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Abstract: The self-consistent field theory is a popular and highly successful theoretical framework
for studying equilibrium (co)polymer systems at the mesoscopic level. Dynamic density functionals
allow one to use this framework for studying dynamical processes in the diffusive, non-inertial
regime. The central quantity in these approaches is the mobility function, which describes the effect
of chain connectivity on the nonlocal response of monomers to thermodynamic driving fields. In a
recent study, one of us and coworkers have developed a method to systematically construct mobility
functions from reference fine-grained simulations. Here we focus on melts of linear chains in the
Rouse regime and show how the mobility functions can be calculated semi-analytically for multiblock
copolymers with arbitrary sequences without resorting to simulations. In this context, an accurate
approximate expression for the single-chain dynamic structure factor is derived. Several limiting
regimes are discussed. Then we apply the resulting density functional theory to study ordering
processes in a two-length scale block copolymer system after instantaneous quenches into the ordered
phase. Different dynamical regimes in the ordering process are identified: at early times, the ordering
on short scales dominates; at late times, the ordering on larger scales takes over. For large quench
depths, the system does not necessarily relax into the true equilibrium state. Our density functional
approach could be used for the computer-assisted design of quenching protocols in order to create
novel nonequilibrium materials.

Keywords: dynamic density functional theory; single chain structure factor; multiblock copolymers;
two-length scale copolymers; ordering kinetics

1. Introduction

Block copolymers, i.e., polymers made of different chemically incompatible units, are known to
spontaneously self-assemble into a rich variety of nanostructured patterns [1–3]. The morphologies and
dimensions of these morphologies can be varied by tuning the molecular weight and architecture of
the constituent polymers. This makes them interesting for many applications such as drug delivery [4],
energy conversion [5,6], or soft lithography [7,8], as well as for fundamental research.

Theoretically, the self-consistent field (SCF) theory has proved to be a particularly valuable tool for
studying self-assembled structures and morphological phase diagrams [9–12]. In parameter regimes
where thermal fluctuations can be neglected, SCF models can often predict equilibrium self-assembled
structures at a quantitative level. However, real materials often do not reach the true, fully ordered
equilibrium state on experimental time scales. Defects form during the ordering process, which do not
annihilate unless special techniques are applied [13–20]. Furthermore, intermediate states may appear,
which may be interesting by themselves and can stabilized by crosslinking or freezing. The properties
of these transition states not only depend on the characteristics of the constituent molecules, but also
on the way the material is processed. For these reasons, considerable effort is also spent on studying
the dynamics of block copolymer (BCP) ordering processes [21].
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SCF theories are often derived by field theoretical methods, i.e., first rewriting the partition
function as a functional integral via insertion of Delta functionals, and then applying a saddle-point
approximation. Similar approaches have recently been taken to derive a dynamic SCF theory [22,23],
starting from the Martin–Siggia–Rose functional for Langevin dynamics[24]. Solving the resulting
dynamic SCF equations typically involves simulating an ensemble of independent chains moving
in a co-evolving self-consistent field [25], similar to the ‘self-consistent Brownian dynamics’ [26–28],
‘single-chain in mean field’ [29], or ‘MD-SCF’ simulation methods [30] that have been used with great
success to study polymer systems in and out of equilibrium.

Another popular class of dynamic extensions of the SCF theory is the class of dynamic
self-sonsistent field or dynamic density functional theories (DDFTs), which combine the free energy
functional of the SCF theory with a diffusive dynamical model for the polymer relaxation and do not
require explicit chain simulations. The generic form of dynamical equation of an inhomogeneous
(co)polymer system has the form [31–34]

∂tρ(r, t) = ∇r

∫
dr′ Λ(r, r′)∇r′µ(r

′, t) (1)

where ρ(r, t) =
(
ρα(r, t)

)
denotes the local densities at position r and time t of monomers of type α in

vector notation, Λ(r, r′) =
(
Λαβ(r, r′)

)
a mobility matrix, and µ(r′) =

(
µβ(r′)

)
is derived from the SCF

free energy functional F{ρ} via µβ(r′, t) = δF/δρβ(r′, t). Hydrodynamics can be included by adding a
convective term [35] to Equation (1) and combining it with a dynamical equation for fluid flow [36,37].

The mobility matrix relates the local thermodynamic force (−∇r′µ(r′, t)) on monomers at
position r′ to the monomer density current at position r, taking into account the effect of chain
connectivity. It thus incorporates the information on polymer dynamics, e.g., internal chain relaxation
and possibly entanglements. It should be noted that an “exact” mobility matrix should also depend on
frequency according to the Mori–Zwanzig theory [38–40]. A generalized dynamic RPA (random phase
approximation) theory that includes memory has recently been proposed by Wang et al. [41].
The central assumption of Equation (1) is that one can describe inhomogeneous polymer systems by
an effective Markovian model which accounts for the multitude of relaxation time scales in polymer
systems in terms of a suitable (effective) nonlocal mobility matrix.

