient µ1 = ζ−1 = tdamp/m.

Using the Einstein relation, the monomer diffusivity is given by D1 = µ1kBT =
(
tdamp/m

)
kBT,

which (using tdamp of 250 fs and m of 45 g/mole given earlier, as well as Avogadro’s number) is around
10−4 cm2/s, and is around a decade higher than physically expected, but accomplishes our goal of
achieving the over-damped limit. At low ζ, the molecule’s momentum will decay slowly, and the
molecule may oscillate within a potential well. At high ζ, the molecule’s dynamics may be overly
sluggish, and simulation performance suffers needlessly. Klimov and Thirumalai found that the folding
rate in simulations of certain small polypeptides increases linearly with friction coefficient ζ at low ζ,
reaches a maximum at intermediate ζ, and decreases as ζ−1 at high ζ [26]. The decrease in folding
rate with increasing ζ at high ζ is an intuitive result of increasing friction in overdamped dynamics,
whereas the less intuitive increase of folding rate with increasing ζ at low ζmay be attributable to the
increasing frequency of thermal fluctuations with increasing ζ. Slow thermal dissipation of momentum
implies slow thermal fluctuation in momentum, and although the uninterrupted momentum of a gas
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particle leads to a large diffusivity of the particle, the uninterrupted momentum of chain segments
evidently leads to inefficient searching of configuration space.

A primary concern of ours was to avoid results that were sensitive to small changes in bead mass
m and bending constant kb. At coarse-grained scales in water, we expected inertial effects to be minimal,
so we ensured that desorption times were in the non-inertial scaling regime, such that desorption times
scaled as ζ−1.

To compare simulation times with the experimental ones, one can scale from simulation time tsim to
an experimental time texp using texp = tsim

Dsim
Dexp

, where Dsim and Dexp are the self-diffusion coefficients
of a polymer coil in solution from the simulation and what is expected in the experiment, respectively.
Given our neglect of hydrodynamic interactions, the dependence of Dsim on N has Rouse (Dsim ∝ N−1)
scaling, i.e., Dsim(N) = D1

N , as opposed to the experimental Dexp ∝ N−0.589 scaling expected for a dilute
polymer in a good solvent. This means that the time scaling factor Dsim

Dexp
scales as N−0.411. For a good

solvent, in particular for PEO chains in water at room temperature, using Dexp ∝ N−0.589, the time
scaling factor is found to vary between 14.0 and 0.816 as N varies between N = 1 and N = 1000,
respectively, as plotted in Figure 4. To obtain these scaling factors, in addition to the scaling law
Dsim
Dexp
∝ N−0.4, we note that for the N = 50 polymer in simulation we observe Dsim= 277 µm2/s whereas

interpolating from the diffusion coefficient for PEO in water using a table in the SI of Skaug et al.
we find Dexp = 99 µm2/s. This means, for the N = 50 polymer, that simulation times should be increased
by a factor of 2.8 (or rates should be decreased by a factor of 2.8) to compare with the experiments
in Skaug et al. In the results section, we plot the dimensionless tsimDsim

R2
g

, thereby multiplying this

dimensionless quantity by the real
R2

g
Dexp

yields the real time texp corresponding to the simulated chain.

Figure 4. Ratio of simulation diffusion coefficient Dsim to “experimental” diffusion coefficient Dexp as a
function of N, the number of monomers. This serves as the conversion factor to convert simulation
time to “experimental time,” as discussed in the text.

2.7. Equilibrating and Adsorbing Polymer Coils

As mentioned in Step 1 of the FFS methodology discussed above, random polymer configurations
were generated for all model types in Table 1 by first randomly selecting and rotating bonds.
Detailed balance was not respected in this process due to the bending potential, excluded volume
potential, and pseudo-dihedral potential that are imposed on many of the simulated chains, so the
set of initial configurations was not necessarily an equilibrium sample. Each configuration was then
evolved in LAMMPS with Langevin dynamics, the end-to-end distance autocorrelation time τends was
calculated, and configurations were saved at intervals of 2τends, as mentioned earlier. The resulting
nearly independent coil configurations were then transplanted into a simulation box with the wall
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potential described above, and they were translated along the z direction to bring one of their beads
to a z position of 0.7 nm, with the remaining beads at larger z values. The configurations were then
evolved using Langevin dynamics until the chain center of mass had either moved 12 nm from the wall,
90% of its beads were adsorbed, or a maximum time in ps equal to 100 N had elapsed, which proved
to be an efficient method of generating adsorbed chains to be used as starting states for the FFS
simulation. Once the simulation stopped, if at least 10 beads or 10% of beads were in contact with the
wall (as defined by the contact number in Equations (13) and (14)), the configuration was saved as a
pre-adsorbed configuration to be used in forward flux sampling of the desorption process. Tools used
to carry out FFS sampling method, analysis of transition paths, and implementing the scheme in
LAMMPS, are expanded on in the Supplementary Materials.

