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Abstract: Double-shelled hollow (DSH) structures with varied inorganic compositions are confirmed
to have improved performances in diverse applications, especially in lithium ion battery. However, it is
still of great challenge to obtain these complex nanostructures with traditional hard templates and
solution-based route. Here we report an innovative pathway for the preparation of the DSH
nanospheres based on block copolymer self-assembly, metal–ligand coordination and atomic layer
deposition. Polymeric composite micelles derived from amphiphilic block copolymers and ferric
ions were prepared with heating-enabled micellization and metal–ligand coordination. The DSH
nanospheres with Fe2O3 stands inner and TiO2 outer the structures can be obtained with atomic layer
deposition of a thin layer of TiO2 followed with calcination in air. The coordination was carried out at
room temperature and the deposition was performed at the low temperature of 80 ◦C, thus providing
a feasible fabrication strategy for DSH structures without destruction of the templates. The cavity
and the outer layer of the structures can also be simply tuned with the utilized block copolymers and
the deposition cycles. These DSH inorganic nanospheres are expected to find vital applications in
battery, catalysis, sensing and drug delivery, etc.

Keywords: block copolymers; self-assembly; metal–ligand coordination; atomic layer deposition;
double-shelled hollow structures

1. Introduction

Metal oxides, such as Fe2O3 and TiO2 with low density and high theoretical capacities are widely
applied in lithium ion battery [1,2] and photocatalysis [3]. However, their performances are usually
limited with low surface area and poor conductivity [3]. To enhance the performance of these materials,
hollow structures are proven to be an efficient way as the cavity of the structures can provide extra
surface for exposure and decreased electron/ion transport pathways [4]. Meanwhile, compared
with hollow structures containing single shell of one composition, double-/multiple-shelled hollow
(DSH/MSH) structures with varied compositions are confirmed to broaden their properties or improve
their performance [4–6]. For example, Zhou and co-workers found that the hollow SnO2@TiO2 spheres
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exhibit better electrochemical performance than hollow SnO2 spheres [4]. However, fabrication of
these complex nanoarchitectures is still challenging and less reported.

The fabrication of hollow structures is usually composed of the utilization of the hard templates, such
as SiO2 and PS nanospheres, followed with a solution-based route [3,4]. Nowadays, block copolymers
are emerging as promising templates for the preparation of numerous hollow structures with functional
performance [7], such as metallic compound arrays [8], silicas [9] and carbon materials [10] as they
can be self-assembled into diverse well-defined structures due to the two or more thermodynamically
incompatible homopolymer chains [11]. Most importantly, block copolymers are considered to have tunable
chemical properties, for example, chromophores with hydrophobic interactions [12], quaternization [13]
or metal ion coordination with the polyelectrolyte chains [14], thus providing additional functions in
the systems.

Compared with solution-based route for the growth of metal oxides, atomic layer deposition
(ALD) was applied recently for the production of nanoscopic metal oxides with templates, including
TiO2, Al2O3, ZnO, ZrO2, etc. [8,15–17]. This is a gas-phase deposition technique based on self-limiting
reactions between alternately supplied gaseous precursors. Namely, ALD is a simple and reliable
pathway for the deposition of monolayer target coatings regardless of the substrates, allowing conformal
growth of sub-nanometer precision in coating thickness. Therefore, it is of great simplicity to build
double-shelled structures on templates with varied compositions based on ALD strategy. For example,
Feng fabricated a hybrid metal oxides with ZnO and TiO2 on hydrophilic carbon nanotubes [18];
Wei deposited WO3 and Ga2O3 on SiO2/Si substrates in sequence for the fabrication of C2H5OH sensors
with heterostructures [19]. However, even though the deposition of some metal oxides, such as TiO2

and Al2O3 can be carried out at a low temperature of ~80 ◦C [15,20,21], the deposition of the other
target materials usually need to be performed at quite high temperatures. For example, the deposition
of Fe2O3 are usually carried out at the temperature of 250–500 ◦C [22,23] and ZrO2 are deposited at over
160 ◦C [17,24]. For block copolymer templates, they may be destroyed under these high temperatures,
thus ruining the well-defined structures.