The question is how to determine this mobility matrix. A number of expressions have been
proposed in the literature [31,32,34,42–44], which rely on more or less heuristic assumptions. On the
other hand, it was found that not only the time scales, but also the pathways of self-assembly
may depend critically on the specific choice of the mobility matrix [45,46]. In a previous paper,
we have therefore developed a more systematic approach, where the mobility matrix is constructed
in a bottom-up manner from the single chain dynamic structure factor in particle-based reference
simulations [47]. We have tested it at the example of diblock copolymer melts with lamellar ordering
and shown that DDFT calculations based on our approach can accurately reproduce the ordering
and disordering kinetics in these systems. In fact, the DDFT results and the corresponding computer
simulation data were found to be in similar quantitative agreement than SCF predictions and computer
simulation data for equilibrium structures.

In Ref. [47], the mobility matrix was determined from fine-grained simulation data. However,
if reliable theoretical expressions for the single chain dynamic structure factor are available,
our approach can also be used to derive analytic or semi-analytic expressions for the mobility matrix,
without having to resort to fine-grained reference simulations. The purpose of the present paper
is to provide such a description for melts of linear multiblock copolymers in the Rouse regime,
i.e., the regime where chains are not entangled. We will first discuss the dynamic structure factor of
Rouse copolymers and present a highly accurate analytical approximate expression, which can be
used for efficiently calculating the mobility matrix of linear multiblock copolymers with arbitrary
block sequence. To illustrate our approach, we will then apply the dynamic theory to a particularly
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interesting multiblock copolymer melt with two competing length scales [48,49], and show how the
competition affects the pathways of self-assembly and the resulting final structures.

2. Theory

We consider melts of Gaussian chains of total length N in the Rouse regime at total monomer
density ρ0. Single non-interacting chains are characterized by their radius of gyration Rg and the chain
diffusion constant Dc, or, alternatively, the Rouse time τR = 2

π2 R2
gDc. Monomers have different types α,

and the monomer sequence along the chains is described by a function χ(n/N), with χα(n/N) = 1 if
monomer n is of type α, and χα(n/N) = 0 otherwise (∑α χα(n/N) ≡ 1). Knowing χ, one can calculate

the overall fraction of monomers α in the chain fα =
∫ 1

0 dñ χα(ñ). The free energy of the melt is
described by a free energy functional F{φα(r, t)}, which depends on the rescaled local densities of type
α monomers, φα(r, t) = ρα(r, t)/ρ0. In practice, we will consider block copolymers made of two types
of monomers A and B, with Edwards-type interactions characterized by a Flory–Huggins parameter χ

and a Helfand compressibility parameter κ [50], and use the SCF free energy functional describing this
class of systems. The relevant equations are summarized in Appendix A.

As in Ref. [47], we will use reduced quantities φ = ρ/ρ0, µ̂ = Nµ and Λ̂ = Λ/ρ0N to simplify the
notation. Equation (1) then takes the form

∂tφ(r, t) = ∇r

∫
dr′ Λ̂(r, r′)∇r′ µ̂(r

′, t) (2)

The thermodynamic driving field µ̂α(r, t) = N
ρ0

δF/δφα(r, t) is derived from the SCF functional of the
copolymer system. The corresponding equations are given in Appendix A.

Following Ref. [47], we approximate the mobility matrix by that of a homogeneous reference
system. This implies, in particular, that it is translationally invariant, Λ̂(r − r′), hence we can
conveniently rewrite Equation (2) in Fourier space as

∂tφ(q, t) = −q2 Λ̂(q) µ̂(q, t) (3)

with the Fourier transform defined via f (q) =
∫

dreiq·r f (r), f (r) = 1
V ∑q e−iq·r f (q)

We determine Λ̂(q) using the ”relaxation time approach” developed in Ref. [47], i.e., we calculate
it from the characteristic relaxation times of the single-chain dynamic structure factor g(q, t) in the
reference system:

Λ̂(q) =
1

kBTN2 g(q, 0) G−1(q) g(q, 0) with G(q) =
q2

N

∫ ∞

0
dt g(q, t) (4)

This expression has been constructed such that the DDFT consistently reproduces g(q, t) when
used to study the relaxation dynamics of a single tagged chain. Further details can be found in Ref. [47].