3. Results

We first verified that the damping time tdamp = 0.25 ps yielded non-inertial dynamics. We also
ensured that the results were insensitive to the change in the bending constant kb → kb/2 and bead
mass m→ m/3. The data verifying this are in the Supplementary Materials. The main result can
be seen in Figure 5. The square markers are forward flux sampling results for an N = 50 chain for
six different values of tdamp. The desorption time for tdamp = 0.25 ps, which is the one used in our
“production” runs, is the second-from-the-left point. Comparison with the dashed line of log-log slope
−1 shows that the results for tdamp = 0.064 ps and tdamp = 0.25 ps are in the non-inertial regime.

Figure 5. Plot of mean desorption times tdes calculated with forward flux sampling for a series of freely
jointed chains (FJCs) with N = 50, εPW = 0.6 kJ/mol and with varying damping time tdamp for fixed
particle mass of 45 gm/mol. Black squares are forward flux sampling (FFS) data, and the red dashed
line has slope −1 on the log-log plot to illustrate the inverse scaling of tdes with tdamp as expected for
non-inertial dynamics.

Desorption times presented in this section are simulation times which have not been converted to
experimental (i.e., real) times for PEO chains in a good solvent, as discussed in the earlier section, 2.6.
Langevin equation of motion and polymer models. The conversion factors for all simulations are within an
order of magnitude of unity. In Figure 6, we show six snapshots of polymer chains of two different
lengths (N = 50, 180) and three different polymer–wall interaction energies (εPW = 0.6, 0.4, 0.3), here in
units of kJ/mol. (To convert to units of kBT at 300 K, divide these values by around 2.5.) For εPW = 0.6,
the adsorbed polymer resembles a pancake, confined to the potential well adjacent to the wall. For
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εPW = 0.3, the polymer has considerably more configurational freedom. The configurations suggest
that the mean-field approach of Equations (1)–(3) should work for polymers with εPW ≥ 0.6.

Figure 6. Snapshots of chains with three different polymer–wall interaction energies εPW and of two
different lengths. These chains did not have excluded volume interactions. Beads are colored on a scale
of red (adsorbed) to blue (desorbed), where z ≤ 0.4 nm is red, z = 0.7 nm is white, z ≥ 1 nm is blue,
and intermediate colors are blended. The units of εPW are kJ/mol.

With the FFS scheme and simulation parameters verified to produce non-inertial dynamics,
we first check in Figure 7 the strong mean-field scaling of dimensionless desorption time with the
exponential of NVMF(z; σ, ε)/kBT given by Equation (3), with VMF as defined in Equation (1). The free
chain diffusivity D can be estimated as the bead diffusivity, which is around 10−4 cm2/s, divided by N,
giving values of D down to as low as around 10−6 cm2/s = 108 nm2/s for N = 100. The approach to
strong scaling is evident as the slopes approach the dashed line with increasing εPW. It is surprising
that even for εPW = 5.0 kJ/mol the slope does not completely reach the strong scaling slope shown by
the dashed line in Figure 7. It seems that Equation (3) is not completely valid, possibly because the
mean-field equation is missing some entropic terms.

Figure 8 shows the desorption times for short-chain polymers and low interactions strengths
for both FJC and FJC+EV polymers. The x-axis again is N scaled by VMF, where VMF is constant for
each εPW data series. After the initial small-N regime before the polymeric configurational penalty
takes full effect, there is for εPW greater than a critical value, a crossover to an exponential dependence
of desorption time on N, as shown by linear relations on the semilog plots in Figure 8. For the
weakest-adsorbing polymers in Figure 8 the dimensionless desorption time appears to be almost
independent of N. Due to the power-law dependencies of Rg and D, this implies that tdes itself has
a power law dependence on N. Whereas in the experiments of Skaug et al. [1] tdes ∝ D−1

∝ N0.6,
we observe tdes ∝ R2

gD−1
∝ N2ν+1 where ν ≈ 0.5 for the FJC without EV and ν ≈ 0.6 for the FJC with EV.