Here, we proposed an innovative methodology for the preparation of DSH nanospheres based on
block copolymer self-assembly, metal–ligand coordination and atomic layer deposition. The metal
ions of ferric were first coordinated with the hydrophilic corona, which will transfer to metal oxides
eventually. Afterwards, low-temperature ALD was carried out for the deposition of the second layer
of TiO2. Both the two steps are aimed at avoiding the decomposition of the block copolymers and
the destruction of the nanospheres. Calcination was finally applied for acquiring the DSH structures.
The preparation and the morphologies of the micelles and the nanospheres were carefully investigated.
The crystal form of the ferric element after calcination was also explored.

2. Materials and Methods

2.1. Materials

The amphiphilic diblock copolymers of polystyrene-block-poly (4-vinyl pyridine) (PS-b-P4VP)
with three different molecular weights were purchased from Polymer Source Inc., Dorval, Quebec,
Canada. The details of these polymers were given in Table 1. Ferric chloride (FeCl3) as well as the
solvents including acetic acid and ethanol were provided from local suppliers with analytical purity
and used as received. Titanium tetrachloride (TiCl4) with a purity of 99.99% was obtained from Nanjing
University. Deionized water with the conductivity of 9.6 µS cm−1 was used in all experiments.

Table 1. The molecular weights and the polydispersity of the block copolymers.

Block Copolymers Mn
PS Mn

P4VP Polydispersity

PS-b-P4VP-1 75,000 25,000 1.09
PS-b-P4VP-2 50,000 17,000 1.15
PS-b-P4VP-3 23,000 4,500 1.10



Polymers 2019, 11, 1208 3 of 12

2.2. Preparation of Polymeric Composite Micelles by Coordination

The amphiphilic block copolymer micelles were first prepared following the one-step strategy of
the heating-enabled micellization in polar solvents [25]. To be specific, designated block copolymers
were first mixed with acetic acid with a concentration of 0.2 wt %. The mixture was then transferred
into an oven preheated to 110 ◦C and kept unstirred at this temperature for 17 h. The mixture was
subsequently cooled down to room temperature naturally and the milky micellar solution was thus
obtained. For the coordination of the micelles with ferric ions, FeCl3 was first dissolved in ethanol
with a weight percentage of 2 wt %. After ultrasonicated for 10 min, the ferric solution was mixed
together with the as-prepared micellar solution with the volume ratio of 1/4. The coordination was
carried out for over 24 h and the mixture became yellowish eventually. The as-obtained polymeric
composite micelles were then collected from the mixed solutions by centrifugation at 3000 rpm for
2 min and further washed with ethanol four times to remove unreacted FeCl3. The composite micelles
were redispersed in 2 mL deionized water and then diluted 20 times for further utilization.

2.3. Preparation of the DSH Inorganic Nanospheres

50 µL polymeric composite micellar solution was deposited on each piece of substrates, such
as pre-cleaned silicon wafers or carbon-coated copper grids, and the substrates were then dried at
the temperature of 60 ◦C for 2 h. After that, the samples were placed in the reaction chamber of
a commercialized ALD reactor (Savannah S100, Cambridge NanoTech, USA) preheated to 80 ◦C.
The deposition was carried out at this temperature for different numbers of ALD cycles with a steady
N2 flow rate of 20 sccm. TiCl4 and deionized water were introduced alternatively into the chamber
as the Ti and O precursors for TiO2 deposition. The typical ALD cycle consists of pulse, exposure
and purge of the TiCl4 and water vapor with the time of 0.015, 8 and 15 s, respectively. The cycle was
repeated for 50, 100, 300 or 500 times. After ALD of TiO2, the samples were heated to 540 ◦C at a rate of
9 ◦C/min and calcinated at this temperature for 3 h in order to prepare the DSH inorganic nanospheres.