The central input quantity is thus the single chain dynamic structure, defined as

g(q, t) =
1
N

∫∫ N

0
dn dm χ(n/N)⊗ χ(m/N)

〈
eiq·(Rn(t)−Rm(0))

〉
(5)

where 〈·〉 denotes the configurational average over all chain conformations, ⊗ the tensor product,
and Rn(t) gives the coordinates of monomer n at time t. In Ref. [47], we propose to measure
g(q, t) from reference particle-based simulations. Here, we take an alternative approach and
estimate it from the analytical solution for free Gaussian Rouse chains. For homopolymers, an exact
expression is available [51], which has been discussed extensively in the literature in various limiting
regimes [41,51,52]. The generalization to block copolymers is straightforward (see Appendix B.2).
However, using the resulting expression in the above formalism is not easy, because it involves
an infinite sum over Rouse modes. To overcome this problem, we have derived an approximate
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expression, which avoids the sum, but still accurate reproduces g(q, t) over the whole relevant range
of q and t. The derivation can be found in the Appendix B.1. The result is

g(q, t) = N
∫∫ 1

0
dñ dm̃ χ(ñ)⊗ χ(m̃) g̃ñm̃(qRg, t/τR) (6)

with g̃ñm̃(q̃, t̃) =





e−q̃2|ñ−m̃| e
−q̃2
√

t̃
(

Φ
(

ñ−m̃√
t̃

)
+Φ
(

ñ+m̃√
t̃

)
+Φ
(

2−|ñ+m̃|√
t̃

)
+Φ
(

2−ñ−m̃√
t̃

))
: t̃ < τ∗

e−q̃2W(ñ) e−q̃2W(m̃) e−q̃2 2
π2

(
t̃−2 cos(πñ) cos(πm̃) e−t̃

)
: t̃ > τ∗

and W(ñ) = ñ2 − ñ +
1
3

, Φ(y) =
2

π2

(
e−

1
4 (πy)2√

π − π2

2
|y| (1− Erf(π|y|/2))

)
(7)

where Erf is the error function, and the scaled crossover time is set to τ∗ = 1.7. As demonstrated in
Appendix B.2, the relative error of g̃nm with respect to the exact solution is less than 2(qRg)2 × 10−4

over the whole range of q and t (see Figure A1 in the Appendix B).
Equation (6) shows that the behavior of g(q, t) features two time regimes: At small times t < τ∗,

the full spectrum of Rouse modes contributes to the dynamic structure factor in a collective manner
that can be captured by a scaling function Φ(y). At large times t > τ∗, only the leading Rouse mode
contributes. In the limit t→ ∞, g(q, t) assumes the asymptotic behavior

g(q, t) t→∞−→ N e−q2Dct I(qRg)⊗ I(qRg) with I(q̃) =
∫ 1

0
dñ χ(ñ) e−q̃2 W(ñ) (8)

This equation can also be derived independently, see Appendix B.1, Equation (A8). In the limit
t → 0 and (qRg) → ∞, the double integral over ñ and m̃ is dominated by the sharply peaked term

e−(qRg)2|ñ−m̃|, i.e., by contributions of monomers that are close along the chain, n ≈ m. In that limit,
one obtains the scaling form

gαβ(q, t)
t→0

(qRg)→∞−→ δαβ
2 fαN
(qRg)2 F

(
(qRg)

2
√

t/τR

)
(9)

with the scaling function F(x) =
∫ ∞

0 du e−u−xΦ(u/x), where Φ is defined as in Equation (7).
This corresponds to Equation (4.III.12) in Ref. [51], generalized to linear multiblock copolymers.

Finally, at t = 0, we have g̃ñm̃ = e−q̃2|ñ−m̃| for all q̃. For linear multiblocks containing a set {αi} of
blocks of type α with block length Nbαi , the integral Equation (6) then gives

gαα(q, 0) =
N

(qRg)4

{
2 ∑

αi

(
e−(qRg)2bαi − 1 + bαi (qRg)

2) (10)

+ ∑
αi ,αj
i 6=j

(
e−bαi (qRg)2 − 1

) (
e−bαj (qRg)2

− 1
)

e−∆αi ,αj
}

gαβ(q, 0) =
N

(qRg)4

{
∑

αi ,β j

(
e−bαi (qRg)2 − 1

) (
e
−bβj

(qRg)2

− 1
)

e
−∆αi ,βj

}
(11)

where N∆αiαj or N∆αi β j is the number of segments separating the blocks (αi, αj) or (αi,β j), respectively.
Using these results, we can now apply Equation (4) to evaluate the mobility function. In the

regime t/τR > τ∗, the time integral can be evaluated analytically

q̃2
∫ ∞

τ∗
dt̃ g̃ñm̃(q̃, t̃) =

π2

2
g̃ñm̃(q̃, τ∗) f

(
2e−τ∗ cos(πñ) cos(πm̃) ,

2
π2 q̃2

)
(12)

with f (u, λ) = 1− uλ
∫ 1

0
dx xλeuλ(x−1) = 1 + e−uλ(−uλ)−λ γ(1 + λ,−uλ)
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where γ(1 + λ, u) is the lower incomplete Gamma function. The other integrals have to be
computed numerically.

It is possible to determine the limiting behavior of Λ̂(q) in certain cases: In the limit q → ∞,
the time integral in Equation (4) is dominated by small times t̃. We can then use the scaling form
Equation (9) to evaluate G(q), giving Gαβ(q) = 1

Dc
δαβ

4 fα N
(qRg)2 C with C = 2

π2

∫ ∞
0 xF(x)dx = 3.587.

