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Abstract: Cancer has been one of the leading causes of human death for centuries. Magnetic
hyperthermia is a promising technique to confine and control cancers. However, particles used
in magnetic hyperthermia leaking from where the cancers are located could compromise human
health. Therefore, we developed electroactive iron oxide/block copolymer composites to tackle the
leakage problem. Experimental results show that oleylamine-modified magnetic iron oxide (Fe3O4)
particles and electroactive tetraaniline (TA) could be templated in the self-assembled microstructures
of sulfonated [styrene-b-(ethylene-ran-butylene)-b-styrene] (S-SEBS) block copolymers. Various
amounts of Fe3O4 particles and TA oligomer were incorporated in S-SEBS block copolymer and their
electroactive behavior was confirmed by exhibiting two pairs of well-defined anodic and cathodic
current peaks in cyclic voltammetry tests. The heating performance of the resultant TA/Fe3O4/polymer
composites improved on increasing the added amount of Fe3O4 particles and TA oligomers. Both
Fe3O4 and TA can contribute to improved heating performance, but Fe3O4 possesses a greater
contribution than TA does. Hence, the main source for increasing the composites’ temperature is
Neel relaxation loss from Fe3O4 magnetic particles.

Keywords: iron oxide nanoparticles; electroactive composites; magnetic hyperthermia;
block copolymer

1. Introduction

Cancer has a major impact on human society across the world and researchers are exploring
new strategies to control and manage cancer. Magnetic hyperthermia therapy is one of the promising
methods without any major side effects to treat cancers [1,2].

Magnetic particles generate heat when exposed to an alternating magnetic field (AMF) due to the
hysteresis loss and relaxational losses. The hysteresis loss is caused by the orientation of the magnetic
moments, in multiple domains particles align continuously with the direction of the AMF [3,4]. On the
other hand, relaxational losses occurs mainly in particles with a single magnetic domain and are due to
the realignment of particles’ magnetic moments or particles’ attempt to realign themselves with the
AMF [3,5]. Therefore, the magnetic particles could be inserted in the tumor region and, thus, lead to
the local heating of the tumor biological tissue by AMF to treat cancer resulting from the reduced heat
tolerance of malignant cells as compared with that of healthy cells [2].

Iron oxide nanoparticles, including magnetite (Fe3O4) and maghemite (γ-Fe2O3), are commonly
utilized for magnetic hyperthermia therapy. Other magnetic ferrite nanoparticles with a combined
composition of zinc, nickel, cobalt, or manganese are also used [6]. Numerous experimental results
reported in literature have demonstrated the success of magnetic hyperthermia therapy in killing various
cancer cells using magnetic particles, and it is currently undergoing clinical trials [3]. Nevertheless,

Polymers 2019, 11, 1430; doi:10.3390/polym11091430 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
http://www.mdpi.com/2073-4360/11/9/1430?type=check_update&version=1
http://dx.doi.org/10.3390/polym11091430
http://www.mdpi.com/journal/polymers


Polymers 2019, 11, 1430 2 of 14

most of nanoparticles are considered toxic and could cause adverse effects on human health such
as impaired mitochondrial function, inflammation, and DNA damage. Therefore, particles used in
magnetic hyperthermia leaking from where cancers are located could compromise human health [7–11].
In addition, it is not possible to maintain the repeated treatment advantage of magnetic hyperthermia
since the particles for heating the cancer cells could be lost due to leakage [7].

Researchers are continuing to explore solutions for overcoming the nanoparticle leakage
problem. The most convenient one is to encapsulate particles in polymers so that they could
remain in polymers without leakage [7,11–15]. The polymers that have been utilized are chitosan,
polycaprolactone, and poly(vinyl alcohol) fibers [12,13,15]. In addition, temperature-sensitive
hydrogels, such as poly(organophosphazene), Pluronic®, and copolymers of N-isopropylacrylamide
and N-hydroxymethyl-acrylamide, were also used to encapsulate particles for treating cancers [11,14,16].
Unfortunately, magnetic particles encapsulated in polymer fibers or hydrogels are usually highly
aggregated. The clustering behavior of magnetic nanoparticles can drastically change their collective
magnetic properties, which in turn may influence their magnetic hyperthermia performance [17,18].
Furthermore, aggregated particles also make theoretical modeling complicated, hindering a clear
understanding of how magnetic nanoparticles behave in an AMF [19]. Therefore, the major challenge
in magnetic cancer therapy using magnetic nanoparticles involves developing particle/polymer
composites with controllable particle distribution so that the heating performance is predictable and
reproducible [18].