2.4. Characterizations

Fourier transformation infrared spectra (FT-IR) of the micelles before and after coordination were
characterized by a Nicolet 8700 infrared spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)
with the attenuated total reflection mode (ATR). Dynamic light scattering (DLS) was also performed
with a particle size analyzer (Zetasizer Nano ZS90, Malvern Panalytical, Malvern, UK) for determining
the sizes of the micelles dispersed in water. The morphologies of the samples under different conditions
were all examined on silicon wafers with a S-4800 field emission scanning electron microscope (FESEM,
Hitachi, Tokyo, Japan) at the accelerating voltage of 5 kV. The samples were first vacuum coated
with a thin layer of platinum–palladium alloy for the improvement of conductivity. Transmission
electron microscopes (TEM, H-600, Hitachi, Tokyo, Japan & JEM-2100F, JEOL, Tokyo, Japan) were also
employed to examine the nanospheres on copper grids before and after ALD. The grids were carefully
placed in a small container during the ALD process in order to avoid being pulsed into the vacuum
pump. The energy dispersive X-ray spectrometer (EDX) was used to detect the existence of the Fe and
Ti elements along with the SEM characterizations and TEM characterizations. X-ray diffraction (XRD)
pattern of the nanospheres with 100 TiO2 cycles after calcination were obtained from a wide-angle
diffractometer with CuKα radiation (λ = 0.154 nm) at a generator voltage of 40 kV and a generator
current of 40 mA. The scanning speed and the step were 2.4◦/min and 0.02◦, respectively.

3. Results

3.1. The Polymeric Composite Micelles Prepared by Metal–ligand Coordination

As the amphiphilic block copolymers are consist of hydrophilic and hydrophobic chains which
are covalently linked together, they can self-assembled into either regular or reverse micelles or
other nanostructures in selective solvents which are mainly depending on the molecular structures
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of polymers and the polarity of solvents [26]. For example, the regular micelles with hydrophobic
cores and hydrophilic corona can be exclusively formed by dissolution of block copolymers in
heating polar solvents [25] while the reverse micelles with reverse constructions are able to be
formed with the introduction of nonpolar solvents [27]. Meanwhile, it has been reported that
P4VP can function as a ligand to coordinate with metal ions due to the existence of the pyridyl
groups [14]. Therefore, amphiphilic block copolymers of PS-b-P4VP were employed in this work.
The schematic illustration of the preparation route for DSH inorganic nanospheres was depicted
in Figure 1. Regular micelles were first prepared with the heating-enabled micellization strategy
(Figure 1a). Ferric ions were then introduced for the coordination with the pyridyl groups of the
hydrophilic P4VP coronae in order to prepare polymeric composite micelles (Figure 1b). We note
that the solution is slightly milky after heating-enabled micellization and it became yellowish after
mixing with FeCl3, which may represent the occurrence of the coordination. The reactions can also be
confirmed with the infrared spectrometry, as shown in Figure 2a. The peaks centering around 1452 and
1493 cm−1 should correspond to the characteristic of the phenyl rings of the PS blocks [28]. The peaks
at 1558 and 1598 cm−1 should be ascribed to the vibration of the C=N and C=C in pyridine rings
of P4VP blocks [28,29]. A new peak centering around 1636 cm−1 was observed with the polymeric
composite micelles, which reveals the coordination between the polymer and the ferric ions [29,30].
Meanwhile, a slight shift (~3–4 wavenumbers) at the wavenumber of 1598 cm−1 were also observed
with the polymeric composite micelles, thus indicating the interactions of N atom of pyridine rings
with the ferric ions [29].
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Figure 1. The schematic diagram for the fabrication of double-shelled hollow (DSH) nanospheres
through block copolymer-metal coordination and atomic layer deposition (ALD). (a) The regular
micelles prepared by heating-enabled micellization. (b) The polymeric composite micelles after
metal–ligand coordination. (c) The nanospheres after ALD of TiO2. (d) DSH inorganic nanospheres
after calcination.

We also examined the size distributions of these composite micelles dispersed in water with DLS,
as shown in Figure 2b. According to the results, all of the polymeric composite micelles showed one
single size distribution peak and relatively narrow size distributions in the wet state, which indicates
the high uniformity of the obtained polymeric composite micelles. The DLS peaks were centered
around 210, 157 and 64 nm with the micelles derived from PS-b-P4VP-1, PS-b-P4VP-2 and PS-b-P4VP-3,
respectively, representing their mean diameters in the solution. This suggested that the micellar size is
strongly dependent on the molecular weights of the employed block copolymers and the micelles are
supposed to become larger with the increase of the molecular weights.
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Figure 2. (a) The FT-IR spectra of the micelles of PS-b-P4VP-2 before (red) and after (black) complexing
with ferric ions. (b) The size distribution curves of the polymeric composite micelles dispersed in water.
The curves correspond to PS-b-P4VP-3 (black), PS-b-P4VP-2 (red) and PS-b-P4VP-1 (blue), respectively.