The static single chain structure factor in this limit is given by gαβ(q) = δαβ
2 fα N
(qRg)2 . Putting everything

together, we obtain

Λ̂αβ(q)
q→∞−→ δαβ

Dc

kBT
fα · 0.279. (13)

In the limit q → 0, we specifically examine the total mobility Λ̂total(q) = ∑αβ Λ̂αβ(q),
which corresponds to the mobility function for homopolymers. The relevant contribution to
the time integral entering Λ̂total(q) stems from late times, thus we can replace g(q, t) by the

asymptotic expression Equation (8), resulting in Gtotal(q) → 1
Dc
(1− (qRg)2

3 ). Furthermore, we have

gtotal(q, 0)→ N(1− (qRg)2

3 ) at q→ 0. Together, we obtain

Λ̂total(q)
q→0−→ Dc

kBT

(
1− (qRg)2

3

)
(14)

which essentially reflects the diffusion of the whole chain. Unfortunately, a similarly simple expression
for the asymptotic behavior of the individual components Λ̂αβ for block copolymers is not available,
since they also include contributions from the internal modes, which relax on time scales of order τR.

Figure 1 shows examples of mobility functions for three different types of linear multiblock
copolymers containing two monomer species A and B. Additionally shown with dotted lines is the
expected asymptotic behavior at q → ∞ (Equation (13)), and with black dashed lines, the expected
asymptotic behavior of Λ̂total, at q→ 0 (Equation (14)).
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Figure 1. Mobility functions Λ̂
αβ
(q) for (a) symmetric AB diblock copolymers and (b) asymmetric

multiblock copolymers with sequence A5mBmAmBmAmBm. Thick solid lines show the theoretical
results from Equation (4) with Equation (6). Symbols show simulation results from particle-based
simulations of chains with length N = 40 (plus and stars) and N = 100 (circles, triangles and diamond).
Dotted lines show the limiting behavior at q → ∞ according to Equation (13), dashed line shows
limiting behavior Equation (14) of the total mobility function at q→ 0. For comparison thin lines in
(a) also show mobility functions for a symmetric multiblock with sequence (AmBm)5).

Figure 1a focusses on sequences that are symmetric with respect to exchanging A and B. The thick
lines show the mobility function for symmetric diblock copolymers, the thin line the corresponding
results for multiblock copolymers with sequence (AmBm)5. In the case of diblocks, we have also carried
out particle-based simulations of discrete Gaussian chains of length N = 40 (symbols) for comparison.
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The data are in good agreement with the theory. The behavior of the dynamic mobilities of diblock and
multiblock copolymers is qualitatively quite different: In diblock copolymers, the blocks move largely
independent from each other: The mobility component Λ̂AB is close to zero in the whole range of q.
In contrast, in multiblock copolymers, the motion of blocks is highly cooperative at small q and they
start to decouple only at qRg > 1. At q → ∞, they move independent from each other as expected,
i.e., Λ̂AB ≈ 0.

Figure 1b shows the mobility function for a more complicated asymmetric multiblock copolymer
with sequence A5mBmAmBmAmBm. It has a basic diblock structure, but one of the two blocks carries
itself a periodic multiblock sequence. The mobility function combines features of the symmetric
diblock and multiblock copolymer mobilities shown in Figure 1a. The behavior of the A component
resembles that in regular diblock copolymers. The B component tends to move cooperatively with the
A component at small q. The joint mobility Λ̂AB is nonzero over a range of q which is even wider than
in the case of pure periodic multiblock copolymers. The theoretical curves are again compared with
simulation data for chains of length N = 40 (plus and stars) and N = 100 (circles, triangles, diamonds).
The agreement is excellent at small q. For large q the simulation data for shorter chains start to deviate
from the theory. This effect decreases with increasing chain length.

3. Application to Two-Length Scale Block Copolymers

To illustrate our DDFT approach, we will now use it to study the ordering kinetics of
A5mBmAmBmAmBmblock copolymer melts. They belong to a class of polymers with a two-length-scale
molecular architecture, which have attracted interest as promising candidates for responsive
materials [48]. In particular, linear copolymers consisting of one long uniform block and one periodic
multiblock have been studied in some detail, mostly by ten Brinke and coworkers [48,49,53–55].
At sufficiently high χN, they form hierarchical patterns with small structures embedded in larger
ones. These two length scales should be associated with two time scales, resulting in a complex
ordering kinetics.