Block copolymers are a class of macromolecules consisting of two or more chemically distinct
polymer entities that are connected by covalent bonds. Usually, these blocks are thermodynamically
incompatible so that they tend to phase-separate to different morphologies including spheres,
hexagonally arranged columns, a gyroid phase, and a lamellar phase [20]. Therefore, these ordered
nanostructures could be utilized to incorporate nanoparticles and control particle distribution and
orientation precisely, enabling the development of nanocomposites with improved properties including
magnetic, mechanical, optical, electrical, or barrier properties [21]. In addition to particles, the
nanostructures generated from block copolymers could be utilized for the creation of ordered arrays of
protein or peptides, showing great promise for controlling cellular behavior [22].

In study, we demonstrate a new strategy that utilizing a block copolymer enables magnetic
polymer composites to have controllable particle distribution, which can tackle the particle aggregation
problem for magnetic cancer therapy. The nature of the self-assembled nanoscale morphology of
the block copolymer enables the incorporation of particles uniformly dispersed within the polymer
matrix. Sulfonated [styrene-b-(ethylene-ran-butylene)-b-styrene] (S-SEBS) block copolymers containing
sulfonic acid groups (–SO3H) were selected to template magnetic Fe3O4 nanoparticles within their
self-assembled microstructures. In addition, aniline oligomers have been utilized for advanced
applications in supercapacitors, sensors, drug delivery, tissue engineering, and therapeutic neural
regeneration owing to their unique electrical, chemical, and optical properties [23–25]. For example,
the aniline tetramer was introduced in agarose–alginate hydrogels and, thus, improved the cell
proliferation benefitting from its high conductivity promoting cell signaling [26]. Therefore, the
electroactive tetraaniline (TA) was also introduced in S-SEBS block copolymers to study its contribution
to cancer hyperthermia therapy.

2. Experimental

2.1. Materials

FeCl3·6H2O (99%, Showa, Tokyo, Japan), oleylamine (>50.0%, TCI, Tokyo, Japan), and
N-phenyl-p-phenylenediamine (98%, Alfa Aesar, Ward Hill, MA, USA) were used as received
without further purification. Sulfonated (styrene-b-(ethylene-ran-butylene)-b-styrene) (S-SEBS) block
copolymer solution was purchased from Aldrich. The molecular weight of the S-SEBS block copolymer
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was 80,000 g/mol consisting of 29 wt.% styrene blocks and 55–65 mol.% of sulfonated styrene blocks.
All chemicals were used as received.

2.2. Fe3O4 Nanoparticle Synthesis

The Fe3O4 nanoparticles were synthesized with the addition of the oleylamine surfactant by a
hydrothermal method. FeCl3·6H2O (2 mmol), sodium hydroxide (4 mmol), and oleylamine (15 mmol)
were mixed with 10 mL deionized (DI) water and 30 mL ethylene glycol. The resulting solution was
placed in a closed container and reacted at 200 ◦C for 12 h. The resulting black precipitates were
separated from the solution by using a magnet and then washed with tetrahydrofuran to remove
solvents and unreacted precursors.

2.3. Synthesis of Tetraaniline (TA)

TA was synthesized according to the report in literature [27]. N-phenyl-p-phenylenediamine (2 g)
was dissolved in a mixed solution of acetone (40 mL) and 1 N hydrochloric acid (HCl) (100 mL) and
then its temperature was lowered to 0 ◦C. Subsequently, a solution of iron (III) chloride hexahydrate
(4.9 g in 30 mL of 1 N HCl) was added into the resultant solution. The reaction was at 0 ◦C for 4 h. The
product (emeraldine salt state of TA) was collected by centrifugation and washed with 1 N ammonium
hydroxide solution, resulting in emeraldine base of TA.

2.4. S-SEBS Templated Fe3O4/TA Nanoparticles

Fe3O4/TA/S-SEBS nanocomposites were prepared using a solution-casting method. The S-SEBS
solutions were mixed with required amounts of synthesized Fe3O4/TA particles. The solution was
vigorously stirred for 30 min. A solid film was formed by static casting over a period of one week.

