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Abstract: Nowadays, global warming, energy issues and environmental concern have forced energy
production stakeholders to find new low carbon solutions. Photovoltaic technologies as renewable
energy resources represent a competitive way for the transition from conventional fossil fuels towards
a renewable energy economy. The highest renewable energy systems (RES) market share is based
on silicon photovoltaic (Si-PV). The installed RES have rapidly increased over the last two decades,
but, after the end of their service life, they will be disposed of. Therefore, the constant increase of the
installed RES has attracted the global concern due to their impact on the environment and, most of all,
due to the content of their valuable resources. However, the rational management of RES waste has
not been addressed so far. The paper represents an extension of a previous work focused on Si-PV
recycling by developing all waste hybrid composites. The extension research conducted in this paper
is related to the influence of Si-PV characteristics on the mechanical performances and water stability
of the hybrid composites. All waste hybrid composites developed by embedding different Si-PV
grain sizes were tested before and after water immersion in terms of mechanical strength, interfacial
adhesion, crystallinity and morphology by scanning electron microscopy (SEM) analyses. The results
revealed the better performance of such Si-PV composites compared to that of sieved composites
even after long term water immersion. Therefore, high-content Si-PV hybrid composites could be
developed without Si-PV powder sieving. Further on, all waste hybrid composites could be used as
paving slabs, protective barriers for outdoor applications.

Keywords: all waste hybrid composite materials; silicon photovoltaic module; recycling; mechanical
properties; interfacial adhesion; water stability

1. Introduction

Nowadays, worldwide energy issues and environmental pollution lead to the fast development
of renewable energy systems (RES). The highest RES market share is based on silicon photovoltaic
(Si-PV) systems which convert sun energy into electricity [1]. Generally, the average service life of a
photovoltaic (PV) panel is around 25 years, afterwards, they become waste, raising environmental
pollution and human health issues [2–4]. In this way, significant PV wastes amounts are expected to be
loaded around 2025, and by 2038 the amount of such waste type is expected to reach 1.957.099 t, [2].

The European Union (EU) has already pioneered and implemented policy actions to promote the
growth of the new PV recycling industry by introducing the directive on the management of Waste
of Electrical, Electronic Equipment (WEEE) in 2012. The 2012 WEEE directive includes a specific
regulation for photovoltaics recycling (The European Parliament and the Council of the European
Union, 2012) [5]. Thus, a minimum collecting rate of PV average weight of 45% was imposed by 2016
and 65% later. Among the different module technologies on the market, wafer-Si modules have always
been the dominant technology with a ~90% market share [2].
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In technical terms, the research on solar panel recovery is facing many problems. The key issue is to
develop economically feasible and non-toxic recycling technologies. The research on the management
of solar photovoltaic panels’ management at the end of their service life is just beginning in many
countries. However, there is an urgent need for further expansion of producer responsibility [6–8].

There are papers reporting on thermal treatments of the PV waste to remove the ethylene-vinyl
acetate (EVA) foil but the process is high energy consumption [9]. Others studies followed the organic
dissolution of EVA being a long lasting process with the release of large volatile organic amounts [10,11].

Our previous work has reported the results regarding the silicon photovoltaic modules recycling
by embedding them in other problematic waste polymeric blends and developing new composite
materials [12]. Rubber, polyvinyl chloride (PVC), high-density polyethylene (HDPE) represent other
problematic polymer wastes. The fast development of the automotive industry, the increased amount
of tires rubber waste with a negative impact on the environment has forced the European Union (EU)
to adopt a new directive on the end-of-life of vehicles (ELV). The ELV Directive states that by 2015
vehicles must be made of 95% recyclable materials [13]. Huge tires amounts are yearly discarded with
very few recycling rates and they need a very long degradation time because of their cross-linked
structure, stabilizers and other additives content [14,15].

However, they are valuable materials which alongside other polymer wastes and inorganic fillers
such as Si-PV wastes could be recycled and new value-added materials could be developed. Moreover,
the incorporation of inorganic particles in polymer phases is known to enhance the properties of
the resulted organic-inorganic composite material. Therefore, the thermal, mechanical, rheological,
fire-resisting properties of the final composite will be improved [16]. Silica (SiO2), mainly, is widely
used in the tire industry to improve abrasion resistance, wet skid resistance and to decrease rolling
resistance for the production of the “green automobile tire” with reduced fuel consumption, because of
the requirement of environmental protection and resource-saving. Thus, SiO2/rubber nanocomposites
have attracted considerable interest over the recent decade [17,18].

This paper continues the previous work focusing on the influence of low Si-PV content and grain
size on the performance, even in wet environments, of the all waste hybrid composites with waste
polyvinyl chloride (PVC), high-density polyethylene (HDPE) and rubber. All these research studies
have been conducted for finding sustainable ways of Si-PV recycling further.

2. Characterization of the All-Polymer Waste Composites

2.1. Mechanical Testing

Tensile strength (RT) was measured with the Z020, Zwick/Roell equipment (Zwick Roell,
Furstenfeld, Austria), at a traction speed of 100 mm/min and Young modulus (E) was calculated
with the soft equipment. The compressive strength (RC) was tested on the same mechanical testing
equipment, according to SR EN ISO 527-4: 2000 and impact resistance (RI) were evaluated with the
IZOD method based on the SR EN ISO 180: 2001 standard and using the impact test equipment
Galdabini Impact (Galdabini, Iserlohn, Germany).

2.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

The chemical structure changes, especially at the interface zone of all waste hybrid composites,
were analysed by recording their infrared (IR) spectra. The Fourier Transform Infrared Spectroscopy
(FTIR) analysis was run in reflectance mode, by using a spectrophotometer (Spectrum BX Perkin Elmer,
Markham, ON, Canada). The FTIR spectra were recorded in the range 500 to 4500 cm−1, after 16 scans,
with a 4 cm−1 resolution.