To set the stage, we have determined the equilibrium structures of A5mBmAmBmAmBmcopolymer
melts using SCF theory for χN ∈ [35 : 80]. The results of the SCF analysis are summarized
in Figure 2. The equilibrium structure is basically lamellar, but with a lamellar-in-lamellar
structure emerging at χN ≥ 42.5, characterized by an internal substructure inside the B domains.
The corresponding order parameter profiles are shown in Figure 2a. Here, the order parameter
is defined as M = (φA − φB)/(φA + φB). The lamellar phase competes with a hexagonal phase,
which also features substructures at higher χN. Examples of order parameter maps of hexagonal
structures corresponding to local free energy minima are shown in Figure 2b. The SCF free energy of
the lamellar phase is always slightly smaller than that of the hexagonal states, see Figure 2c. Along with
the minimum free energy per volume, Figure 2c (lower panel) also shows the periodic distance/lattice
parameter of the minimum structure.

Next we study the dynamic ordering process in this system using DDFT calculations with
the mobility function calculated in the previous section (Figure 1b). The calculations were carried
out in two dimensions in periodic boxes of side length 17.2Rg × 15Rg, using 86× 75 grid points.
These dimensions were chosen such that, for every value of χN studied here, at least one side length
was roughly commensurate with the equilibrium lamellar distance and the lattice constant of the
competing hexagonal pattern. The contour of the polymers was discretized with 100 ”segments”.
The time step was chosen ∆t = (0.2− 1.0)× 10−4t0 depending on the system, where the time unit is
t0 = R2

g/Dc. We found that the results do not depend on the precise value of the time step, as long as
the simulations were stable. If the time step was too large, the numerical procedure to determine the
thermodynamic forces (see Appendix A) failed, and we then reduced the time step. In most systems,
∆t = 0.5× 10−4t0 was sufficient, but we had to set ∆t = 0.2× 10−4t0 in the most strongly interacting
systems with χN = 70. For numerical reasons, we impose a frequency cutoff ωc, i.e., (qRg)2Λ̂αβ may
not exceed a cutoff value ωc. This is necessary because (qRg)2Λ̂αβ in Equation (3) diverges at large
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q for α = β. The frequency cutoff slows down local ordering processes on very short time scales.
Here, we use ωc = 5/t0. We also did shorter test runs on smaller systems with ωc = 1.5/t0 (the value
found to be sufficient in our earlier work on diblock copolymers [47]) and found that the results do not
change qualitatively. The initial configuration is a homogeneous melt, to which a small noise is added
in order to initiate the ordering process.

a)

b) c)
χN=40

χN=65

Figure 2. Stable and metastable ordered phases in melts of multiblock copolymers with sequence
A5mBmAmBmAmBm. (a) Order parameter profiles for stable lamellar structures as a function of
χN. A double lamellar structure emerges for χN > 42.5. (b) Order parameter maps for selected
metastable hexagonal structures for χN = 40 and χN = 65. The color map is the same as in panel (a).
(c) Free energy per volume (top) and periodic distance (bottom) in lamellar and hexagonal phases as a
function of χN. In hexagonal phases, D denotes distance between cylinders

Figure 3a shows snapshots of melts during the ordering process for different χN, starting from
the same initial configuration. The ordering kinetics clearly reflects the two scale character of the block
copolymer. At early times t < t0 (regime I), the local ordering is governed by the small characteristic
length scale. Around t ∼ t0, the structures start to coarsen (regime II), until the second characteristic
length scale is reached around t ∼ (2 − 5)t0 (regime III). The actual kinetic ordering pathway is
governed by the interplay of these time-dependent ordering scales with yet another time scale, the time
required for A-B segregation, which decreases with increasing incompatibility parameter χN. As a
result, the ordering process depends on χN.

At low χN (e.g., χN = 40), the full segregation takes place in regime III. A defective lamellar
phase forms, which subsequently orders by merging of A and/or B domains, resulting in an ordered
lamellar phase. At intermediate χN, the segregation starts in regime II and continues in regime III.
Thus the system initially orders on small scales, then coarsens by merging of B domains, but merging
of A domains is also possible. The final structure is again lamellar.

Finally, at high χN (χN > 60), the system segregates already in the time regime I. It initially
orders into small circular B domains, which then merge to form elongated connected structures.
Then coarsening sets in, which is first mediated by rearrangement and further merging of B domains,
and later by a thickening of B domains associated with substructure formation inside them. In most
cases, A-rich substructures emerge spontaneously inside B domains. Sometimes, we also observe that a
larger A island dissolves into a substructure (see Figure 3c). Once regime III is reached, the topology of
the structures inverts from B domains in an A matrix (in regime I) to A domains in a B matrix. At late
times, the A domains straighten out, but the basic topology of the structure no longer changes. The final
structure is characterized by A domains with defined thickness but variable length, ranging from
circular to elongated. Thus these final structures combine elements of the equilibrium lamellar phase
and the metastable hexagonal phase. They are kinetically arrested and the topologies do no longer
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change. To model their further relaxation, one would have to add stochastic thermal noise to the
DDFT equations, following the lines outlined in Ref. [47] (see next section). We should however note
that thermal fluctuation amplitudes in copolymer melts are small [33], therefore we expect similar
long-lived structures to appear in real systems as well.

