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Abstract: Reversible Hydrogen Bonds (RHB) have been explored to confer self-healing function to
multifunctional nanocomposites. This study has been carried out through a sequence of different
steps. Hydrogen bonding moieties, with the intrinsic ability to simultaneously perform the functions
of both hydrogen donors and acceptors, have been covalently attached to the walls of carbon
nanotubes. The epoxy matrix has been modified to adapt the formulation for hosting self-healing
mechanisms. It has been toughened with different percentages of rubber phase covalently linked
to the epoxy precursor. The most performant matrix, from the mechanical point of view, has been
chosen for the incorporation of MWCNTs. Self-healing performance and electrical conductivities
have been studied. The comparison of data related to the properties of nanocomposites containing
incorporated functionalized and nonfunctionalized MWCNTs has been performed. The values of the
electrical conductivity of the self-healing nanocomposites, containing 2.0% by weight of functionalized
multiwalled carbon nanotubes (MWCNTs), range between 6.76 × 10−3 S/m and 3.77 × 10−2 S/m,
depending on the nature of the functional group. Curing degrees, glass transition temperatures,
and storage moduli of the formulated multifunctional nanocomposites prove their potential for
application as functional structural materials.

Keywords: smart materials; carbon–carbon composites (CCCs); thermosetting resins; mechanical
properties; supramolecular interactions

1. Introduction

The concept of materials having the ability to repair themselves is mainly inspired by nature.
In living systems, damages which do not completely compromise the structural entity of the system
or part of it are able to activate spontaneous healing mechanisms. The big challenge to transfer this
ability to structural synthetic materials lies in the fact that these materials, unlike living systems,
have no metabolic activity. However, even in inanimate matter, nature provides effective insights to
achieve this goal. The imitation of natural mechanisms opens emerging and fascinating perspectives.
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It could have a significant impact on the extent of the working life and safety of synthetic materials
for several applications. Among synthetic materials, thermoplastic and thermosetting polymers
are widely produced for their employment in many technological and industrial sectors; hence,
the possibility to add self-repair functions to these materials is under investigation by researchers
around the globe [1–23].

An efficient self-healing material must be able to regenerate its structural integrity without
any external stimulus at the moment in which the damage happens [24,25], thus imitating the
healing mechanisms of animated bodies. In soft materials with low values of glass transition
temperature (lower than the service temperature of the material), high chain mobility allows
different possible self-healing mechanisms. For load-bearing materials characterized by high
stiffness and poor mobility of the chains, there are severe limits in the choice of the self-healing
mechanisms and therefore limited chances of successful results. Recently, many alternative strategies to
microencapsulated systems have been proposed, such as hollow fibers, microvascular networks [26,27],
or mechanochemical approaches [28–30]. Among these new approaches, chain dynamics and aspects
including supramolecular polymer chemistry have been investigated [31–58]. Thus, attractive
interactions based on the cumulative effects of week interactions such as hydrogen bonds and
π–π stacking interactions can play a crucial role in repetitively activating healing cycles [40,59,60].
The effects of weak noncovalent interactions on the material properties are often underestimated,
especially when dealing with amorphous or crystalline solid materials. Weak interactions, even weaker
than that of the hydrogen bond, can strongly influence the material properties and impart or reinforce
functions of relevant technological interest.

It has been recently highlighted that hydrogen bonding combined with other weaker noncovalent
interactions can strongly affect the geometry and, consequently, the properties of the perovskite
crystals. For instance, Varadwaj et. al. evidenced the relevant role of hydrogen bonding and
other noncovalent interactions in determining the octahedral tilting in a CH3NH3PbI3 perovskite
semiconductor system [61]. Form this study, the authors concluded that it is incorrect to attribute an
important role only to the strong noncovalent interactions because other noncovalent weak interactions
also affect the geometrical parameters and hence the physical performance of the material.