2.3. X-ray Analysis

The crystalline structure and the influence of the Si-PV particles on the composite’ interface were
investigated with the aid of the X-ray diffraction measurements (Bruker D8 advance Diffractometer
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(Bruker, Ettlingen, Germany) using Cu Kα radiation with a wavelength of 1.54016 Å). The data were
collected over the range 2θ = 10◦–80◦ with a step interval of 0.01◦ at 25 ◦C temperature.

3. Experimental Set-Up

3.1. Materials

The materials used for processing the all-waste hybrid composites are below. Tire rubber powder
with a particle size of 1 mm (which consists of four different types of rubber: natural, styrene-butadiene,
polybutadiene and butyl-rubber) from Granutech Recycling (Suceava, Romania). Polyvinyl chloride
(PVC) flakes and high-density polyethylene (HDPE) flakes are coming from a collecting and recycling
company-Silnef SRL, Brasov, Romania, the PVC derives from shredded and milled cables containing
tris (2,4-di-tert-butylphenyl) phosphite as stabilizer agent. Si-PV modules waste (waste from the
Research Institute of Transilvania University of Brasov, Brasov, Romania). The PVC and HDPE flakes
were milled by using the Centrifugal mill ZM 200 (Retsch, Haan, Germany) to obtain a powder with
the diameter of the grain less than 1 mm.

The dismantling of the end-of-life Si-PV modules (poly-crystalline Si-PV modules) was manually
performed and the aluminium frame and junction box were removed, Figure 1A, to be sent to
specialized recycling companies. Afterwards the Si-PV wafer was chopped in small parts, Figure 1B
and milled Figure 1C. The Si-PV powder resulted after milling was added to rubber-HDPE blend.
The blend containing rubber-HDPE-Si-PV was compression moulded and thermal processed resulting
the rectangular samples shown in Figure 1.

The experimental steps in the development of all waste hybrid composites are shown below
in Figure 1.
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Figure 1. Preparing the waste silicon photovoltaic (Si-PV) powder from PV module and all waste
hybrid composites.

As already mentioned, this study is an extension of previous research on all waste Si-PV based
polymer composites [12]. In the first stage of the previous study on Si-PV based all-polymer waste
composites, checks were conducted on the effect of the low Si-PV powder content (between 0.5–3 wt %)
with and without glass components, on the interface/mechanical properties of the polymer blends
(rubber, PVC and HDPE). The previous study results had indicated the benefit on mechanical
performance when inserting all Si-PV, which means composite preparation by inserting the entire
milled silicon wafer (including glass). In that study, the Si-PV particles had not been sieved, and the
subsequent question was: which is the influence of the Si-PV grain size on the interface and stability of
the Si-PV based all-polymer waste composites? That is why this study was conducted on Si-PV grain
size influence at composite’ interface level, considering all Si-PV powder (with glass) and the water
stability of these composites.

The four sample series were prepared by sieving the Si-PV powder in 20, 40, 100 and 200 microns
mesh followed by their insertion in the waste polymer blend (PVC, rubber and HDPE), for the
composition ratio of PVC:rubber:HDPE:Si-PV = 60:32:5:3, all composite components in wt %. Each
sample series (with 20, 40, 100 and 200 microns Si-PV powder) has been replicated three times. The 1st
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being tested as such, the 2nd- after 500 h water immersion, the 3rd- after 1000 h water immersion.
The mechanical properties of the newly developed composite materials are presented in what follows.

3.2. Results and Discussions

3.2.1. Mechanical Properties

The measurements of the mechanical properties are determinants for these kinds of composite
materials, as they could be used as products for various applications such as protective barriers, paving
slabs, covers for playgrounds and so on. All these applications should meet mechanical properties
requirements as to tensile, compressive, impact strength.

The key factors with overwhelming influence on the output properties (mechanical performance)
of the composite materials are interfacial bonds, determined in turn by the processing parameters,
filler dispersion rate, filler wetting, filler shape and size, components properties, the mass ratio of the
components. The larger the accessible surface, the higher the interphase fraction which is expected.
It is worth noting that the interactions among filler particles are generally much stronger than interfacial
interaction [17–19].

The assessment of the behaviour of the material under outdoor conditions is of the utmost
importance when outdoor applications are targeted. This study evaluated the mechanical strength of
the novel composite materials developed after their water immersion.

Five representative samples of each series were mechanically tested and the average values are
summarized in Table 1.

The mechanical characteristics of the etalon sample (without any Si-PV addition) before and after
water immersion are presented in Table 1. In the tables below the tensile strength is denoted as RT,
compression strength as RC and Young moduli as E. All dates are reported with standard deviation (Sd).

Table 1. Mechanical characteristics of the sample with no Si-PV content.

PVC: Rubber:
HDPE: PV RT (MPa) Sd (for

RT)
E

(MPa) RC (MPa) Sd (for
RT) RI (kJ/m2)

Sd (for
RT)

60:35:5:0
un-immersed

samples
2.4 ± 0.18 0.1848 10.91 29.36 ±

1.16 1.1574 10.72 ±
0.78 0.7800

500 h water
immersed 2.62 ± 0.19 0.1873 20.08 50.46 ±

0.90 0.8950 11.2 ± 0.74 0.7371

1000 h water
immersed 2.4 ± 0.25 0.2499 28.45 53.1 ± 2.02 2.0154 11.85 ±

0.43 0.4327

By comparing the mechanical properties of the polymeric composites with no Si-PV content
(Table 1) with that of the composite materials with low Si-PV content, before and after water immersion,
the following conclusions could be drawn:

Before Water Immersion

The tensile and compression strength of the un-immersed composites are comparable, 2.40 and
29.36 MPa of no Si-PV content composite–Table 1 and 2.36 and 28.54 MPa for 3% Si-PV composite–see
Table 2. The tensile strength of the 2.5wt % Si-PV sample had a significant drop compared to the
same property of the etalon sample (without Si-PV filler). This drop could be attributed to the Si-PV
partial agglomeration.