40 45 50 55 60 7065

χN

0.1

1

0.2

0.5
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5

50

Regime I

Small scale
ordering

B domains
in A matrix
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Coarsening
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A domains 
in B matrix 
or lamellae / 
bicontinuous
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c)
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tim
e
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t 0

]

b)
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tim
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[t 0
]

Figure 3. (a) Examples of ordering kinetics in A5mBmAmBmAmBmdiblock copolymer melts for different
χN and identical disordered initial configuration. The color map is the same as in Figure 2. (b) Details
of final structures (t = 200t0) at χN = 55 (left) and χN = 70 (right) showing substructures in the
B-domains. (c) Detail of a configuration where a substructure emerged by dissolution of an A domain.
Parameters are χN = 60 and t/t0 = 2.0, 2.4, 2.5.
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4. Conclusions and Outlook

To summarize, in this work, we have proposed a DDFT model for studying kinetic processes
of linear (multi)block copolymer melts in the Rouse regime. The model builds on earlier work [47],
where we have showed how to construct such models systematically from fine-grained particle-based
simulations. Here we use the same basic approach, but calculate the central input quantity—
the mobility matrix—semi-analytically from the theory of Rouse dynamics. One key ingredient
is an accurate approximate expression for the single chain dynamic structure factor of Rouse chains,
which can be applied at all times and over a large wave vector range.

DDFT models make more approximations and are less versatile than self-consistent Brownian
dynamics methods [22,23], which can also be used to study polymer systems far from equilibrium
where the use of SCF free energy functional is no longer justified [26]. On the other hand, they have
the advantage that they establish a natural connection to other dynamic continuum theories such as
Cahn–Hilliard theories. Furthermore, they require relatively modest computational effort. For example,
the calculations presented here (Figure 3) were run using own serial code on an Intel Core i7-6700 CPU
processor. The CPU time per time step varied between 0.1 and 0.4 seconds, depending on the number
of iterations required to determine the thermodynamic driving force self-consistently. In total, the cost
for simulating one Rouse time τR = 2/π2t0 in our system of size 260 R2

g was roughly 12 CPU minutes
for χN ≤ 65, and 30 CPU minutes for χN = 70.

To illustrate our DDFT approach, we have studied the ordering kinetics in a melt of
two-length-scale copolymers. The kinetic competition on different length and time scales leads to an
intricate interplay of ordering processes and results in final structures that not necessarily correspond
to a true free energy minimum. Specifically, we have studied situations where an initially disordered
state was instantaneously quenched into an ordered region. In that case, the final structures strongly
depend on initial small fluctuations and are hard to control. A better controlled ordering process
might be achieved by using a slower, well-defined and tunable quenching protocol. Experimentally,
it is found that well-ordered two-scale lamellar structures can be created by quenching the samples
very slowly [55]. This is consistent with our calculations where ordered structures are found to form
when quenching into regions with lower χN. We are not aware of published work on non-equilibrium
morphologies that can be obtained if samples are quenched more rapidly. It would be interesting to
compare them with our numerical calculations. We expect that it may be possible to stabilize novel
structures when quenching with specially designed quenching protocols, possibly combined with
periodic re-heating. This could also be studied DDFT simulations and will be an interesting direction
for future work.

In the present work, we have employed a deterministic DDFT model that ignores thermal noise.
Small thermal fluctuations can be included in a straightforward manner by adding a stochastic current
to the DDFT equation, i.e., replacing Eqaution (1) with

∂tρ(r, t) = ∇r

( ∫
dr′Λ(r, r′)∇r′µ(r

′, t) + j(r)
)

(15)

where the components of j(r, t) are Gaussian random variables with zero mean (〈jIα(r, t)〉 = 0) and
correlations according to the fluctuation-dissipation theorem:

〈jI α(r, t)jJ β(r′, t′)〉 = 2kBTδ(t− t′) Λαβ(r, r′) δI J (16)

(here α, β are monomer types and I, J are cartesian coordinates). Equation (15) implicitly assumes that
the SCF free energy functional (from which µ is derived) can be interpreted in the sense of a free energy
landscape, which may be questionable if fluctuations are large. The relative amplitude of thermal
noise is given by the inverse Ginzburg parameter [11,34] C−1 = kBT N/ρ0R3

g ∝ 1/ρ0
√

N. In dense
systems of polymers with high molecular weight, C−1 is small. Thus fluctuations are small and can be
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neglected in many cases, except when studying very soft modes (e.g., interfacial fluctuations) and/or
dynamical pathways that involve the crossing of free energy barriers.

Our illustrative DDFT calculations were carried out in two-dimensions, i.e., we have imposed
uniformity in the third dimension. This was motivated by the fact that the relevant competing SCF
structures of our system are one- or two-dimensional. However, in reality, the initial structures will
fluctuate in all three dimensions, e.g., one will find be three-dimensional, e.g., small-scale spheres
instead of small-scale cylinders. This will have to be elucidated by full three dimensional calculations.