In this paper, MWCNTs have been functionalized with the aim to develop multifunctional
self-healing epoxy nanocomposites, considering the idea to design materials and structures with
different integrated functionalities. In particular, electrically conductive nanoparticles (carbon nanotubes
or graphene-based nanoparticles) currently embedded in resins to enhance the electrical conductivity
of the resulting nanocomposites act as a support for functional groups able to simultaneously impart
self-healing ability to polymeric matrices. Furthermore, the possibility to develop electrically conductive
self-healing composites opens new interesting perspectives in the sector of the self-responsive materials.
Indeed, smart functions such as self-sensing, anti/de-icing, self-curing, etc. can be integrated into the
materials/structures by exploiting the intrinsic electrical characteristics of the materials. Furthermore,
the incorporation of nanostructured forms of carbon in polymeric matrices can simultaneously enhance
not only the electrical conductivity and self-responsive smart functions, but also other desirable
properties, such as thermal resistance, flame resistance, and durability [62–69].

Particular attention has been paid to the modification of the thermosetting matrix to make it able
to host transient bonds on which the healing function is based.

Moieties with the intrinsic ability to simultaneously behave as hydrogen donors and acceptors
have been covalently attached to the walls of carbon nanotubes to allow the formation of RHB
interactions. Hydrogen bonds, in fact, can act as reversible hooks, effectively enabling the opening and
the closing of the hooks, thus allowing a dynamic reiteration of the self-repair events. An interesting
feature for real industrial application is the possibility to activate repeated healing events even in the
same zone. In fact, it is possible with this strategy to enable connections and reconnections and thus
the formation of supramolecular networks with the only condition that the moieties able to establish
hydrogen bonds must be at a suitable distance to sense the attractive interactions.
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The design of these reversible interactions is inspired by living systems, such as the remarkable
capability of the DNA double helix to form, break (during the strand separation), and reform hydrogen
bonds (see the schematic illustration of Figure 1). We have tried to imitate this great ability to form,
break, and reform hydrogen bonds in inanimate matter between functionalized MWCNTs (as in
Figure 1).
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Figure 1. Example of hydrogen bonds in the inanimate matter between functional groups covalently
bonded to the walls of multiwalled carbon nanotubes (MWCNTs).

Furthermore, it is expected that the presence of hydrogen bonding moieties on MWCNT walls is
also able to establish RHB interactions with the –OH of the epoxy resins, as shown in the scheme of
Figure 2.
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Figure 2. Example of hydrogen bonds between functional groups covalently bonded to the walls of
MWCNTs and the –OH of the resin network.

The interactions shown in the scheme of Figure 2 are very likely, due to the relevant presence of
–OH groups determined by the curing process.
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2. Material and Methods

2.1. Materials

2.1.1. Preparation of Functionalized MWCNTs

Carbon nanotubes have been modified with thymine (MWCNT-t) and barbituric (MWCNT-b)
acid-based moieties (see the scheme of Figure 3a) via copper(I)-catalyzed alkyne/azide cycloaddition
(CuAAC) “click” reaction following a procedure already described in the literature [60]. An example
of hydrogen bonds which can be active during damage and healing events for barbiturate
modified MWCNTs.
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Figure 3. (a) Scheme representative of MWCNTs modified with thymine and barbituric acid-based
functional groups; (b) Example of hydrogen bonds, which can be active during damage and healing
events for barbiturate-modified MWCNTs.

2.1.2. Modification of the Hosting Toughened Matrix

An aeronautical epoxy resin has been toughened using a fluid rubber carboxyl-terminated
butadiene acrylonitrile (CTNB). The COOH groups of the liquid rubber react with the oxirane rings of
the resin, tetraglycidyl methylene dianiline (TGMDA), to form covalent bonds. This reaction allows
the dispersion of the rubber phase in the form of micrometric domains in the mixture of the initial
epoxy precursor [60].

Two epoxy mixtures were prepared by mixing the precursor TGMDA with 10 phr of
triphenylphosphine (PPh3) and two different percentages 12.5 phr and 25.0 phr of CTNB, respectively.
The triphenylphosphine promotes the reaction between the oxirane rings of the epoxy precursor and
the carboxylic groups of the CTNB copolymer. The reaction mixtures were kept at 170 ◦C in an oil bath
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under mechanical agitation for 24 h. The product is indicated here as TCT and the reaction mechanism
is shown in Figure 4 [60].Polymers 2019, 11, x FOR PEER REVIEW 5 of 23 
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Figure 4. Scheme of the two steps reaction between the epoxy precursor TGMDA and the rubber
phase CTNB: (1) nucleophilic attack of PPh3 catalyst on the carbon atom of the oxirane ring generating
the phosphonium salt; (2) reaction between the carboxylic group of the CTNB copolymer and the
phosphonium salt generating the TCT modified precursor.