However, the Young modulus of 3wt % Si-PV content is almost 70% higher (17.16 MPa) than
that of the no Si-PV content composite (10.91 MPa), as it can be seen in Tables 1 and 2. All dates are
reported with standard deviation (Sd).

Significant impact strength increase after the Si-PV powder embedding in the polymeric blend
was noticed. This effect is due to the higher inorganic filler stiffness compared to that of the polymeric
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materials, thus leading to the improvement of the composites’ mechanical and thermal properties.
These benefits are connected to the ability of the inorganic filler to absorb the mechanical and
thermal energy.

Table 2. Mechanical properties of all-waste polymer composites with low Si-PV content.

Water Immersion
Duration

Si-PV
(wt %) RT (MPa) Sd (for RT) E (MPa) RC (MPa) Sd (for RC)

un-immersed

0.50 1.98 ± 0.19 0.1850 8.18 18.15 ± 0.91 0.9050
1.00 2.13 ± 0.09 0.0917 10.72 22.85 ± 0.94 0.9425
1.50 2.13 ± 0.21 0.2113 11.64 27.28 ± 2.04 2.0367
2.00 2.4 ± 0.40 0.3993 15.62 27.46 ± 2.45 2.4492
2.50 2.32 ± 0.45 0.4486 15.42 28.29 ± 0.87 0.8712
3.00 2.39 ± 0.46 0.4572 16.86 28.54 ± 1.01 1.0076

500 h

0.50 2.35 ± 0.40 0.3998 29.64 51.65 ± 0.56 0.5565
1.00 2.38 ± 0.34 0.3383 16.44 31.14 ± 1.43 1.4312
1.50 1.82 ± 0.17 0.1701 13.25 30.95 ± 2.00 1.9952
2.00 2.65 ± 0.26 0.2594 17.74 36.57 ± 1.08 1.0831
2.50 2.05 ± 0.17 0.1710 24.91 37.24 ± 0.27 0.2651
3.00 2.62 ± 0.41 0.4105 20.08 50.46 ± 1.03 1.0318

1000 h

0.50 2.76 ± 0.45 0.4521 19.54 51.95 ± 1.02 1.0200
1.00 2.5 ± 0.45 0.4454 23.83 51.9 ± 1.95 1.9456
1.50 2.28 ± 0.35 0.3493 10.50 42.48 ± 0.68 0.6843
2.00 2.12 ± 0.27 0.2730 20.50 43.14 ± 1.41 1.4065
2.50 2.1 ± 0.30 0.2955 21.42 37.79 ± 0.91 0.9106
3.00 2.4 ± 0.25 0.2468 28.45 53.1 ± 1.33 1.3268

After Water Immersion

The immersion in water of the composites with no Si-PV content and with low Si-PV content
determined a similar trend regarding the tensile, the compression strength and the Young modulus.
All these mechanical properties have been improved after their water immersion. But the most
significant increase was recorded during the compression strength tests which showed an over 75%
compression strength increase after water immersion. The plasticizer effect of water could explain this
remarkable compression strength increase and previous studies confirmed that [20].

The plasticizer water effect was more intense when the samples were immersed for a longer
period (for 1000 h compared to 500 h), see Tables 1 and 2 and Figure 2. In both cases, for both no
Si-PV content composites and low Si-PV content composites a slight compression strength increase
was noticed from about 50 MPa after 500 h of water immersion to about 53 MPa after 1000 h water
immersion. The larger the water amount entering the composite capillary structure, the higher the
plasticizing effect of water and the higher the composites structure density.

In what follows the influence of the Si-PV grains size on the mechanical properties of the
organic-inorganic composite materials, before and after water immersion, is investigated.

The output properties of 3 wt % Si-PV composite materials were determined in terms of tensile,
compressive and impact strength, before and after 500 h and 1000 h water immersion, for all four
composite series (with 20, 40, 100 and 200 µm Si-PV), the results were summarized in Table 3. All dates
are reported with standard deviation (Sd).
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Figure 2. The influence of the Si-PV grains size on the mechanical properties of the hybrid
composite materials.

Table 3. Mechanical properties of hybrid composites with low Si-PV content.

PVC: Rubber:
HDPE: PV 60:32:5:3

PV Grain
Size (µm) RT (MPa) Sd (for

RT)
E

(MPa) RC (MPa) Sd (for
RC) RI (kJ/m2)