2.5. Electrochemical Cyclic Voltammetry (CV) Study of TA/S-SEBS Composites

The redox behavior of the prepared TA/S-SEBS composites was investigated using CV
measurements. The TA/S-SEBS composite was cast on an indium tin oxide glass serving as a
working electrode. The CV measurement was performed in 100 mL of 1.0 N hydrochloric acid solution.
The testing potentials ranged from −0.2 to 1.0 V at a scan rate of 50 mV·s−1 using a silver/silver chloride
reference electrode and a platinum counter electrode.

2.6. Heating Performance of Magnetically Induced Hyperthermia

The heating performance of the developed Fe3O4/TA/S-SEBS composites were studied by utilizing
an external alternating current (AC) magnetic field produced by the coil of an induction heater
(Power Cube 64/900, President Honor Industries Co., Ltd., Taiwan). The samples for testing were
pre-heated at 37 ◦C and then subjected to an AC magnetic field of 94 kA/m and a frequency of 840 kHz.
The temperature of the samples was recorded, and their heating performance was evaluated using the
specific absorption rate (SAR) calculated from following expression [28]:

SAR =

∑
i Cpimi

msample

∆T
∆t

∣∣∣∣∣∣ t→ 0
, (1)

where Cpi and mi are specific heat capacity and mass for each component respectively
(Cp = 0.69 J g−1K−1 for Fe3O4 particles, Cp = 1.75 J g−1K−1 for TA, and Cp = 1.3 J g−1K−1 for S-SEBS),
and msample is the mass of the composite film for testing. ∆T/∆t is the initial slope of the time-dependent
heating curve. The SAR was calculated by the initial temperature change (t→0) after turning on the
AC magnetic field in order to minimize the interference of the energy exchange between the testing
composite film and the surroundings.
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3. Results and Discussion

3.1. Structural Characterization of 12 nm Fe3O4 Seeds

The challenge for iron oxide nanoparticle synthesis is how to control particle formation and thus
obtain particles having desired sizes without any aggregation. Oleylamine (OAM) is a long-chain
primary alkylamine, which has shown its capability as a solvent, surfactant, and reducing agent for
synthesizing nanoparticles with desired morphology and composition [29]. Experimental results in
literature reported that monodisperse, magnetic cobalt ferrite (CoFe2O4) and zinc ferrite (ZnFe2O4), and
nickel ferrite (NiFe2O4) could be synthesized by using OAM as a stabilizing agent and solvent [30,31].
Therefore, we utilized OAM acting as a stabilizing agent to synthesize magnetic iron oxide nanoparticles
with narrow size distribution.

The iron oxide nanoparticle synthesized by reacting 2 mmol FeCl3·6H2O in alkaline solution
with the addition of 15 mmol oleylamine surfactant is nanoscale with narrow size distribution, as
shown in Figure 1. The average size measured from TEM was 12.2 ± 3.0 nm. Furthermore, the
obtained nanoparticles were highly soluble in organic solvents such as tetrahydrofuran or toluene.
In addition, there was no aggregation between particles observed in TEM images. Evidence from FTIR
test indicated the presence of OAM surfactant on the surface of synthesized particles as shown in
Figure S1. Two sharp bands at 2923 and 2852 cm−1 are attributed to the –CH asymmetric stretching
vibration and symmetric stretching vibration, respectively. In addition, the band at 1590, 1629, and
3008 cm−1 are characteristic of the –NH2, –C=C, and =C–H bending vibration, respectively [29]. These
results confirm that OAM already modified the surface of iron oxide particles. In addition, TGA
analysis revealed that the amount of OAM coated on the surface the particle is 15 wt.%, as shown
in Figure S2. These results suggested that the surface of the nanoparticles were coated with OAM
surfactant. The bulky hydrophobic part of the surfactant promoted nanoparticles soluble in nonpolar
solvents and also provided the steric isolation needed to prevent particles from aggregation due to van
der Waals attraction and magnetic attraction among magnetic particles.
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Figure 1. (a) TEM image of surfactant-modified Fe3O4 nanoparticles (scale bar = 100 nm); (b) particle
size distribution.