The morphologies of these polymeric composite micelles were examined with a FESEM and the
images were shown in Figure 3. Each kind of composite micelles was uniform with a spherical shape and
no aggregation can be observed. This should be attributed to the repulsive forces between the coronae.
According to the SEM images, the diameters of the composite micelles prepared from PS-b-P4VP-1,
PS-b-P4VP-2 and PS-b-P4VP-3 were determined to be ~75, ~64 and ~46 nm, respectively, which were
quite smaller than the values acquired from DLS. This should be owing to the totally different states
of the micelles with different characterizations. The samples were supposed to be in wet state with
a stretching corona P2VP chains under DLS measurements while the samples were in dry state with
shrinking P2VP chains under SEM characterizations, thus leading to the obviously different dimensions.
However, we note that the diameters in the dry state also increased with the molecular weights of the
used block copolymers, which share similar trend with the values in wet state. Therefore, it is of great
simplicity to regulate the micelles with molecular structures of the block copolymers.
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3.2. Preparation of the Nanospheres by ALD on the Polymeric Composite Micelles

The as-prepared polymeric composite micelles with coordinated ferric ions were further utilized
as the templates for TiO2 coatings (Figure 1c). A low temperature deposition was employed in this
work in order to avoid the destruction or the degradation of the polymer-based micellar templates.
The deposition was carried out at 80 ◦C for various ALD cycles, which is lower than the glass
transition temperatures (Tg) of both the PS and P4VP blocks (Tg

PS is 101–106 ◦C and Tg
P4VP is

145–155 ◦C, respectively, provided by the supplier). This low temperature deposition was also reported
elsewhere [20,31,32], thus can be carried out prosperously. Meanwhile, the ferric ions will not be
replaced by the titanic precursors, which will be discussed later. The morphologies of the nanospheres
derived from PS-b-P4VP-1 with various ALD cycles were depicted in Figure 4a–d. We note that
the separated micelles are able to maintain their spherical shapes after low temperature deposition
regardless of the ALD cycles, thus verified the feasibility of the deposition. The diameters of the
nanospheres had a visible increment with the increase of the ALD cycles. To further understand the
relationship between the diameters of the nanospheres and the number of ALD cycles, the plot of the
mean diameters of the nanospheres with the number of cycles was given in Figure 4e. As discussed in
Figure 3a, the diameter of the composite micelles was measured to be ~75 nm before deposition. After
TiO2 deposition for 50, 100, 300 and 500 cycles, the nanospheres were determined to be ~83, ~93, ~109
and ~136 nm, respectively, as listed in Table 2. According to the fitted curves, the diameters of the
nanospheres were increased with the number of ALD cycles at an average rate of ~1.16 Å per cycle.
However, the growth of the nanospheres with the cycle numbers was nonlinear in fact. The deposition
rate is observed to be faster at the first 100 cycles with a mean value of ~1.80 Å than that for the later
400 cycles with the value of ~1.08 Å, which may probably be owing to the varied diffusion rate of the
precursors. In the initial stage, the intersphere distance is large enough for the rapid diffusion of the
precursor vapors. However, with the increment of the ALD cycles, the nanospheres were getting larger
with the intersphere space getting reduced correspondingly, thus increased the diffusion resistance
of the ALD precursors and lower the deposition rate. The varied deposition substrates may also
be an important factor for the changed deposition rate. In the initial stage, the precursors of TiCl4
was supposed to coordinate first with the unreacted superficial free pyridyl groups of P4VP coronae,
thus harvested Ti precursors rapidly. Further exposure to the precursors led to the growth of TiO2 on
the preformed TiO2 thin layer, which may result in the different growth rate of TiO2 eventually.

Table 2. The diameters of the nanospheres derived from different block copolymers with varied ALD cycles 1.