Sd (for
RI)

un-immersed

20 2.51 ± 0.20 0.1955 21.75 36.75 ± 0.84 0.8351 10.24 ± 0.97 0.9729

40 2.33 ± 0.35 0.3477 18.61 41.62 ± 1.19 1.1856 11.43 ± 0.31 0.3050

100 2.45 ± 0.23 0.2301 26.40 49.91 ± 0.97 0.9711 11.84 ± 0.87 0.8651

200 2.44 ± 0.22 0.2194 17.55 45.14 ± 0.06 0.0557 13.54 ± 0.88 0.8827

all 2.36 ± 0.18 0.1758 17.16 49.54 ± 0.88 0.8780 12.89 ± 0.76 0.7601

500 h water
immersed
Samples

20 2.4 ± 0.48 0.4800 20.41 43.82 ± 1.21 1.2123 23.59 ± 0.33 0.3332

40 2.13 ± 0.42 0.4223 18.58 36.34 ± 1.05 1.0512 23.25 ± 0.46 0.4565

100 2.42 ± 0.24 0.2390 25.72 26.39 ± 1.36 1.3563 23.25 ± 0.56 0.5631

200 2.66 ± 0.29 0.2851 27.33 39.4 ± 0.25 0.2498 23.59 ± 0.36 0.3568

all 2.62 ± 0.46 0.4613 20.08 50.46 ± 0.85 0.8455 27.14 ± 0.18 0.1779

1000 h water
immersed
Samples

20 2.45 ± 0.45 0.4493 21.67 43.94 ± 1.73 1.7266 26.62 ± 0.53 0.5250

40 2.26 ± 0.32 0.3205 15.34 37.27 ± 0.90 0.8990 23.25 ± 0.57 0.5661

100 2.26 ± 0.41 0.4062 26.51 42.94 ± 0.24 0.2386 23.25 ± 0.38 0.3751

200 2.58 ± 0.55 0.5468 25.44 50.86 ± 0.61 0.6067 23.92 ± 0.78 0.7842

all 2.4 ± 0.37 0.3736 28.45 53.1 ± 0.10 0.0950 28.86 ± 0.87 0.8652

Un-Immersed Samples

By comparing the mechanical performance of the pristine composite series (un-immersed),
the following conclusions can be drawn:

- the tensile strength values are very close to each another in all four composite series (with 20, 40,
100 and 200 µm Si-PV powder). These values, in turn, are comparable with that of the control
sample (with no Si-PV powder content) Table 1,

- with reference to the compressive strength, the composite with different Si-PV grain sizes exhibited
higher compressive strength compared to the no Si-PV content composites, due to the higher
inorganic filler stiffness, [21],

- the samples with the best compressive strength are of 100 and 200 µm Si-PV, 49.91 and 45.14 MPa,
respectively, as it can be seen in Table 3. These values are 69% and 55% higher than that of the



Polymers 2020, 12, 53 7 of 15

control sample (29.36 MPa), Table 1. This could be explained by the reduced macromolecules
polymeric chains mobility in the near vicinity of the inorganic particulates of such size,

- 100 µm Si-PV sample has recorded Young moduli of 26.40 MPa, which is over 100% larger
than the Young moduli of the control sample (10.91 MPa). This result again is explained by the
reduced mobility of the polymeric chains. Furthermore, because the smaller Si-PV particulates
size (100 microns) compared to that composites containing 200 microns Si-PV has expanded the
surface contact of the polymeric chains with the inorganic particles and consequently the mobility
of a larger polymer chains density has decreased.

It can be noticed that the addition of sieved (large surface area) Si-PV powder does not improve
the interfacial strength of the composite materials based on wastes of rubber, PVC and HDPE.
The remarkable improvement noticed was on the compressive strength and Young moduli of the
samples with low content of Si-PV powder. This result revealed that the Si-PV powder act at the
strength level not at the toughness level. Many researchers reported on the ability of the inorganic
compound to improve the polymer composite strength [22–24].

The inorganic particles coming in the very vicinity of the macromolecular chains determine
their constraints. Therefore, the macromolecular phase mobility is reduced, that is why the samples
compression strength increases.

But the expectations were in the interfacial improvement, because once the Si-PV particles grain
size is reduced, the specific surface area is extended, which in turn should promote an extension of
the interface linkage. However, it could happen that, by decreasing the inorganic particles grain size,
the distance between them lowers, which in turn reduces the dispersion degree due to the mutual
attraction between the inorganic particles. Finally, the agglomeration effect could occur.

In order to evaluate the behaviour of the composites in wet conditions, the samples were water
immersed for 500 and 1000 h. Before the mechanical performance measurements, the samples were
dried in the open air in the laboratory.

Water immersion induced the plasticization of the composites structure, consequently increasing
their stiffness.

It is also to note that the samples tensile strength after water immersion recorded a slight decrease
confirming the peculiar capillary structures of the composite samples.

By comparing the mechanical tests results after 500 and 1000 h water immersion, Figure 3,
respectively, in both cases, the best mechanical properties combination was recorded for all Si-PV
composite samples (un-sieved Si-PV samples), Table 3. It seems that all waste Si-PV constituents better
improve the organic-inorganic composites’ mechanical performance. The benefit of inserting entire
and un-sieved waste Si-PV is due to its versatile composition containing both the organic phases and
inorganic phases. Among which the ethylene-vinyl acetate (EVA) components have a strong ability to
bind the inorganic phase to the organic phase.

Below in Figure 4, the relative absorbed water against the water immersion period is plotted
(in hours). The samples with 20, 40 and 200 microns Si-PV grains follow the same allure regarding
the water absorption rate with increased water absorption in the case of 40 microns Si-PV composites.
The highest water absorption rate was recorded for 100 microns Si-PV composites, as shown in
Figure 4A,B, is probably attributed to a lower interface adhesion.
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Low water absorption was noticed for 20 and 200 Si-PV microns samples, but the lowest and
steady over time water absorption was in the case of 200 Si-PV microns samples, see Figure 4.

The versatile composition of the waste un-sieved Si-PV participates in developing interface
linkages with both polymer components and the inorganic constituents from the rubber matrix.
These aspects are further investigated by FTIR and XRD analyses in the following sections.

