

1 Appendix – Supplementary material

2

Γ	Sample	Abbreviation	Molecular weight (kDa)
	High molecular weight hyaluronan	HMW HYA	1255 ± 90
	Low molecular weight hyaluronan	LMW HYA	309 ± 4
	Diethylaminoethyl-dextran hydrochloride	DEAED	729 ± 32

3

Table S1. Molecular weights of all polysaccharides determined by SEC-MALLS technique

4

pH range	Used chemicals	Buffer name		
3,5 - 5,5	CH3COONa·3 H2O; CH3COOH	Acetate buffer		
6 - 7,5	KH2PO4; NaOH	Phosphate buffer		
8 – 9	HCl; Na2B4O7·10 H2O	Borate buffer		
9,5 – 11	NaOH; Na2B4O7·10 H2O	Borate buffer		

Table S2. Substances used for buffers preparation for study of pH effect

7

8

Figure S1. Comparison of viscoelastic properties of H1 sample prepared by different ways (solution vs. powder method)

Figure S2. Storage moduli (G') for HYA hydrogels prepared – concentration dependence

Figure S3. Strain sweep for DEAED hydrogels – concentration dependence

14

Sample	End of linear viscoelastic region (%)
H1	19.30
H2	7.75
H3	5.91
H4	1.94
H5	4.77
H6	10.18
D1	21.98
D2	70.32

17 Table S3. The end of linear viscoelastic region range for hydrogels prepared from HMW and LMW18 hyaluronan

Figure S4. Frequency sweep for H1, H2, H3 samples

23										
Sample	G1 (Pa)	λ ₁ (s)	G2 (Pa)	λ ₂ (s)	G3 (Pa)	λ ₃ (s)	G4 (Pa)	λ4 (s)	G₅ (Pa)	λ5 (s)
	802.1	0.000	607 2	0.060	500.2	0.252	286.6	1 874	70.0	12 240
ПІ	805.1	0.009	607.2	0.069	509.5	0.552	200.0	1.024	12.2	12.240
H2	588.9	0.010	389.1	0.061	485.0	0.265	354.9	1.586	100.5	11.800
H3	508.7	0.010	435.2	0.072	508.5	0.340	464.3	1.735	194.8	11.830
H4	1576.0	0.010	542.2	0.082	142.8	0.209	78.3	0.780	20.3	1.976
H5	648.0	0.010	170.9	0.056	97.7	0.153	22.5	1.729	12.1	12.350
H6	511.3	0.009	228.0	0.074	72.7	0.456	18.5	1.958	9.6	12.010
D1	12170	0.013	953.1	0.140	471.5	0.478	16.39	1.856	6.262	8.379
D2	31380	0.009	4900	0.093	1954	0.488	365.6	1.872	30.79	11.470

Table S4. Relaxation spectra parameters for all tested hydrogels

26	Sample	Zara shaar viscosity (Pas)	Shear rate at the end of	
77	name	Zero-sitear viscosity (1 a.s)	Newton plateau (1/s)	
27	H1	1499 ± 105	0.03	
28	H2	54 ± 6	0.09	
29	H3	14.3 ± 0.7	0.06	
	H4	10.8 ± 0.4	0.29	
30	H5	3.29 ± 0.08	2.94	
21	H6	1.12 ± 0.05	0.20	
31	D1	396 ± 8	2.00	
20	D2	2715 ± 212	1.36	
32				

33 **Table S5.** Zero-rate viscosity and Newtonian plateau for all studied hydrogels

Figure S5. Relaxation spectra for H1-H6 samples

Figure S6. Discrete relaxation spectra for DEAED hydrogels – concentration dependence

Figure S7. Strain sweep for H1 sample - temperature dependence

Figure S8. Strain sweep for D1 sample – temperature dependence

Figure S9. Discrete relaxation spectra for H1 and H4 samples – temperature dependence

45

Figure S10. Discrete relaxation spectra for D1 sample – temperature dependence

49

48

- 52
- 53
- 54

Figure S11. Flow properties of H1 and H4 samples (37 °C)

- 55 56
- _ _

Sample	Linear viscoelastic region (%)				Viscoelastic moduli G'/G" (Pa)			
	CaCl ₂	MgCl2·6 H2O	FeCl ₃	Original samples	CaCl ₂	MgCl2·6 H2O	FeCl ₃	Original samples
H1	75.63	75.15	103.59	19.30	277/198	544/377	1163/308	481/268
H2	50.83	225.96	32.15	4.75	1414/719	66/64	177/88	289/79
H3	29.28	15.66	14.94	6.91	415/201	635/216	300//99	42/13
H4	100.71	221.79	No gel	1.94	65/126	30/74	No gel phase detected	210/105
H5	149.95	216.91	No gel	4.77	109/199	7.6/30	No gel phase detected	168/36
H6	21.63	No gel phase detected	4.69	10.18	169/241	No gel phase detected	321/162	64/19
D1	1.51	14.99	10.15	21.98	7544/794 9	3321/466 4	1075/162 5	899/1206
D2	1.47	69.86	47.20	70.32	666/737	2216/255 3	699/835	2939/401 5

Table S6. Linear viscoelastic region ranges for hydrogels. Describe the effect of multivalent ions to
range of linear viscoelastic region.

60

Figure S12. Storage moduli (G') for D2 sample – pH dependence

6	7
U	1

Committee	Mesh size (nm)					
Sample	original sample	CaCl ₂	MgCl2·6H2O	FeCl ₃		
H1	23.23	17.80	16.57	16.01		
H2	24.55	15.82	15.93	20.55		
H3	23.01	15.23	17.64	21.54		
H4	39.00	22.39	22.08	25.98		
H5	25.62	16.93	21.91	19.43		
H6	27.77	15.40	19.43	23.17		
D1	8.94	7.68	6.55	6.22		
D2	7.12	-	9.29	13.82		

68 Table S7. Calculated values for the mesh size of phase-separated hydrogels. Describe the effect of 69 multivalent ions to mesh size in comparison with mesh size of original samples

Figure S13. Flow properties of H1 sample – the effect of multivalent ions

Figure S14. Flow properties of H4 sample – the effect of multivalent ions

Figure S15. Flow properties of D1 sample – the effect of multivalent ions

Figure S16. Flow properties of D2 sample – the effect of multivalent ions