Cycles PS-b-P4VP-1 PS-b-P4VP-2 PS-b-P4VP-3

0 75 ± 5 64 ± 4 46 ± 4
50 83 ± 4 71 ± 3 55 ± 4
100 93 ± 7 77 ± 4 61 ± 5
300 109 ± 5 106 ± 5 85 ± 6
500 136 ± 6 135 ± 5 112 ± 6

1 The unit is nm.

The morphologies and the plot of nanospheres derived from PS-b-P4VP-2 and PS-b-P4VP-3 with
different ALD cycles were also shown in Figures S1 and S2. The diameters of these nanospheres
were also listed in Table 2. We found that the diameters of both kinds of nanospheres have an
increment with the ALD cycles, which is similar to that of the nanospheres prepared from PS-b-P4VP-1.
The average growth rate for the deposition on PS-b-P4VP-2 and PS-b-P4VP-3 are ~1.43 Å and ~1.29
Å per cycle, respectively, which is both close to the growth rate of the deposition on PS-b-P4VP-1.
However, differ from the nonlinear increase with the PS-b-P4VP-1, the growth rate for the deposition
on nanospheres with PS-b-P4VP-2 and PS-b-P4VP-3 are both found to be nearly linear increased
with the number of cycles. This may probably be ascribed to the smaller diffusion rate change of
the precursors with initial relatively smaller nanospheres and correspondingly broader intersphere
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distance. Moreover, the thickness of TiO2 layer on composite micelles of PS-b-P4VP-1 is calculated to
be only ~4 nm with 50 ALD cycles and ~9 nm with 100 ALD cycles. The TiO2 layer was increased to
~17 and ~33 nm with 300 and 500 cycles of ALD. The thickness of the TiO2 layer on PS-b-P4VP-2 and
PS-b-P4VP-3 were both nearly equal to these values under same ALD cycles with a small error of only
2–3 nm. Therefore, it is also a simple way to tune the thickness of the TiO2 layer by changing the ALD
cycles. Meanwhile, the nanospheres prepared with lower molecular weight were determined to be
smaller than those prepared with higher molecular weight under the same deposition cycles.Polymers 2019, 11, x FOR PEER REVIEW 7 of 12 
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Figure 4. SEM images of the nanospheres of PS-b-P4VP-1 subjected to TiO2 deposition for (a) 50, (b) 100,
(c) 300 and (d) 500 cycles, respectively. All of the images have the same magnification and the scale bar
is shown in (d). (e) The plot of the diameters of the nanospheres with the number of ALD cycles.

The structures of the nanospheres derived from PS-b-P4VP-1 with different ALD cycles were also
investigated by TEM carefully. As demonstrated in Figure 5a, an ultrathin dark layer with the thickness
of ~3 nm around the polymeric composite micelles was observed without ALD. Considering the
similar electron density of PS and P4VP chains, the dark layer should only be ascribed to the presence
of the ferric ions as Fe element have higher electron density than that of the polymers [15]. This result
illustrated the successful coordination of the ferric ions with the pyridyl groups of the coronae P4VP
chains. After ALD of TiO2 for 50 cycles (Figure 5b), the thickness of the dark layer around nanospheres
increased to ~6 nm and it further increased to ~10 nm after 100 cycles (Figure 5c). Therefore, the TiO2

layer is determined to be 3 and 7 nm with 50 and 100 cycles. Considering the different principles
between SEM and TEM characterizations, these values were in good agreement with the results
obtained from SEM characterizations. The EDX mapping of the PS-b-P4VP-1 nanospheres with 50
ALD cycles was also given in Figure S3. The Fe and Ti elements were both observed while Fe element
mainly existed closer to the center of the nanospheres than Ti element. This verified the double-shelled
structures after TiO2 deposition with Fe element exists inner and Ti element outer the shell of the
nanospheres. Meanwhile, the precursors of TiCl4 will not replace the coordinated ferric ions with the
ALD process. The structures of the nanospheres derived from PS-b-P4VP-3 with different ALD cycles
were also investigated and the results were shown in Figure S4. The dark layer around the polymeric
composite micelles was also observed and the size of the nanospheres of PS-b-P4VP-3 was found to be
much smaller than that of PS-b-P4VP-1 with the same ALD cycles.
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3.3. The Preparation of the DSH Inorganic Nanospheres