3.2.2. XRD Analysis

The XRD measurements were performed to evaluate the influence of the Si-PV particles on the
novel composite interface and to determine the crystalline structure. Firstly, the crystalline degree
of the 20, 40, 100 and 200 microns Si-PV powder was measured and that of the composites obtained
by inserting different Si-PV powder grain size, being subsequently compared to that without any
Si-PV content.

The XRD diffractograms of the four different Si-PV powder grains and their crystalline percentage
values can be seen in Figure 5.
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The XRD measurement results of the different Si-PV powder grains sizes have revealed the
crystalline peaks corresponding to silicon compounds and to the ethylene-vinyl acetate (EVA). EVA the
component part of Si-PV module is used to protect the PV active surface from humidity and impurities.
The highest crystalline percentage calculated by XRD equipment software associated with the 200
microns sieved Si-PV powder was 63.5% (three times higher than the other ones), as summarized in
Figure 5. The 200 microns sieved Si-PV powder recorded one more large and intense EVA copolymer
peak at about 2θ = 21.5◦, as it can be seen in Figure 5, thus explaining its higher crystallinity percentage
(63.5%) compared to the other ones [25,26].

The increased crystallinity of the 200 microns Si-PV composites also confirms the better mechanical
properties of the composites obtained by inserting 200 microns sieved Si-PV compared to the other
ones, as shown below in Table 4.

Table 4. XRD pattern of Si-PV polymer composites with different Si-PV grain size.

PV Grain Size No Si-PV Un Sieved 20 (µm) 40 (µm) 100 (µm) 200 (µm)

Crystallinity (%) 63.3 46.5 43.6 47.8 51.5 64.2

The crystallinity of the samples containing the smallest and the largest Si-PV grain size, 20 and
200 microns Si-PV composites, respectively, were further investigated. The crystalline degrees of these
composites before and after water immersion are presented in Table 5.

Table 5. The crystallinity of the 20 and 200 microns Si-PV composites.

PV Grain Size (µm) Crystallinity (%)

20_un-immersed 38.9
20_500 h water immersed 38.8

20_1000 h water immersed 48.3
200_ un-immersed 40.0

200_500 h water immersed 43.5
200_1000 h water immersed 59.6

The highest crystalline percentage was recorded for the 200 microns Si-PV composites—40% as
such and even after 1000 h water immersion—59.6% respectively as it was expected. It seems that the
water entering the capillary structure of the 200 Si-PV composites determines a slight reorganization of
the polymer macromolecular chains, thus leading to an increased ordered structure. This result could
be well corroborated with the mechanical test results which recorded the highest compression strength
of 50.86 MPa for this composites.
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Further, the crystalline structure of the un-sieved Si-PV composite was investigated considering
its good mechanical performance, as mechanical test results have previous shown. The XRD patterns of
the un-sieved Si-PV composites as such, 500 and 1000 h water immersed, are plotted below in Figure 6.
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The crystalline percentages of the un-sieved Si-PV composites, as such, after 500 h and 1000 h water
immersion were calculated by means of the XRD equipment software and the results are summarized
in Figure 6. The XRD measurements results recorded the best crystalline degree in case of un-sieved
Si-PV composites, confirming now the mechanical tests results which revealed the highest compression
and impact strength in case of un-sieved Si-PV samples, even after water immersion (compression
strength of 53.10 MPa, impact strength of 28.86 kJ\m2 after 1000 h water immersion).

The best output properties (mechanical properties) in the case of un-sieved Si PV samples even
after water immersion and confirmed by the XRD measurements could be explained by Si-PV powder
composition. The un-sieved Si-PV could contain a higher silica amount which highly contributes to
the increase of the mechanical and thermal properties of the elastomer polymers due to its ability as a
nucleating agent [27,28].

3.2.3. FTIR Analysis

The FTIR spectroscopy was used to investigate the chemical changes or new interfaces that could
be developed between the organic-inorganic components, as the Si-PV powder was sieved (granulated).
It was expected that the finer Si-PV grain (such as 20 or 40 microns) should extend the interfacial zone,
due to the higher surface contact between the Si-PV powder and the organic polymer phases.

It is worth noting some differences between the all waste hybrid composites obtained with un-
sieved Si-PV powder and with different Si-PV grain sizes composites. The FTIR spectrum of the
un-sieved Si-PV composites showed some differences compared to the other ones as follows, Figure 7:

- at about 2680 cm−1 present new band attributed to the vinyl group from EVA, thus confirming
the highest amount of EVA in un-sieved Si-PV composites compared to the other ones. EVA has a
high affinity to inorganic filler almost with silica [29],

- 3400 cm−1 band intensity increases of un-sieved Si-PV composites assigned to –OH stretching
vibration on the silica surface. This confirms the large silica amount in un-sieved Si-PV
composite and the possibility to extend the organic-inorganic interface zone almost with EVA
and rubber component,

- increased intensity of the bands at about 730 and 1025 cm−1 corresponding to Si–O, thus proving
a higher silica amount compared to the sieved Si-PV composites,

- the 3750 cm−1 band broadening due to the increased amount of EVA, which interacts with the
rubber component, thus extending interfaces in un-sieved Si-PV composites [30],
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- shoulder of 870 cm−1 bands appeared for un-sieved Si-PV composites as well as for the 200 microns
Si-PV composites that could suggest a possible interaction of inorganic components of Si-PV
module with PVC polymeric components,
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Therefore, because of polymer-filler interactions, some polymer macromolecules were linked on
the filler surface, reducing the mobility of the polymer segments and thus increasing their mechanical
strength, as mechanical test results already showed. The highest mechanical performance was noticed
in the case of un-sieved Si-PV composites.

The results mentioned above emphasise the higher un-sieved Si-PV powder potential to develop
extended hybrid organic-inorganic interfaces with the other composite components due to its versatile
and higher organic-inorganic content. All these aspects recommending the all Si-PV module powder
recycling without its sieving which is beneficial considering the energy consumption during the sieving.