Thus, our scaling law for the weakly adsorbing limit is tdes ∝ Nα, where α ≈ 2.0− 2.2, which is close
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to the scaling observed experimentally by Johnson et al. [3] for desorption in the presence of more
strongly adsorbing chains, and by Mattice and coworkers [8] in lattice simulations of densely adsorbing
unentangled chains. The cross-over from the weakly to strongly absorbing regime occurs at a value of
εPW that seems to depend slightly on the details of the polymer chain, with a cross-over value of around
εPW ≈ 0.3 kJ/mol for freely jointed chains without excluded volume and around εPW ≈ 0.5 kJ/mol for the
same chains with excluded volume interactions. This difference is not surprising, since swelling due to
excluded volume makes monomers somewhat less likely to adsorb, which can have a significant effect
when adsorption is marginal. The thick and thin error bars in Figure 8 represent the two methods of
estimating error discussed in Section 2.4 of the Methods section, both of which account for correlations
in FFS trajectories based on common ancestry. The thick error bars allow a decay of correlation with
increasing distance from the common ancestor, while the thin error bars assume that any correlation
remains perfect regardless of how remote the common ancestor is, implying that chain configurations
never forget that they are descended from the same common ancestor. Visual inspection of the data
presented in the results section reveals limited scattering resulting in a linear trend, which suggests that
the perfect correlation used to calculate the thin error bars is overly cautious. While some correlation
between groups with common ancestors may exist, requiring no common ancestor for independence
appears to be an unnecessarily restrictive constraint.

Figure 7. Desorption times calculated from FFS for freely-jointed chains with excluded volume
(FJC+EV) polymers using several values of εPW in units of kJ/mol and plotted against NVMF

kBT where

VMF is the mean-field potential defined in Equation (1). The dashed line represents tdesD
R2

g
∝ exp

(
NVMF

kBT

)
where A is an arbitrary constant selected for visual clarity and Rg is the radius of gyration. Error bars
are omitted because they are smaller than the marker size in almost all cases, because of the enormity
of scale of the y-axis.



Polymers 2020, 12, 2275 17 of 22

Figure 8. Plot of dimensionless desorption time vs. NVMF for (a) FJC and (b) FJC+EV polymers.
FFS results are colored black and brute-force results are colored red. εPW is in units of kJ/mol. The thick
error bars are based on Equation (12), and the thin ones are based on the conservative assumption that
any common ancestor leads to perfect correlation between descendants, as discussed in the text.
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Figure 9 shows dimensionless desorption times on a semilog plot for chains with various internal
potentials and εPW = 0.4 kJ/mol. For this value of εPW, the addition of a bending potential and excluded
volume reduce the scaling exponent dramatically. The data for FJC (stars) and FRC (diamonds)
polymers do not follow a power law, as can be seen if they are plotted on a log-log plot (not shown) and
are, therefore, evidently still exponential. For the chains with EV, the data show a weak dependence
on N. The range of data would need to be extended to verify or rule out a power law dependence.
While the results for the freely jointed chains show strongly adsorbing behavior, with exponential
growth of desorption time with N, the less flexible freely rotating chains (which have a bond angle
potential but no torsional potential) have a marginal behavior at εPW = 0.4, with a hint of a transition
to the strongly adsorbing regime at the larger chain lengths. An interesting question is whether all the
chains, if long enough, would eventually transition to strongly adsorbing behavior, and, if so, what sets
the transition point.

Figure 9. Mean desorption times for chains with εPW = 0.4 kJ/mol and varying internal potentials.
Legend labels correspond to the parameter definitions in Table 1. FJC: freely-jointed chain, FJC+EV:
freely-jointed chain with excluded volume, FRC: freely-rotating chain, FRC+EV: freely-rotating chain
with excluded volume, FRC+EV+D: freely-rotating chain with excluded volume and dihedral-like
potential. The thick and thin error bars are discussed in the caption to Figure 8.