The mixture TCT was cooled at 120 ◦C. Afterward, a mixture here named TCTB was obtained by
adding to the TCT mixture the diluent 1,4-butanedioldiglycidylether (BDE) at the ratio TGMDA/BDE of
80/20 by weight. Finally, 4,4′-diaminodiphenyl sulfone (DDS), was added to hardener the mixture TCTB,
obtaining the epoxy mixtures TC12.5 TBD (for the formulation with 12.5 phr of CTNB) and TC25.0TBD
(for the formulation with 25.0 phr of CTNB). A formulation without rubber phase, named TBD, was also
prepared for comparison. All epoxy mixtures were kept under mechanical stirring at 120 ◦C for 1 h
and then degassed in vacuum at 100 ◦C for 1 h. They were poured in the molds and solidified in an
oven with a curing cycle composed of two isotherms: the first at 125 ◦C for 1 h followed by a second
one at 200 ◦C for 3 h.

2.1.3. Manufacturing of Multifunctional Self-Healing Nanocomposites

Functionalized carbon nanotubes (MWCNT-t and MWCNT-b) and nonfunctionalized MWCNTs
have been embedded in different percentages (0.5 and 2.0% by weight) in the hosting toughened
matrix with 12.5 phr of CTNB. Carbon nanotubes have been dispersed at 120 ◦C in the TCTB mixture,
before the addition of the curing agent using an ultra-sonication process for about 20 min. Hielscher
model UP200S (200 W, 24 kHz) (Hielscher Ultrasonics GmbH, Teltow, Germany) ultrasound was
employed for this step. The developed self-healing nanocomposites are listed in Table 1.

Table 1. Self-healing formulations.

Sample MWCNT Type MWCNT [%] CTNB [phr]

TCTBD MWCNT 0 12.5
TCTBD + 0.5% MWCNT MWCNT 0.5 12.5

TCTBD + 0.5% MWCNT-b MWCNT-b 0.5 12.5
TCTBD + 0.5% MWCNT-t MWCNT-t 0.5 12.5
TCTBD + 2% MWCNT-b MWCNT-b 2.0 12.5
TCTBD + 2% MWCNT-t MWCNT-t 2.0 12.5
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2.2. Methods

2.2.1. Thermo-Mechanical Characterization

DMA 2980 (TA instrument, Corp. 159 Lukens Drive New Castle, DE, USA) was used to perform
the dynamic mechanical characterization. Temperature sweep test with the three points bending
geometry was performed on specimens with dimensions 3 × 4 × 35 mm3. Samples have been tested in
the viscoelastic region by setting the displacement amplitude at 0.1% and the frequency at 1 Hz.

The measurements were performed with a heating rate of 3 ◦C/min over a temperature range
of −50–300 ◦C after having carried out the calibration of the clamp compliance, force, and furnace
temperature. Tan δ peak was taken as a measurement of the glass transition temperatures.

2.2.2. Calorimetric Analysis

Differential Scanning Calorimetry analysis has been carried out to estimate the curing degree
(DC). A Mettler DSC 822/400 (Mettler-Toledo Columbus, OH, USA) thermal analyzer was used.

The curing degree (DC) was calculated, considering that the exothermic heat (∆H) during the
dynamic heating is proportional to the extent of the curing reaction, from the total heat of reaction
(∆HT) of the uncured material and the residual heat of reaction (∆HRes) of the partially cured epoxy
resin according to Equation (1).

DC =
∆HT − ∆HRes

∆HT
× 100 (1)

In order to determine the total heat of reaction (∆HT), the thermal analysis was performed on
uncured formulations. The samples were scanned at 10 ◦C/min from −50 to 300 ◦C. After cooling
at 50 ◦C/min, an immediate rescan was run from 0 ◦C to 350 ◦C to verify the eventual presence of
residual heat of reaction. For all uncured samples no peaks were observed in the second scan, therefore
the ∆H obtained from the exothermal peak in the first scan was assumed as a measure of the total
heat of reaction (∆HT). The residual heat of reaction (∆HRes) was determined from the measurements
performed on cured samples. The measurements were performed at 10 ◦C/min from 0 ◦C to 350 ◦C.
∆H obtained from the exothermal peak of these scans was considered as a measure of the residual heat
of reaction (∆HRes).