In order to prepare DSH structures, the as-deposited nanospheres were calcinated in air at 540 ◦C
for 3 h. After calcination, the block copolymers were degraded while the coordinated ferric ions were
supposed to be transformed into a thin layer of iron oxide and the outer TiO2 layer kept the shell
skeleton, leading to the hollow structures. It is also supposed that the calcination leads to the formation
of crystalline TiO2 while the TiO2 produced at low temperature was usually weakly crystallized or even
amorphous [33]. The morphologies of the nanospheres of PS-b-P4VP-1 subjected to TiO2 deposition for
different ALD cycles after calcination was depicted in Figure 6. The nanospheres can maintain their
spherical structures without any destruction after calcination even if the TiO2 layer was as thin as only
~4 nm with 50 ALD cycles. Meanwhile, with the increment of the ALD cycles, the diameters of the
nanospheres after calcination increased accordingly. For example, the diameter of the nanospheres
was determined to be ~62 nm with 50 cycles (Figure 6a) and it can be further increased to ~73, ~105
and ~135 nm with 100, 300 and 500 cycles (Figure 6b–d). However, it is surprising that the diameters
of the nanospheres with lower ALD cycles are decreased when compared with the diameters before
calcination. As the ALD carried out for over 300 cycles, the diameters of the nanospheres were nearly
the same either before or after calcination, suggesting no deformation of the structures. Therefore, it is
believed that the nanospheres were partly shrinked as the thickness of the TiO2 layer is lower than
~17 nm. The morphologies of the nanospheres of PS-b-P4VP-2 after calcination were also shown in
Figure S5. The diameters of nanospheres were determined to be ~65 nm with 50 ALD cycles, which is
smaller than the value obtained from SEM characterizations, indicating a shrinkage of the nanospheres
after calcination. However, the diameter was supposed to be ~78 nm with 100 ALD cycles, which is
close to the result from SEM characterizations. Therefore, nanospheres derived from lower molecular
weights were able to maintain their structures without any deformation with thinner TiO2 layers, for
example, ~7 nm.



Polymers 2019, 11, 1208 9 of 12

Polymers 2019, 11, x FOR PEER REVIEW 9 of 12 

 

the TiO2 layer was as thin as only ~4 nm with 50 ALD cycles. Meanwhile, with the increment of the 
ALD cycles, the diameters of the nanospheres after calcination increased accordingly. For example, 
the diameter of the nanospheres was determined to be ~62 nm with 50 cycles (Figure 6a) and it can 
be further increased to ~73, ~105 and ~135 nm with 100, 300 and 500 cycles (Figure 6b-d). However, 
it is surprising that the diameters of the nanospheres with lower ALD cycles are decreased when 
compared with the diameters before calcination. As the ALD carried out for over 300 cycles, the 
diameters of the nanospheres were nearly the same either before or after calcination, suggesting no 
deformation of the structures. Therefore, it is believed that the nanospheres were partly shrinked as 
the thickness of the TiO2 layer is lower than ~17 nm. The morphologies of the nanospheres of PS-b-
P4VP-2 after calcination were also shown in Figure S5. The diameters of nanospheres were 
determined to be ~65 nm with 50 ALD cycles, which is smaller than the value obtained from SEM 
characterizations, indicating a shrinkage of the nanospheres after calcination. However, the diameter 
was supposed to be ~78 nm with 100 ALD cycles, which is close to the result from SEM 
characterizations. Therefore, nanospheres derived from lower molecular weights were able to 
maintain their structures without any deformation with thinner TiO2 layers, for example, ~7 nm. 

 
Figure 6. SEM images of the nanospheres of PS-b-P4VP-1 subjected to TiO2 deposition for (a) 50, (b) 
100, (c) 300 and (d) 500 cycles followed by calcination. All of the images have the same magnification 
and the scale bar is shown in (d). 

To further confirm the existence of the iron and titanium elements after calcination, EDX was 
utilized for the characterizations of the PS-b-P4VP-1 samples and the results were summarized in 
Table 3. After calcination, the block copolymers were fully degraded as the PS-b-P4VP can be fully 
removed at the temperature of over 300 °C [15]. As evidenced by the results, the iron and titanium 
elements were still existed in the samples even though their amounts were finite. Considering the 
nanospheres were sporadically coated on the silicon wafers with a quite thin silica layer existed on 
the surface, it is reasonable to understand that the amount of Fe and Ti elements are much lower than 
those of Si and O elements. Meanwhile, as the calcination was carried out in air, the ferric ions 
coordinated on the micelles were considered to be transformed into a thin layer of iron oxide. To 
further confirm the crystal form of the Fe element, the XRD pattern of the hollow nanospheres of PS-
b-P4VP-1 with 100 ALD cycles was exhibited in Figure 7. XRD analysis showed that the DSH 
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the scale bar is shown in (d).