3.2.4. SEM Morphology Investigation

The dispersion of Si-PV powder particles in polymer matrices was evaluated by studying the
corresponding SEM micrographs images. The fractured surface morphologies of the cross-section of
the composite samples were obtained from the tensile test and the morphologies of the 20, 200 microns
Si-PV and the un-sieved Si-PV samples, before and after 1000 h water immersion, were analysed.
The SEM images of the fractured tensile tests samples are presented below in

The morphology image of the 20 microns Si-PV sample displayed some delamination and Si-PV
particles pull out, as it can be seen in Figure 8A. These aspects could be explained by the formation
of agglomerates [31] of particles. Moreover, the finer grains size of the Si-PV particles and their high
surface energy determine interactions that could occur between the silica particles themselves.

The 200 microns Si-PV composite SEM image, see Figure 8B, displays a better interfacial adhesion
compared to those above and the un-sieved Si-PV composite exhibits improved interfacial adhesion,
as it can be observed in Figure 8C), the PVC and rubber well embedding the un-sieved Si-PV
components. The interfacial adhesion of the un-sieved Si-PV composite is explained by the new
hybrid interfaces developed due to versatile Si-PV powder composition containing organic phases
alongside inorganic constituents, as already the FTIR results have shown the development of new
organic-inorganic interfaces. Figure 8A–C.
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3.3. High-Content Si-PV All Waste Hybrid Composites

In this section, high-content Si-PV all waste hybrid composites were developed. Taking into
account the benefit of the un-sieving of Si-PV powder the high Si-PV content composites were obtained
by using un-sieved Si-PV powder.

The un-sieved Si-PV powder content was increased in the rubber-plastic blend. The component
composition ratio was PVC:rubber:HDPE:Si-PV = (100 − 37 − x):32:5:x, where x = 10, 20, 30 and
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45 wt % Si-PV. Five samples were tested for each mechanical property measurement and the mean
value alongside standard deviations are reported in Table 6. By increasing the Si-PV amount in the
polymeric blend it is expected an increase of the mechanical strength of the all waste hybrid composites.
The Si-PV component will contribute to the extension of the interfacial adhesion in the composite
because it contains polymer phases alongside inorganic phases.

Table 6. Mechanical tests results of increased all Si-PV content composites.

Si-PV
(wt %) RT (MPa) Sd (for RT) E

(MPa) RC (MPa) Sd (for
RC) RI (kJ/m2) Sd (for RI)

10 1.92 ± 0.21 0.2117 12.25 48.63 ± 0.48 0.4770 23.25 ± 0.34 0.3395
20 1.25 ± 0.08 0.0781 5.78 37.74 ± 0.45 0.4479 22.86 ± 0.26 0.2566
30 2.02 ± 0.09 0.0872 2.84 30.81 ± 0.51 0.5069 25.06 ± 0.41 0.4095
40 0.63 ± 0.02 0.0153 0 34.34 ± 0.29 0.2862 23.42 ± 0.56 0.5565
45 0.5 ± 0.04 0.0361 0 32.99 ± 0.32 0.3219 23.58 ± 0.52 0.5179

Especially the EVA polymer phases of the Si-PV it is expected to develop a better linkage between
organic-inorganic phases.

The mechanical test results have shown that by increasing the Si-PV content up to 30 wt % in
the polymeric blend the mechanical properties increased but over this amount significant mechanical
properties decrease was noticed. The mechanical performance decrease for composites with over
30 wt % Si-PV could be determined by filler-filler interactions because of their high surface energies
forming thus clusters which hamper the stress transfer between matrix and filler.

It is worthy to note that the impact resistance test has recorded high values even for 45 wt % Si-PV
composites, Table 6, outlining thus the possibility of using such composite materials as products for
applications where impact strength are required (protective barriers for example).

The best combination of mechanical properties was noticed for 30 mass percentages Si-PV
composite with RT of 2.02 MPa, impact strength of 25.06 kJ/m2 and RC of 31.90 MPa.

These results would confirm the possibility of recycling this new type of waste–silicon photovoltaic
modules (Si-PV) in novel all waste hybrid composites.

4. Conclusions

The paper investigated the influence of the Si-PV grains sizes on the mechanical and water stability
of all waste hybrid composites. This study is an extension of a previous work in which waste Si-PV
module recycling was the focus.

The Si-PV powder was 20, 40, 100, and 200 microns sieved before its inserting in the waste
polymer blend. Good mechanical properties even after water immersion were obtained for 200
microns Si-PV composites. However, when compared to those of un-sieved Si-PV composites the
last one recorded the highest mechanical properties and good water stability. The XRD, FTIR, and
SEM analyses results confirmed the organic-inorganic interface extending which in turn led to the
mechanical strength improvement. The XRD analyses revealed the superior properties of the un-sieved
Si-PV composites attributing them the highest crystalline percentage. This result is directly related
to the organic and inorganic versatile composition of the Si-PV module powder. The FTIR results
confirmed the mechanical performance of the un-sieved Si-PV composites due to the development of
new hybrid interfaces.

The mechanical properties of sieved Si-PV hybrid composites decreased due to the reduced
distance between inorganic particles and their mutual attraction.

In the second part of this study high Si-PV content (up to 45%) was embedded in the polymer
blend. The best combination of mechanical properties was noticed for 30 mass percentages Si-PV
composite with RT of 2.02 MPa, impact strength of 25.06 kJ/m2 and RC of 31.90 MPa, but the impact
strength did not decrease even for 45 mass percentages Si-PV composites. The study confirms the
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possibility of recycling this new type of waste-silicon photovoltaic modules (Si-PV) in novel all waste
hybrid composites without Si-PV powder sieving.