2.2.3. Thermogravimetric Analysis (TGA)

A Mettler TGA/SDTA 851 thermal analyzer was employed to carry out Thermogravimetric
Analysis in air and in nitrogen atmosphere. The weight loss as a function of the temperature was
recorded at 10 ◦C/min from 25 ◦ to 1000 ◦C.

2.2.4. High-Resolution Transmission Electron Microscopy (HRTEM) Analysis

Jeol 2010 LaBa6 microscope operating at 200 kV, HRTEM was used to perform the morphological
characterization. MWCNTs were dispersed in ethanol by ultrasonication for half an hour. A copper
grid, holey carbon, was used to hold the dispersion during the observation.

2.2.5. Electrical Properties

Dc volume conductivity was measured on disk-shaped specimens of about 2 mm thickness and
50 mm diameter to which a circular measurement electrode with a diameter of about 22 mm was
applied. If the samples were above or below the percolation threshold, two different experimental
set-ups were used. For samples beyond the percolation threshold, the experimental set-up was
composed of a suitable shielded cell with temperature control, of multimeter Keithley 6517A with the
function of voltage generator (max. ±1000 V) and voltmeter (max. ±200 V) and the ammeter HP34401A
(min. current 0.1 µA). The experimental system for sample below the percolation threshold was
instead composed of multimeter Keithley 6517A with functions of voltage generator (max. ±1000 V)
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and pico-ammeter (min. current 0.1 fA). All the systems were remotely controlled by the software
LABVIEW® (Labview 2018, National Instruments, Austin, TX, USA).

2.2.6. Self-Healing Efficiency

Self-healing tests were carried out on the composite materials by a continuous dynamic flexural
deformation. In particular, samples having dimensions 3 × 10 × 35 mm3 and a V-shaped starter notch,
(1 × 2 mm2) were analyzed by applying a sinusoidal deformation with a maximum amplitude of 0.1%
at a frequency of 1 Hz. A precrack in the sample was induced by an impulsive load of about 25 N.
The evolution of the mechanical modulus with time was considered as representative of the evolution
of the healing process in the sample.

2.2.7. Infrared Spectroscopy Characterization

Infrared spectroscopy (FTIR) tests were carried out using a Bruker Vertex 70
FTIR-spectrophotometer (Bruker Optics Inc. Billerica, MA, USA) in the range of 4000–400 cm−1,
with a resolution of 2 cm−1 (32 scans collected). The infrared spectra were obtained in absorbance.

Infrared spectra of the cured epoxy resin and related nanocomposites were collected using
13 mm-diameter pellets of KBr as a carrier. Parts of the samples were finely ground to a powder and
dispersed in the KBr pellets. It is worth noting that to be sure to avoid possible contributes of the
adsorbed moisture in the spectral region of O–H signals, the powders of the samples were conditioned
at 100 ◦C under vacuum for 24 h before their dispersion in the KBr pellets. Afterward, the pellets were
conditioned at 100 ◦C under vacuum for 24 h again before the collection of the spectra.

3. Results and Discussion

3.1. Toughening of the Hosting Epoxy Matrix

The self-healing mechanism with RHB interactions in structural resins is limited by very low
mobility of the chain segments in the thermosetting matrix, which prevent rearrangement of cooperative
hydrogen bonding interactions. The challenge in this work was to improve the dynamic properties of
the resin and reduce the rigidity of the matrix, acting on its phase composition. Therefore, the design
of a material with small domains of the polymer at higher mobility, finely interpenetrated in the resin,
has been considered.

3.2. Dynamic Mechanical Analysis (DMA)

3.2.1. Hosting Epoxy Matrix

DMA investigation was considered to analyze the influence of the rubber phase on the viscoelastic
response of the resin and, in particular, to assess the glass transition temperature (Tg). The storage
modulus, E’ (MPa), and the loss factor, tan δ, of the analyzed formulations at different rubber content,
are shown in Figure 5.
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The curve related to tan δ of the sample TBD (black curve) without rubber exhibits two distinct
peaks centered at about 200 ◦C and 265 ◦C. The appearance of two peaks in the matrix has already
been found in the literature [70] and is correlated to the presence of phases with different crosslinking
density, for which one is characterized by enhanced segmental motion and consequently lower values
of Tg. The phase composition depends on the curing degree and on the ratio between the epoxy/amine
functional groups.