So far, the theory is restricted to linear multiblock copolymers, and we have assumed that
monomers are structurally similar, i.e., they have the same flexibility and the same monomer friction.
One goal of future work will be to develop similar semi-analytic approaches for other polymer
architectures, for kinetically asymmetric copolymers, or (approximately) for polymers beyond the
Rouse regime.
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Appendix A. SCF Equations

In the following, we briefly summarize the main SCF equations for our system. More detailed
discussions of the SCF theory can be found, e.g., in Refs. [9–12]. In the SCF approximation, the free
energy functional F [{φα (r)}] is expressed as

F
kBT

=
ρ0

N

{ ∫
dr
[
χN φA (r) φB (r) + κN (φA (r) + φB (r)− 1)2

]
−
∫

dr φ (r) ·ω (r)−V ln Q
}

(A1)

where φ = {φα} denotes the vector of normalized density field of monomers of type α, ω = {ωα}
the corresponding vector of conjugate fields, and Q the single chain partition function in the external
fields ω. The conjugate fields are defined implicitly by the requirement

φ (r) =
V
Q

∫ 1

0
dñ χ(ñ) q f (r, ñ) qb(r, 1− ñ) (A2)

where the chain propagators q f (r, s) and qb (r, s) are obtained from solving the differential equations

∂q f (r, ñ)
∂ñ

= R2
g∇2q f (r, ñ)−ω(r) · χ(ñ) q f (r, ñ) (A3)

∂qb(r, ñ)
∂ñ

= R2
g∇2qb(r, ñ)−ω(r) · χ(1− ñ) qb(r, ñ) (A4)

with initial condition q f ,b(r, 0) = 1, and the single chain partition function Q is given by

Q =
1
V

∫
dr q f (r, 1) =

1
V

∫
dr qb(r, 1) (A5)
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The SCF equilibrium state is obtained by minimizing F [{φα (r)}], leading to a second set of
equations for ω(r):

ωSCF
A (r) = χNφB + 2κN (φA + φB − 1) , ωSCF

B (r) = χNφA + 2κN (φA + φB − 1) (A6)

In DDFT calculations, these conditions are replaced by equations for the thermodynamic fields
that drive the system towards equilibrium,

µ̂
α
(r) =

(
ωSCF(r)−ω(r)

)
(A7)

In SCF calculations, one must solve self-consistently the set of Equations (A2) and (A6). In DDFT
calculations, one must solve Equation (A2) for the conjugated fields for given density fields φα(r, t) in
every time step. Both tasks require iterative methods. In the present work, we use Anderson mixing [56]
and a pseudospectral method for solving the propagator Equations (A3) and (A4) [33]. In the DDFT
calculations, we require an accuracy of maxαr |∆φα(r)| < 0.001 in every time step, where ∆φ is the
difference between the target density profile and the profile obtained from Equation (A2) with the given
fields ω. In the SCF calculations, we require maxαr |∆ωα(r)| < 10−6 for the difference ∆ω between the
initial value of ω in an iteration step and the final value computed from Equations (A2) and (A6).

Appendix B. Single Chain Dynamic Structure Factor

Appendix B.1. Late Time Behavior

We consider the dynamic structure factor of single non-interacting Gaussian chains in the Rouse
regime. Since all variables are Gaussian distributed, Equation (5) can be rewritten in the form

gαβ(q, t) =
1
N

∫∫ 1

0
dn dm χα(

n
N ) χβ(

m
N ) exp

(
− 1

6
q2〈(Rn(t)− Rm(0))2〉

)
(A8)

The trajectories Rn(t) can be split up into the center of mass motion Rc(t) and the relative
motion rn(t),

Rn(t) = Rc(t) + rn(t) with Rc(t) =
1
N

∫ N

0
dn Rn(t) (A9)

In the limit t→ ∞, the internal coordinates rn(t) and rm(0) are uncorrelated with each other and
with R0, i.e.,

〈(Rn(t)− Rm(0))2〉 ≈ 〈(R0(t)− R0(0))2〉+ 〈r2
n〉+ 〈r2

m〉

The first term describes the center of mass diffusion of the chain and obeys 〈(R0(t)−R0(0))2〉 = 6Dct.
The second term describes the monomer fluctuations about the center of mass. It can be calculated using
the relation 〈(Rn − Rm)2〉 = 6|n−m|R2

g/N, which is valid for Gaussian chains. After some algebra,
one obtains 〈r2

n〉 = 6R2
g
(
( n

N )2 − n
N + 1

3
)
. Thus the dynamic structure factor takes the asymptotic form

g(q, t) ≈ N e−q2Dct I(qRg)⊗ I(qRg) with

I(q̃) =
〈 ∫ N

0
dn χ( n

N ) eiq·rn
〉
=
∫ 1

0
dñ χ(ñ) e−q̃2 (ñ2−ñ+1/3) (A10)

which corresponds to Equation (8).