4. Discussion

The experimental results of Skaug et al. [1] for the mean polymer desorption time tdes of a dilute
chain yield two main conclusions. One is that tdes lies between 0.1 s and 1 s for N = 45 to N = 1000.
In the dimensionless time units used in Figure 9, these show a 10-fold drop from between 104 and
105 for N = 45 to 103 to 104, for N = 1000. That is, Skaug’s desorption times increase less than linearly
with chain length, so that, when rescaled using D/Rg

2, they decrease with increasing chain length.
Contrary to this, we never observe in our simulations the dimensionless desorption time decrease
with increasing N, although for weak adsorption, the dimensionless desorption time does become
insensitive to chain length. It is apparent that a power-law scaling in which tdes increases from 0.1 s
to 1 s over the range N = 45 to N = 1000 is not achievable within our coarse-grained models. Also,
after converting the desorption times in the weak adsorption regime in Figures 8 and 9 to real times,
the simulated polymers desorb several orders of magnitude faster than in the experiments of Skaug et
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al. From Figure 8, in the weak desorption regime, the dimensionless desorption time is around 30.
Since D is no smaller than around 108 nm2/s, and Rg

2 is no higher than around 10 nm2, this corresponds
to tdes ~1 µs rather than ~1 s, reported by Skaug et al. On the other hand, tdes of more concentrated
chains measured by Frantz and Granick [2] scales exponentially with chain length, as predicted in our
strong desorption limit, but tdes increases by no more than three orders of magnitude for an increase
of N from 1000 to 10,000, implying that the prefactor of N in the exponential must be around 0.001,
suggesting that the average binding free energy per monomer is a very small fraction of kBT. Thus while
the desorption time measured by Skaug et al. is too long to be consistent with our “weakly adsorbing”
regime, the desorption time measured by Frantz and Granick in a “strongly adsorbing” regime is too
fast, and depends too weakly on N to be consistent with our simulations. The simulations seem clearly
to be missing one or more physical features of the experiments. Below, we consider three hypothetical
missing features that could explain both the different scaling laws with N and the different magnitudes
of desorption time between experiment and simulations.

1. In the work of Skaug et al. [1], the amphiphilicity of the repeat unit may matter. Polyethylene oxide
is understood to be amphiphilic on a monomer scale. This has been confirmed in at least one
experiment [27] and simulation [28]. Possibly, the amphiphilic nature of the monomer should be
explicitly included in the model. In other words, an atomistic chain with implicit solvent is the
minimal polymer model that might yield accurate desorption times.

2. Atomistic detail of the repeat unit and water: The coarse-grained inter-bead potential in our
simulation is the same in solution and at the interface. Given the hydrogen bonding or hydrophobic
interactions between surface solvent molecules and adsorbed PEO or PS, the effective interaction
potential between adsorbed monomers could be altered.

3. Surface heterogeneity or roughness: If the surface is unevenly hydrophobic or rough on the
nanoscale, segments of the chain may become attached to difficult-to-find patches of surface.
If the polymer segments, once desorbed from such patches, could not locate them again before
the entire chain desorbs, then the sequential desorption mechanism for the power law desorption
time scaling could be justified.

The first hypothetical explanation could be tested with a finer-grained model for PEO. Given the
computational expense of FFS, an implicit solvent for the polymer is a must, but an atomistic
implicit-solvent model of PEO is feasible with proper parameterization with respect to solution and
adsorbed configurations, with special attention paid to the torsional angle distributions when adsorbed
to the surface. The second hypothetical explanation could be investigated with a fully atomistic,
albeit very expensive, simulation. The third hypothetical could, in principle, be checked in the
laboratory, but a much finer time resolution (and shorter exposure) would be needed. A cursory review
of recent progress in total internal reflection fluorescence microscopy (TIRFM) seems to indicate that
state-of-the-art time resolution for single-molecule microscopy is at best ~10 ms [29].

5. Conclusions

We computed the polymer desorption times in the absence of an external field or flow for a range
of coarse-grained polymer models using forward flux sampling. Our main findings are:

1. The simple strong-adsorption scaling appears to be asymptotically approached by our simulation
results at least for monomer adsorption strengths greater than around 0.3 kJ/mol. This is in line
with the comment by Fleer et al. that polymer adsorption under quiescent conditions is generally
irreversible. They note that diffusion-controlled desorption alone is extremely slow, but the
kinetic barrier to each desorption event can also be astronomical.