The addition of the liquid rubber CTBN in the epoxy matrix (samples TC12.5TBD and TC25.0TBD)
determines a decrease of the Tg, which appears almost as a single peak shifted at a lower temperature.
The Tg decreases as the rubber phase increases. The glass transition temperatures are centered at
about 190 ◦C for the sample TC12.5TBD and at about 140 ◦C for the sample TC25.0TBD. Compared to
sample TBD, the relaxation mechanisms of the samples with the rubber phase are associated to only
one coalesced peak that is more intense and broadened, suggesting that for these samples, the two
phases characterized by different crosslinking density have converged to a single phase, which presents
relaxation mechanisms in a wider interval of temperature. As shown in the inset of Figure 5a, the same
trend is observed for the other two weak β and γ relaxations. The transition between −100◦C and 30 ◦C,
known as β transition, is due to crankshaft rotations of the glycidyl crosslinking segments [70–72],
while the γ transition (between 30 ◦C and 120 ◦C) is due to unreacted molecular segments and/or
inhomogeneities of the material in domains with different crosslink density. The peaks associated
with these weak transitions are more pronounced for the TBD formulation and converge in a single
wider peak for the rubber epoxy mixtures that present relaxation mechanisms in a range of low
temperatures (−100 ◦C � 60 ◦C). The lower intensity of γ transition suggests that the presence of the
liquid rubber determines a reduction the material inhomogeneity and consequently of domains with
different crosslink density.

It can be hypothesized that the use of the epoxy matrix toughened with the liquid rubber CNTB
enhances the activation of supramolecular self-healing mechanisms for two different reasons:

• the reduced crosslink density highlighted by the decrease in the Tg values increases the
chain flexibility and mobility, hence enhancing the ability of the composite to activate
autorepair mechanisms;

• the modified epoxy matrix can better interact with self-healing moieties on MWCNTs due to the
reduced rigidity of the matrix;

The comparison, in terms of storage modulus (Figure 5b), evidences that the values tend to
decrease with increasing rubber-phase, as expected.
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As observable in Figure 5b, all samples are characterized by high storage modulus values.
In particular, for temperature below 100 ◦C, these values are higher than 2000 MPa. This result also
indicates that the epoxy formulation containing the liquid rubber at a lower percentage (TC25TBD)
has the potential to be applicable in the temperature service range of structural materials (aerospace,
wind turbine, shipping, electronic industries, etc.). However, considering the Tg and the storage
modulus values, the formulation containing 12.5 phr of rubber-phase has been selected as the epoxy
matrix suitable to host self-healing mechanisms to be applied in aeronautical composites for which a
Tg value of about 180 ◦C is suggested by the manufacturing industries.

3.2.2. Self-Healing Epoxy Formulation

The influence of functionalized MWCNTs on the storage modulus and Tg of the self-healing
nanocomposites has been investigated by DMA analysis.