The chemical structure of the synthesized iron oxide was determined by XRD measurement
(Figure 2). The diffraction peaks (2θ) of 30.35◦, 35.95◦, 43.45◦, 53.70◦, 57.25◦, and 62.88◦ are consistent
with X-ray diffraction from the (220), (311), (400), (422), (511), and (440) planes of face-centered cubic
Fe3O4 (JCPDS 87-2334), indicating the synthesized iron oxide nanoparticles are magnetic Fe3O4 [32].
The magnetic properties of the synthesized 12 nm Fe3O4 nanoparticles were studied by SQUID
(superconducting quantum interference device) at 300 K. The results (shown in Figure 3) revealed
that there was no magnetization hysteresis observed as the applied magnetic field varied, indicating
the magnetic particles are in a superparamagnetic state [33]. The particle size of the synthesized
Fe3O4 nanoparticles is 12 nm, which is smaller than the 25 nm critical size for ferrimagnetic to
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superparamagnetic transition. Therefore, the synthesized Fe3O4 nanoparticles do not possess any
magnetization when there is no applied external magnetic field [33]. Furthermore, their apparent
saturation magnetization (Ms) is 71.2 emu/g. However, the actual Ms for the synthesized particles
is 83.7 emu/g since there is 15 wt.% of OAM coated on their surface. However, it is still lower
than the bulk value of Fe3O4 (90 emu/g) due to spin disorder arising as reported in literature [34].
Nevertheless, the synthesized Fe3O4 nanoparticles with superparamagnetic behavior are suitable for
cancer hyperthermia therapy because their magnetization can be induced by an external magnetic
field and no magnetization remains when it is removed.
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3.2. Characterization of Electroactive Tetraaniline (TA)

There are three distinguishable oxidation states in TA, which are fully reduced (leucoemeraldine
base) (LE), the half oxidized (emeraldine base) (EB), and the fully oxidized (pernigraniline base) (PNB)



Polymers 2019, 11, 1430 6 of 14

states as illustrated in Figure 4a. The synthesized TA was analyzed by FTIR (Figure S3). The peak of
1507 cm−1 could be assigned to benzenoid ring stretching vibrations [27]. The three peaks at 1383, 1151,
and 864 cm−1 are from the C–N stretching vibration of a secondary aromatic amine, the aromatic C–H
in-plane bending modes, and the C–H out-of-plane bending vibrations of 1,4-aromatic substituted
benzene rings, respectively [27]. Moreover, a relatively strong peak close to 1671 cm−1 and the low
intensity ratio of 1599 to 1510 cm−1 indicate the presence of a doped emeraldine salt (ES) state [27,35].
The CV tests for the synthesized TA in Figure 4b show that there are two oxidation peaks at 0.4 and
0.6 V vs. Ag/AgCl, which are attributed to the transition from fully reduced LE state to half oxidized
EB state and half oxidized EB state to fully oxidized PNB state, respectively [23,36,37].
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Figure 4. (a) Molecular structures of tetraaniline (TA) with different redox states, (b) cyclic
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3.3. Electroactive Composites with Block Copolymer-Templated Iron Oxide Nanoparticles

We utilized a sulfonated (styrene-b-(ethylene-ran-butylene)-b-styrene) (S-SEBS) ABA-type triblock
copolymer to template TA and Fe3O4 nanoparticles within its self-assembled microstructures, as
illustrated in Figure 5, to develop electroactive, magnetic composites for cancer hyperthermia therapy.
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Typical ABA-type triblock copolymer with 30 mol.% A block is expected to show hexagonal
packed cylinder (HPC) morphology after phase separation. However, the S-SEBS polymer utilized in
this study consisting of 29 wt.% styrene blocks and 55–65 mol.% of styrene blocks sulfonated. Therefore,
the sulfonation of styrene blocks can disrupt the usual phase separated morphology so that the HPC
mode is no longer present and, then, a worm-like morphology, which might be termed ‘frustrated’
owing to the comparative disorder, appears [38].