Appendix B.2. Derivation of an Approximation for g(q, t)

At finite t, the dynamic correlations due to internal modes can no longer be ignored. The exact
solution for g(q, t) then involves an infinite sum over all Rouse modes p. For homopolymers,
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the resulting expression for homopolymers is derived, e.g., in Ref. [51] (Appendix 4. III). It can
easily be generalized to linear multiblock copolymers, giving

g(q, t) = e−q2Dct N
∫∫ 1

0
dñ dm̃ χ(ñ)⊗ χ(m̃) e

−(qRg)2
(
|ñ−m̃|+H(ñ−m̃,t/τR)+H(ñ+m̃,t/τR)

)
(A11)

with

H(x, τ) :=
2

π2

∞

∑
p=1

1
p2 cos(pπx)

(
1− e−τp2)

(A12)

Our goal is to approximate the function H(x, τ). We first note that it can be evaluated exactly in
the limit τ → ∞, giving

H(x, ∞) =
2

π2

∞

∑
p=1

1
p2 cos(pπx) =

[1
2
(x− 1)2 − 1

6

]
mod 2 =: H∞(x) (A13)

To prove this relation, one simply calculates the coefficients of the Fourier series of H∞(x).
The leading correction term at τ � 1 is the term proportional to e−τ , hence we obtain

H(x, τ) ≈ H∞(x)− 2
π2 e−τ cos(πx) at τ � 1 (A14)

Likewise, we can evaluate the behavior of H(x, τ) exactly in the limit of τ → 0 and small |x| � 1.
In that limit, one can replace the sum over p by an integral, giving

H(x, τ) ≈ 2
π2

∫ ∞

0
dp

1
p2 cos(pπx)(1− e−τp2

) =
√

τ Φ
(
x/
√

τ
)

(A15)

with Φ(y) =
2

π2

(
e−

1
4 (πy)2√

π − π2

2
|y| (1− Erf(π|y|/2))

)
(A16)

where Erf is the error function. Next we seek to approximate H(x, τ) over the whole range x ∈ [−2 : 2]
for finite small τ � 1. To this end, we exploit the relation H(x, τ) = H(|x|, τ) = H(2− |x|, τ) and
make the Ansatz H(x, τ) ≈ Hc(x, τ) + C(τ) with

Hc(x, τ) =
√

τ
(

Φ
( |x|√

τ

)
+ Φ

(2− |x|√
τ

))
(A17)

where we choose the offset C(τ) such that the approximation is best at x = 1,
i.e., C(τ) = H(1, τ)− Hc(1, τ). Thus we need to find a good approximation for H(1, τ) at finite
small τ. We know H(1, 0) = 0 and

∂τ H(1, τ) =
2

π2

∞

∑
p=1

(−1)p e−τp2
=

1
π2 (θ4(e−τ)− 1) τ→0−→ − 1

π2 (A18)

where θ4(y) is the Theta “constant”. Numerically, it turns out that θ4(e−τ) closely follows

θ4(e−τ) ≈ 2
√

π

t
e−π2/4t = π2∂τ Hc(1, τ) (A19)

over a fairly large range of τ > 0. The deviation from the exact value of θ4(e−τ) scales roughly as e−20/t.
Thus we can approximate ∂τ H(1, τ) ≈ −1/π2 + ∂τ Hc(1, τ) and hence H(1, τ) ≈ − 1

π2 τ + Hc(1, τ).
Inserting this into our Ansatz above, we obtain

H(x, τ) ≈ Hc(x, τ)− τ/π2 at τ � 1 (A20)
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Starting from the two limiting expressions, Equations (A20) and (A14), we now make the
overall Ansatz

Happr(x, τ) =

{
Hc(x, τ)− τ/π2 : τ < τ∗

H∞(x)− 2
π2 e−τ cos(πx) : τ > τ∗

(A21)

We choose the crossover value τ∗ = 1.7 such that it minimizes the maximum absolute value
of the deviation ∆H(x, τ) = Happr(x, τ)− H(x, τ) between the approximate expression (A21) and
the numerical evaluation of the full expression, Equation (A12). With this approach, we can reach
max(|∆H(x, τ)|) ≤ 10−4 over the whole range of x and τ. Figure A1 shows H(x, τ) and the ∆H(x, τ)

as a function of x and τ.
Version September 21, 2020 submitted to Polymers 13 of 15

Figure A1. Illustration of (a) H(x, τ) and (b) deviation ∆(x, τ) = Happr(x, τ)− H(x, τ) between the
approximate expression, Eq. (A21) and the numerical value, Eq. (A12), in the range x ∈ [0 : 2].

Starting from the two limiting expressions, Eqs. (A20) and (A14), we now make the overall Ansatz

Happr(x, τ) =

{
Hc(x, τ)− τ/π2 : τ < τ∗

H∞(x)− 2
π2 e−τ cos(πx) : τ > τ∗

(A21)
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