Figure 6a illustrates the curves of the storage modulus (E’) as a function of the temperature for the
samples containing different percentages of functionalized MWCNT. The graphs of the storage modulus
(E’) of the sample containing nonfunctionalized MWCNTs and the unfilled resin have also been added
for comparison. The value of the loss moduli at 25, 30, and 150 ◦C are also shown in Figure 6b.
As expected, the storage modulus decreases with the increase of temperature. At temperatures below
10 ◦C, the incorporation of functionalized and nonfunctionalized nanofiller causes an increase of the
storage modulus. The highest enhancement is observed for the samples containing nonfunctionalized
MWCNTs and barbituric acid functionalized MWCNT-b. For temperature values between 10 ◦C
and 140 ◦C, the storage modulus corresponding to the samples containing the highest percentage
of functionalized MWCNTs is lower than that corresponding to the unfilled resin. Most probably,
this result is caused by a reduction of the stiffness and strength of the carbon nanotubes due to
the functionalization. In any case, nanocomposites containing higher percentages of functionalized
MWCNTs maintain a storage modulus equal to or higher than 2000 MPa until the temperature
of 30 ◦C is reached (see Figure 6b), whereas nanocomposites containing incorporated 0.5 wt % of
functionalized MWCNTs are characterized by a storage modulus higher than 2000 MPa until 60 ◦C.
A rapid decrease of the storage modulus is observed in the interval of temperature between 120 ◦C
and 200 ◦C, corresponding to the glass transition temperature of the formulated nanocomposites,
as confirmed by the loss tangent (tan δ, Figure 6c). Figure 6c shows the evolution of tan δ with the
temperature. The presence of two peaks highlights two different temperatures associated with the
relaxation phenomena occurring in the samples. As for the previous case, the highest temperature for
the relaxation phenomena, observable between 170 and 200 ◦C, is due to the Tg of the epoxy matrix.
The lower temperature associated with the relaxation phenomena, observable between −30 ◦C and
−50 ◦C, is due to both the Tg of the rubber phase and the secondary relaxation phenomenon of the
epoxy resin, as previously discussed in the literature [60]. The maximum of the tan δ peak is shown in
Figure 6d for all the formulations. It shifts to higher temperatures (Figure 6c) for the formulations
nanofilled with 2.0 wt % of functionalized MWCNTs. For these samples, an increase in the intensity of
the relaxation phenomena in the temperature interval −50–0 ◦C, together with the appearance of the
third peak between 75 ◦C and 120 ◦C is also observed. This last peak is probably due to an epoxy chain
motion enhancement caused by the presence of functional groups on MWCNTs. For lower percentages
of functionalized MWCNTs (0.5 wt.%), the peak between 75 ◦C and 120 ◦C is almost absent, but the
main value of Tg is shifted to a temperature slightly lower than that of the unfilled sample (Figure 6d).
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3.3. Thermal Properties

DSC investigation has been carried out on uncured multifunctional self-healing nanocomposites
(Figure 7a) and on the same formulations after the curing (Figure 7b). The curing degree (DC) has been
determined according to the procedure described in Section 2.2.2. This analysis has also been performed
on the toughened sample TCTBD and on the same sample nanofilled with 0.5% of nonfunctionalized
MWCNTs. The thermograms in Figure 7b indicate that all the solidified samples contain a little amount
of unsolidified resin, which further cures during the temperature scan. In detail, the uncharged resin
and the resin charged with both functionalized and nonfunctionalized MWCNTs show an exothermic
peak between 175 ◦C and 275 ◦C due to the curing reactions. The resins nanofilled with MWCNT-b and
MWCNT-t exhibit an additional small exothermic peak at a higher temperature (~280 ◦C). This peak
is most probably due to an initial decomposition of the functional groups on the wall of MWCNTs.
In fact, it is worth noting that these groups contain triazole rings or remaining azides in their structure
that decompose at temperatures higher than 270 ◦C, causing the formation of free radicals, which can
be responsible for homopolymerization reactions determining additional curing of the epoxy matrix.
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Figure 7. (a) Differential scanning colorimetry (DSC) graphic of the sample TCTBD and the samples
TCTBD + 0.5% MWCNT, TCTBD + 2% MWCNT-b, TCTBD + 2% MWCNT-t; (b) DSC graphics of the
solidified sample TCTBD and the samples TCTBD + 0.5% MWCNT, TCTBD + 2% MWCNT-b, TCTBD
+ 2% MWCNT-t; (c) TGA graphics of the cured sample TCTBD filled with nonfunctionalized MWCNTs
and two different percentages of functionalized MWCNTs, in airflow; (d) TGA graphics of the solidified
sample TCTBD filled with nonfunctionalized and two different percentages of functionalized MWCNTs,
in nitrogen flow.

∆HT, ∆HRes, and DC values of the formulated nanocomposites are indicated in Table 2.

Table 2. Results of the DSC analysis.

Sample Cure Degree DC [%] ∆HRes [Jg−1] ∆HT [Jg−1]

TCTBD 97 8.16 283.42
TCTBD + 0.5% MWCNT 89 48.48 429.32

TCTBD + 0.5% MWCNT-b 93 25.21 365.56
TCTBD + 0.5% MWCNT-t 93 30.63 415.64
TCTBD + 2% MWCNT-b 98 9.00 437.87
TCTBD + 2% MWCNT-t 95 21.22 451.45

Sample TCTBD has a DC of 97%. The incorporation of nonfunctionalized nanotubes in the epoxy
matrix results in a decrease in the DC value, which reached the value of 89% for the sample TCTBD +

0.5% MWCNT; this effect is less conspicuous for the samples with functionalized MWCNTs. In fact,
both the formulations filled with 0.5% of MWCNT-b and MWCNT-t are characterized by a DC of 93%.