TEM image of our prepared S-SEBS polymer in Figure 6 exhibited stripe pattern, indicating
formation of worm-like morphology. The darker stripes are the sulfonated styrene block (SSB) of
S-SEBS block copolymers because TEM contrast originates from heavier chemical compositions, and,
thus, the self-assembled SSB domain size is close to 20 nm determined from the TEM image. This
atypical phase separation behavior contributes to the aggregation of the –SO3H ionic groups within
the ionomeric blocks and the mixed solvents for dissolving the S-SEBS copolymer influence in the
self-assembly process of the block microdomains during the casting process [39,40].
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For the S-SEBS block copolymer mixed with up to 20 wt.% electroactive TAs, the resulting
microphase separated morphology was still “frustrated” worm-like morphology (Figure 7) and TAs
were confined within the darker stripes containing the sulfonated styrene blocks due to π–π interactions.
Furthermore, the synthesized Fe3O4 nanoparticles were also introduced in S-SEBS polymer to promote
the heating performance of electroactive S-SEBS composites. The synthesized magnetic particles in
this study were of 12 nm so that they could be easily incorporated in the block copolymer phase
separation domain. The TEM image in Figure 8a shows that the 5 wt.% Fe3O4 nanoparticles with
15 wt.% TAs were successfully templated within the SSB microstructures of the S-SEBS copolymer.
The sulfonic acid groups (–SO3H) can preferentially associate with OAM surfactant due to acid–base
interactions and, thus, template the OAM-modified Fe3O4 nanoparticles within SSB microstructures
of the S-SEBS polymer. However, some Fe3O4 nanoparticles aggregated together and could not be
templated in the SSB domain when increasing the added amount of Fe3O4 nanoparticles to 10, 15,
or 20 wt.% and maintaining the combined TA and Fe3O4 added amount at 20 wt.% (Figure 8b–d).
These results contributed to the strong magnetic interaction between Fe3O4 nanoparticles so that they
tended to aggregate and, thus, prevented them from being templated in the 20 nm SSB microstructure
of the S-SEBS polymer. Nevertheless, most TA and Fe3O4 nanoparticles could be templated in the SSB
microstructure of the S-SEBS polymers without showing severe aggregation.
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3.4. Electrochemical Properties of Electroactive Fe3O4 Composites

The electrochemical-responsive behavior of TA/Fe3O4 composites was investigated in HCl solution.
There are no distinct redox peaks present in the cyclic voltammetry test for the composite with only
1 wt.% TA as shown in Figure 9. However, the TA composites exhibits two pairs of redox peaks as the
added amount increased to 10 wt.%. The first pair of redox peaks around the 0.4 V oxidation peak
was due to the transition from the leucoemeraldine state to the emeraldine state. The second pair
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of redox peaks with the oxidation potential around 0.65 V was attributed to the transition from the
emeraldine state to the pernigraniline state. Furthermore, the redox current increased on increasing
the TA added amount to 20 wt.%. These results confirm that TA could enable the composites to have
electroactive properties.

Polymers 2018, 10, x FOR PEER REVIEW  9 of 15 

 

peaks as the added amount increased to 10 wt.%. The first pair of redox peaks around the 0.4 V 
oxidation peak was due to the transition from the leucoemeraldine state to the emeraldine state. The 
second pair of redox peaks with the oxidation potential around 0.65 V was attributed to the transition 
from the emeraldine state to the pernigraniline state. Furthermore, the redox current increased on 
increasing the TA added amount to 20 wt.%. These results confirm that TA could enable the 
composites to have electroactive properties. 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.000052

0.000000

0.000052

0.000104

 1 wt%
 10 wt%
 20 wt%

Cu
rre

nt
 (A

)

Potential applied (V)
 

Figure 9. Cyclic voltammetry measurement for S-SEBS polymer with various amounts of TA. 

The CV test of the composite with 15 wt.% TA and 5 wt.% Fe3O4 shows that there are one weak 
and one strong peak around 0.2 and 0.65 V, respectively (Figure 10). This result suggests that the 
addition of Fe3O4 significantly influences the transition from the TA’s leucoemeraldine state to the 
emeraldine state compared to the transition from the emeraldine state to the pernigraniline state. The 
Fe3O4 began to affect TA’s transition from the emeraldine state to the pernigraniline state as its 
expected peak significantly diminished when the Fe3O4 increased to 10 wt.% and TA decreased to 10 
wt.%. Moreover, it seems only one pair of redox peaks close to 0.8 and 0.2 V remained when the Fe3O4 
amount continually increased to 15 wt.% and TA decreased to 5 wt.%. The oxidation peak and 
reduction peak for pure Fe3O4 are 0.8 and 0.2 V, respectively, as shown in Figure S4. Therefore, this 
result indicated that Fe3O4 dominated the CV results for the composite with 5 wt.% TA and 15 wt.% 
Fe3O4. 

Figure 9. Cyclic voltammetry measurement for S-SEBS polymer with various amounts of TA.