Further, studies will continue to develop all waste high Si-PV content hybrid composites with
mechanical performance even in wet conditions for outdoor applications.

Author Contributions: The first author (M.C.) contributed with the conceptualization, funding acquisition,
methodology, supervision, writing—original draft, writing—review & editing; the second author (I.M.) contributed
with the Resources, visualization, methodology, writing—original draft and the third one (C.C.) with the project
administration, methodology, validation, writing—original draft, writing—review & editing. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant of the Ministry of Research and Innovation, CNCS—UEFISCDI,
project number PN-III-P1-1.1-PD-2016-0286, within PNCDI III, ctr. 101/02.05.2018. The APC was funded by
PN-III-P1-1.1-PD-2016-0286, ctr no. 101.

Conflicts of Interest: The authors declare no conflict of interest.

Data Availability: The raw/processed data required to reproduce these findings cannot be shared at this time as
the data also forms part of an ongoing study.

References

1. Tao, J.; Yu, S. Review on feasible recycling pathways and technologies of solar photovoltaic modules.
Sol. Energy Mater. Sol. Cells 2015, 141, 108–124. [CrossRef]

2. Wang, R.; Song, E.; Zhang, C.; Zhuang, X.; Ma, E.; Bai, J.; Yuan, W.; Wang, J. Pyrolysis-based separation
mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment. RSC Adv.
2019, 9, 18115–18123. [CrossRef]

3. Paiano, A. Photovoltaic waste assessment in Italy. Renew. Sustain. Energy Rev. 2015, 41, 99–112. [CrossRef]
4. Bakhiyi, B.; Labrèche, F.; Zayed, J. The photovoltaic industry on the path to a sustainable

future—Environmental and occupational health issues. Environ. Int. 2014, 73, 224–234. [CrossRef]
[PubMed]

5. Ibanescu, D.; Cailean, D.; Teodosiu, C.; Fiore, S. Assessment of the waste electrical and electronic equipment
management systems profile and sustainability in developed and developing European Union countries.
Wsste Manag. 2018, 73, 39–53. [CrossRef]

6. Xu, Y.; Li, J.; Tan, Q.; Peters, A.L.; Yang, C. Global status of recycling waste solar panels: A review.
Waste Manag. 2018, 75, 450–458. [CrossRef]

7. Huang, W.-H.; Shin, W.J.; Wang, L.; Sun, W.-C.; Tao, M. Strategy and technology to recycle wafer-silicon solar
modules. Sol. Energy 2017, 144, 22–31. [CrossRef]

8. Zimmermann, Y.-S.; Schäffer, A.; Hugi, C.; Fent, K.; Corvini, P.F.-X.; Lenz, M. Organic photovoltaics: Potential
fate and effects in the environment. Environ. Int. 2012, 49, 128–140. [CrossRef]

9. Nieland, S.; Neuhaus, U.; Pfaff, T.; Rädlein, E. New approaches for component recycling of crystalline
solar modules. In Proceedings of the Electronics Goes Green, Berlin, Germany, 9–12 September 2012; IEEE:
Piscataway, NJ, USA, 2012.

10. Doi, T.; Tsuda, I.; Unagida, H.; Murata, A.; Sakuta, K.; Kurokawa, K. Experimental study on PV module
recycling with organic solvent method. Sol. Energy Mater. Sol. Cells 2001, 67, 397–403. [CrossRef]

11. Kim, Y.; Lee, J. Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic
irradiation and organic solvent. Sol. Energy Mater. Sol. Cells 2012, 98, 317–322. [CrossRef]

12. Cosnita, M.; Cazan, C.; Duta, A.; Visa, I. Recycling Silicon-PV Modules in Composites with PVC, HDPE and
Rubber Wastes. In Conference on Sustainable Energy; Springer: Berlin/Heidelberg, Germany, 2017; pp. 375–394.

13. Peijs, T. Composites for recyclability. Mater. Today 2003, 4, 30–35. [CrossRef]
14. Adhikari, B. Reclamation and recycling of waste rubber. Prog. Polym. Sci. 2000, 25, 909–948. [CrossRef]
15. Ning, N.; Li, S.; Wu, H.; Tian, H.; Yao, P.; Hu, G.-H.; Tian, M.; Zhang, L. Preparation, microstructure, and

microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review. Prog. Polym. Sci.
2018, 79, 61–97. [CrossRef]

16. Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles
for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261.
[CrossRef]

http://dx.doi.org/10.1016/j.solmat.2015.05.005
http://dx.doi.org/10.1039/C9RA03582F
http://dx.doi.org/10.1016/j.rser.2014.07.208
http://dx.doi.org/10.1016/j.envint.2014.07.023
http://www.ncbi.nlm.nih.gov/pubmed/25168128
http://dx.doi.org/10.1016/j.wasman.2017.12.022
http://dx.doi.org/10.1016/j.wasman.2018.01.036
http://dx.doi.org/10.1016/j.solener.2017.01.001
http://dx.doi.org/10.1016/j.envint.2012.08.015
http://dx.doi.org/10.1016/S0927-0248(00)00308-1
http://dx.doi.org/10.1016/j.solmat.2011.11.022
http://dx.doi.org/10.1016/S1369-7021(03)00428-0
http://dx.doi.org/10.1016/S0079-6700(00)00020-4
http://dx.doi.org/10.1016/j.progpolymsci.2017.11.003
http://dx.doi.org/10.1016/j.progpolymsci.2013.02.003