To further confirm the existence of the iron and titanium elements after calcination, EDX was
utilized for the characterizations of the PS-b-P4VP-1 samples and the results were summarized in
Table 3. After calcination, the block copolymers were fully degraded as the PS-b-P4VP can be fully
removed at the temperature of over 300 ◦C [15]. As evidenced by the results, the iron and titanium
elements were still existed in the samples even though their amounts were finite. Considering the
nanospheres were sporadically coated on the silicon wafers with a quite thin silica layer existed on the
surface, it is reasonable to understand that the amount of Fe and Ti elements are much lower than those
of Si and O elements. Meanwhile, as the calcination was carried out in air, the ferric ions coordinated
on the micelles were considered to be transformed into a thin layer of iron oxide. To further confirm
the crystal form of the Fe element, the XRD pattern of the hollow nanospheres of PS-b-P4VP-1 with 100
ALD cycles was exhibited in Figure 7. XRD analysis showed that the DSH nanospheres present a peak
centering at 33◦, which is coincident with a characteristic peak of α-Fe2O3. Therefore, it indicated a
transition of ferric ions to a moderate crystallinity of α-Fe2O3 after calcination in air and it is credible
that the double-shelled polymeric nanospheres are transferred to the DSH inorganic nanospheres with
Fe2O3 exists inner and TiO2 outer the hollow spherical structures.

Table 3. EDX analysis of the hollow nanospheres of PS-b-P4VP-1 after ALD and calcination.

Element Weight % Atomic %

O K 6.04 10.16
Si K 93.39 89.54
Ti K 0.32 0.18
Fe K 0.25 0.12

Totals 100.00
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4. Conclusions

We have demonstrated an innovative strategy for producing DSH inorganic nanospheres with
the block copolymer micelles being employed as the template. In this strategy, amphiphilic block
copolymers were first self-assembled into regular micelles with heating-enabled micellization. With the
introduction of the metal–ligand coordination, ferric ions were supposed to be coordinated on the
coronae of the regular micelles, forming polymeric composite micelles. The composite micelles were
then deposited with a thin layer of TiO2 by ALD and the DSH inorganic nanospheres can be obtained
with Fe2O3 existing inner and TiO2 outer the hollow spherical structures after calcination in air.
The coordination was carried out at room temperature and the ALD process was performed at the low
temperature of 80 ◦C. Therefore, this strategy provides a feasible strategy for preparing double-shelled
structures without destruction of the block copolymer templates with some designated metal oxide
which must be deposited with quite high temperatures. The hollow structures can also be finely
tuned with the utilized molecular structures of the block copolymers and the ALD cycles. These DSH
inorganic nanospheres are expected to find vital applications in battery, catalysis, sensing and drug
delivery, etc.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/7/1208/s1,
Figure S1: SEM images of the nanospheres of PS-b-P4VP-2 subjected to TiO2 deposition for (a) 50, (b) 100, (c) 300
and (d) 500 cycles, respectively. All of the images have the same magnification and the scale bar is shown in (d).
(e) The plot of the diameters of the nanospheres with the number of ALD cycles, Figure S2: SEM images of the
nanospheres of PS-b-P4VP-3 subjected to TiO2 deposition for (a) 50, (b) 100, (c) 300 and (d) 500 cycles, respectively.
All of the images have the same magnification and the scale bar is shown in (d). (e) The plot of the diameters
of the nanospheres with the number of ALD cycles, Figure S3: EDX mapping of the micelles of PS-b-P4VP-1
subjected to TiO2 deposition for 50 cycles, Figure S4: TEM images of the nanospheres of PS-b-P4VP-3 subjected
to TiO2 deposition for (a) 0, (b) 50 and (c) 100 cycles, respectively, Figure S5: SEM images of the nanospheres of
PS-b-P4VP-2 subjected to TiO2 deposition for (a) 50, (b) 100, (c) 300 and (d) 500 cycles followed with calcination.
All of the images have the same magnification and the scale bar is shown in (d).
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