The CV test of the composite with 15 wt.% TA and 5 wt.% Fe3O4 shows that there are one weak
and one strong peak around 0.2 and 0.65 V, respectively (Figure 10). This result suggests that the
addition of Fe3O4 significantly influences the transition from the TA’s leucoemeraldine state to the
emeraldine state compared to the transition from the emeraldine state to the pernigraniline state.
The Fe3O4 began to affect TA’s transition from the emeraldine state to the pernigraniline state as its
expected peak significantly diminished when the Fe3O4 increased to 10 wt.% and TA decreased to
10 wt.%. Moreover, it seems only one pair of redox peaks close to 0.8 and 0.2 V remained when the
Fe3O4 amount continually increased to 15 wt.% and TA decreased to 5 wt.%. The oxidation peak
and reduction peak for pure Fe3O4 are 0.8 and 0.2 V, respectively, as shown in Figure S4. Therefore,
this result indicated that Fe3O4 dominated the CV results for the composite with 5 wt.% TA and
15 wt.% Fe3O4.



Polymers 2019, 11, 1430 10 of 14

Polymers 2018, 10, x FOR PEER REVIEW  10 of 15 

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
-0.0003

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

 

 

Cu
rre

nt
 (A

)

Potential applied (V)

 5 % Fe3O4, 15% TA
 10 % Fe3O4, 10% TA
 15 % Fe3O4, 5% TA

 
Figure 10. Cyclic voltammetry measurement for S-SEBS polymer with various amounts of TA and 
Fe3O4 nanoparticles. (Note: all % in the figure is wt.%.) 

3.5. Hyperthermia Tests for Electroactive Fe3O4 Composites 

This study focused on developing electroactive composites with controllable Fe3O4 particle 
distribution, which can tackle the particle aggregation problem for magnetic cancer therapy. We have 
shown the feasibility of utilizing a block copolymer to template electroactive TA and Fe3O4 
nanoparticles in its self-assembled microstructure without showing severe aggregation. In order to 
reveal the potential of the developed TA/Fe3O4/polymer composites in hyperthermia application, 
their heating performance was evaluated by an alternating magnetic field and, thus, quantified using 
the specific absorption rate (SAR). A higher SAR value means better capability to provide heating 
power to increase the surroundings’ temperature. 

TA has shown appreciable electrical conductivity for various applications [41]. Therefore, the 
temperature of the TA polymer composites is expected to increase resulting from the power 
dissipation from eddy currents, which is proportional to the electrical conductivity of materials, when 
subjecting to an AC magnetic field. The polymer composites with various amounts of TA for testing 
were pre-heated at 37 °C and then subjected to an AC magnetic field. The temperature of the samples 
was recorded immediately after turning on the AC magnetic field and their time-dependent heating 
curves are shown in Figure 11. The temperature for all three composites (1, 10, and 20 wt.%) increased 
at the beginning but decreased immediately because thermal energy flows from the composites to 
lower-temperature surroundings. Nevertheless, the composite with 20 wt.% TA showed the lowest 
temperature decrease rate compared to 1 and 10 wt.% TAs. These results confirm that the TA could 
be utilized as a heat source to release heat to the composite so that more TA in composites exhibited 
a lower temperature decrease rate. 

Figure 10. Cyclic voltammetry measurement for S-SEBS polymer with various amounts of TA and
Fe3O4 nanoparticles. (Note: all % in the figure is wt.%.)

3.5. Hyperthermia Tests for Electroactive Fe3O4 Composites

This study focused on developing electroactive composites with controllable Fe3O4 particle
distribution, which can tackle the particle aggregation problem for magnetic cancer therapy. We
have shown the feasibility of utilizing a block copolymer to template electroactive TA and Fe3O4

nanoparticles in its self-assembled microstructure without showing severe aggregation. In order to
reveal the potential of the developed TA/Fe3O4/polymer composites in hyperthermia application, their
heating performance was evaluated by an alternating magnetic field and, thus, quantified using the
specific absorption rate (SAR). A higher SAR value means better capability to provide heating power
to increase the surroundings’ temperature.