Polymers 2020, 12, 53 15 of 15

17. Zhang, C.; Tang, Z.; Guo, B.; Zhang, L. Significantly improved rubber-silica interface via subtly controlling
surface chemistry of silica. Compos. Sci. Technol. 2018, 156, 70–77. [CrossRef]

18. Tian, C.; Chu, G.; Feng, Y.; Lu, Y.; Miao, C.; Ning, N.; Zhang, L.; Tian, M. Quantitatively identify and
understand the interphase of SiO2/rubber nanocomposites by using nanomechanical mapping technique of
AFM. Compos. Sci. Technol. 2019, 170, 1–6. [CrossRef]

19. Abbas, Z.M.; Tawfilas, M.; Khani, M.M.; Golian, K.; Marsh, Z.M.; Jhalaria, M.; Simonutti, R.; Stefik, M.;
Kumar, S.K.; Benicewicz, B.C. Reinforcement of polychloroprene by grafted silica nanoparticles. Polymer
2019, 171, 96–105. [CrossRef]

20. Cosnita, M.; Cazan, C.; Duta, A. The influence of inorganic additive on the water stability and mechanical
properties of recycled rubber, polyethylene terephthalate, high density polyethylene and wood composites.
J. Clean. Prod. 2017, 165, 630–636. [CrossRef]

21. Xu, H.; Song, Y.; Jia, E.; Zheng, Q. Dynamics heterogeneity in silica-filled nitrile butadiene rubber. J. Appl.
Polym. Sci. 2018, 135, 46223. [CrossRef]

22. Ahmed, I.; Jhung, S.H. Composites of metal–organic frameworks: Preparation and application in adsorption.
Mater. Today 2014, 17, 136–146. [CrossRef]

23. Lee, J.Y.; Lee, T.; Kim, K.; Kim, B.; Kwag, G.; Kim, J.Y.; Ji, S.; Kim, W.; Paik, H.J.
Poly(styrene-r-butadiene)-b-poly(poly(ethylene glycol) methyl ether methacrylate) as a silica dispersant in
rubber compounds. Polym. Int. 2014, 63, 908–914. [CrossRef]

24. Liu, Y.; Cao, L.; Yuan, D.; Chen, Y. Design of super-tough co-continuous PLA/NR/SiO2 TPVs with balanced
stiffness-toughness based on reinforced rubber and interfacial compatibilization. Compos. Sci. Technol. 2018,
165, 231–239. [CrossRef]

25. Melo, A.R.A.; Da Silva, E.O.; Menezes, L.R.; Tavares, M.I.B. The effect of modified cellulose particles on
morphology and properties ethylene vinyl acetate copolymer. Polym. Test. 2018, 68, 333–339. [CrossRef]

26. Giovino, M.; Pribyl, J.; Benicewicz, B.; Bucinell, R.; Schadler, L. Mechanical properties of polymer grafted
nanoparticle composites. Nanocomposites 2018, 4, 244–252. [CrossRef]

27. Terzopoulou, Z.; Klonos, P.A.; Kyritsis, A.; Tziolas, A.; Avgeropoulos, A.; Papageorgiou, G.Z.; Bikiaris, D.N.
Interfacial interactions, crystallization and molecular mobility in nanocomposites of Poly(lactic acid) filled
with new hybrid inclusions based on graphene oxide and silica nanoparticles. Polymer 2019, 166, 1–12.
[CrossRef]

28. Kapgate, B.P.; Das, C.; Das, A.; Basu, D.; Wiessner, S.; Reuter, U.; Heinrich, G. Reinforced chloroprene rubber
by in situ generated silica particles: Evidence of bound rubber on the silica surface. J. Appl. Polym. Sci. 2016,
133, 1–10.

29. Ma, P.; Jiang, L.; Hoch, M.; Dong, W.; Chen, M. Reinforcement of transparent ethylene-co-vinyl acetate rubber
by nanocrystalline cellulose. Eur. Polym. J. 2015, 66, 47–56. [CrossRef]

30. Sasikala, A.; Kala, A. Thermal stability and mechanical strength analysis of EVA and blend of EVA with
natural rubber. Mater. Today Proc. 2018, 5, 8862–8867. [CrossRef]

31. Tunnicliffe, L.B.; Busfield, J.J.C. Reinforcement of Rubber and Filler Network Dynamics at Small Strains.
Polym. Phys. 2016, 275, 71–102.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compscitech.2017.12.020
http://dx.doi.org/10.1016/j.compscitech.2018.11.020
http://dx.doi.org/10.1016/j.polymer.2019.03.031
http://dx.doi.org/10.1016/j.jclepro.2017.07.103
http://dx.doi.org/10.1002/app.46223
http://dx.doi.org/10.1016/j.mattod.2014.03.002
http://dx.doi.org/10.1002/pi.4644
http://dx.doi.org/10.1016/j.compscitech.2018.07.005
http://dx.doi.org/10.1016/j.polymertesting.2018.04.012
http://dx.doi.org/10.1080/20550324.2018.1560988
http://dx.doi.org/10.1016/j.polymer.2019.01.041
http://dx.doi.org/10.1016/j.eurpolymj.2015.01.037
http://dx.doi.org/10.1016/j.matpr.2017.12.318
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Characterization of the All-Polymer Waste Composites 
	Mechanical Testing 
	Fourier Transform Infrared Spectroscopy (FTIR) Analysis 
	X-ray Analysis 

	Experimental Set-Up 
	Materials 
	Results and Discussions 
	Mechanical Properties 
	XRD Analysis 
	FTIR Analysis 
	SEM Morphology Investigation 

	High-Content Si-PV All Waste Hybrid Composites 

	Conclusions 
	References