2. Excluded volume interactions and bending angle potentials reduce the mean desorption time
and also weaken the scaling of tdes with N.

3. For the coarse-grained chains we studied, the scaling and its prefactor seem to be tightly coupled
such that, with these models, there is no way to achieve the higher magnitude of tdes of stronger
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adsorbing chains with the weak N-dependence of the weaker-adsorbing chains that seems to have
been observed in the experiments of Skaug et al. At the same time, the exponential N-dependence
observed in non-dilutely adsorbed chains by Frantz and Granick is too fast and has too weak an
exponential dependence to be consistent with our simulations.

We did not explore the role of persistence length in detail. One reason for this is that we do
not expect the persistence length, a property of a coil in solvent, to play a direct role in the adsorbed
polymer “trains” on the surface. We also emphasize that our implicit solvent model does not include
hydrodynamic interactions, so our simulated polymer follows Rouse dynamics. We note that Dutta et
al.5 found that hydrodynamic interactions between the polymer and the wall were essential to simulate
the shear-induced desorption of isolated polymers, and that they are also important in desorption
under quiescent conditions, but we defer such an investigation to later.

Future computational work should investigate more closely the sensitivity of polymer desorption
times to the choice of the desorption criterion. The N-independence of tdesD

R2
g

for the weakest-adsorbing

chains suggests that the overall desorption rate is no longer dominated by a polymer detachment
process and instead is dominated by diffusion of the chain through some distance proportional to
Rg. This is at odds with the experimental findings of Skaug et al. for PEO desorption from silica
surfaces coated with trimethylsiloxane (TMS), showing tdesD independent of N. More work should
be done to understand the desorption rate in this limit and whether the Rg dependence predicted by
our simulations is reflective of the Skaug et al. experiments, whether the Rg dependence is an artefact
of our method, or whether there is an alternative mode of polymer surface diffusion that has not yet
been considered, such as heightened mobility after nearly all contacts have been broken. In this work,
we used a particular (small) value for the continuous contact number C defined in Equation (14) required
for desorption. Although the monomer-wall contact switch function s(z) defined in Equation (13)
decays rapidly as the number of detached monomers increases, all monomers collectively contribute
to C so that longer chains must migrate farther from the surface to satisfy the desorption criterion
C < 10−5. The effect may be to increase the calculated tdes several-fold for long chains or possibly confer
on tdes a dependence on a length scale proportional to Rg. The specific criterion may have an especially
important effect when studying regimes in which tdes scales very weakly with N, as it may inflate
the scaling of tdes with N relative to what is observed experimentally. There may also be significant
performance advantages to using a hard cutoff for s(z) at which monomers no longer contribute to C,
because the FFS algorithm will not have to wait for long chains to migrate as far from the surface.

Another area for future study is how the monomer-scale amphiphilicity of PEO or other chains
affects the desorption rate. This could be investigated with an implicit-solvent atomistic model of
PEO that includes more detailed intramolecular potentials than those studied here, or perhaps a
simpler model with alternating attractive and repulsive monomer–surface interactions would suffice.
A key question is whether desorption times of order ~1 s (rather than ~1 µs as we predict) can be
consistent with a weak scaling between tdes and N. It would also be worthwhile to study partially
sticky copolymer chains. For weakly adsorbing chains which meander to and from the adsorbing
surface, it may be possible to effectively coarse-grain the adsorbing trains into individual, sticky beads.
Another excellent area for study is the role of polymer or surface heterogeneity on the desorption time
and its scaling with chain length.

Future studies of more complex polymer desorption phenomena should take advantage of recent
advances that modified FFS algorithms to account for time-dependent dynamics, “jumpy” dynamics,
and multiple metastable states [14]. For example, a time-dependent flow field could be introduced,
or the attraction between the wall and polymer may be reduced resulting in faster ‘jumps’ away from
the wall, or the surface could be patterned resulting in multiple stable basins.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/10/2275/s1:
Figure S1: Desorption times for monomers, dimers, and trimers at varying polymer–wall interaction energies
and two bond spring constants, Figure S2: Desorption times for monomers, dimers, and trimers at varying
polymer–wall interaction energies and two bead masses.
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