TA has shown appreciable electrical conductivity for various applications [41]. Therefore, the
temperature of the TA polymer composites is expected to increase resulting from the power dissipation
from eddy currents, which is proportional to the electrical conductivity of materials, when subjecting to
an AC magnetic field. The polymer composites with various amounts of TA for testing were pre-heated
at 37 ◦C and then subjected to an AC magnetic field. The temperature of the samples was recorded
immediately after turning on the AC magnetic field and their time-dependent heating curves are shown
in Figure 11. The temperature for all three composites (1, 10, and 20 wt.%) increased at the beginning
but decreased immediately because thermal energy flows from the composites to lower-temperature
surroundings. Nevertheless, the composite with 20 wt.% TA showed the lowest temperature decrease
rate compared to 1 and 10 wt.% TAs. These results confirm that the TA could be utilized as a heat
source to release heat to the composite so that more TA in composites exhibited a lower temperature
decrease rate.
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In order to obtain composites with higher value of SAR, magnetic Fe3O4 nanoparticles combined
with TA were introduced into S-SEBS polymer. TA could release heat due to eddy current loss when
exposed to an alternating magnetic field (AMF). In contrast, the synthesized superparamagnetic Fe3O4

nanoparticles generate heat resulting from the Neel relaxation loss due to the rotation of the magnetic
moment of the particles [4]. Figure 12 shows that adding Fe3O4 nanoparticles improved the heating
performance of the composites. The temperature of the composite with 15 wt.% TA and 5 wt.% Fe3O4

particles increased, compared to the continuous temperature decrease of the composite only with
20 wt.% TA, and its temperature maintained at 38 ◦C, meaning that the heat generated by the composite
is equal to the heat escaped to the surroundings. Furthermore, the heating temperature increased with
increasing time and, then, reached equilibrium temperature at 44, 53, and 66 ◦C, respectively, when the
Fe3O4 amount was increased to 10, 15, and 20 wt.%, while maintaining the combined TA and Fe3O4

added amount at 20 wt.%. The heating performance represented as specific absorption rate (SAR) for
the TA/Fe3O4/polymer composites increased on increasing the added Fe3O4 amount as summarized in
Table 1. These results suggest that the Neel relaxation loss from Fe3O4 nanoparticles outweighs the eddy
current loss from TA and thus dominates the heating performance of TA/Fe3O4/polymer composites.

In summary, the heating performance of electroactive TA/Fe3O4/polymer composites increases on
increasing the added amount of Fe3O4 particles and TA oligomers. Both Fe3O4 and TA can contribute
to improved heating performance, but Fe3O4 possesses a greater contribution than TA does.

Table 1. Specific absorption rate (SAR) values for S-SEBS polymer with various amounts of TA and
Fe3O4 nanoparticles.

Composites SAR (W/g)

0 wt.% Fe3O4 + 20 wt.% TA −0.005
5 wt.% Fe3O4 + 15 wt.% TA 0.001

10 wt.% Fe3O4 + 10 wt.% TA 0.339
15 wt.% Fe3O4+ 5 wt.% TA 0.750
20 wt.% Fe3O4+ 0 wt.% TA 1.093
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4. Conclusions

We have demonstrated the success of fabricating electroactive composites with block
copolymer-templated iron oxide nanoparticles and TA oligomers for magnetic hyperthermia application.
Magnetic Fe3O4 nanoparticles with uniform size distribution were synthesized by using an oleylamine
surfactant acting as a stabilizing agent. The developed Fe3O4 nanoparticles with superparamagnetic
behavior are suitable for cancer hyperthermia therapy because their magnetization can be induced by
an external magnetic field and no magnetization remains when it is removed. Moreover, we utilized
a sulfonated (styrene-b-(ethylene-ran-butylene)-b-styrene) (S-SEBS) ABA-type triblock copolymer
to template electroactive TA and Fe3O4 nanoparticles within its self-assembled microstructures to
develop electroactive, magnetic composites. Most TA and Fe3O4 nanoparticles could be templated
in the styrene microstructure of the S-SEBS polymers without showing severe aggregation. The CV
test revealed that the resultant composites possessed two distinct TA structure transitions from the
leucoemeraldine state to the emeraldine state and from the emeraldine state to the pernigraniline state,
respectively. Their heating efficiency was evaluated by an AC magnetic field. The results conclude that
the heating performance of the resultant TA/Fe3O4/polymer composites increases on increasing the
added amount of Fe3O4 particles and TA oligomers. Both Fe3O4 and TA can contribute to improved
heating performance, but Fe3O4 possesses a greater contribution than TA does.
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