The curing degree increases as the amount of functionalized MWCNTs increases. For a percentage
of 2.0% by weight of functionalized MWCNTs, the DC value reaches approximatively the same
values of the unfilled formulation. The sample TCTBD + 2% MWCNT-b exhibits a ∆HRes of 9.00 Jg−1,
corresponding to the highest DC (98%) found for the self-healing formulations. Generally, for epoxy
systems, the incorporation of MWCNTs at low concentration (0.32 wt.%) results in a decrease of the
cross-linking density with a reduction of the curing degree; consequently, in order to drive the curing
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toward the same DC of the uncharged resin, higher temperatures during the curing cycle must be
used [73]. In this case, the functional moieties attached to the MWCNTs allow reaching higher curing
degrees, similar to that obtained for the unfilled formulation, without changing the conditions of
temperature and pressure. This provides, from the perspective of possible industrial applications,
an interesting energy-saving improvement.

Figure 7c,d illustrate the TGA graphics for all the solidified samples; in both air and nitrogen,
for all samples, the initial thermal degradation is at about 360 ◦C. Sample TCTBD + 0.5% MWCNT-b,
during the measurement in air flow, loses a little percentage of its weight at temperatures slightly
higher than 270 ◦C. This seems to be in agreement with the results observed at the DSC and the
hypothesis of an initial decomposition of the functional groups responsible for additional curing of
the resin, as mentioned before. In any case, in both nitrogen and air atmosphere, the TGA profiles
underline two distinct and well-separated thermal events. The first one, falling for all the samples in
the temperature interval of 360 ◦C–450 ◦C, indicates that there is no considerable effect of MWCNTs
and functional moieties on the first stage of the thermal degradation.

However, comparing the TGA in air and nitrogen flow, it is interesting to observe the values of
the mass loss during this first stage of thermal decomposition. The mass loss in nitrogen (63–75%) is
much higher than the mass loss in the air (47–55%), indicating that in the range of temperature below
450 ◦C, all the samples are more stable in air than in nitrogen. This behavior, already observed in the
literature for epoxy resins, is mainly ascribed to the oxidation reactions in the gas-phase during the
flaming burning of the nanofilled resins [74].

3.4. Transmission Electron Microscopy (TEM)

TEM analysis has been used to better investigate the effect of covalent functionalization on
MWCNTs. Figure 8 shows the comparison between the TEM image of the pristine MWCNTs (see image
on the left) and the TEM image of the functionalized MWCNT-b (see image on the right). The comparison
highlights that the functionalization procedure strongly affects the aspect ratio of the carbon nanofiller,
attacking mainly the areas of defects and reducing the length of the MWCNTs. This effect could be
responsible for the strong reduction in the values of the electrical conductivity of the self-healing
nanocomposites containing embedded functionalized MWCNTs.Polymers 2019, 11, x FOR PEER REVIEW 12 of 23 
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Figure 8. TEM images of the nonfunctionalized MWCNTs (left) and of the functionalized MWCNT-b
(right).

Figure 9 shows the TEM images of the nanocomposites containing 0.5 wt % of nonfunctionalized
MWCNT (on the left) and 0.5 wt.% of functionalized MWCNT-b (on the right).
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It is statistically confirmed that functionalized MWCNTs have shorter lengths than the
nonfunctionalized ones. Furthermore, in the hosting matrix, the functionalized MWCNTs seem
to be placed at a closer distance and constrained in such a way to be more extended compared to
nonfunctionalized MWCNTs. This particular arrangement is most likely favored by the hydrogen
bonding moieties on MWCNT walls (as shown in the scheme of Figure 10).Polymers 2019, 11, x FOR PEER REVIEW 13 of 23 
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Similar morphological results have been obtained for nanocomposites containing MWCNTs-t.
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3.5. Infrared Spectroscopy Characterization

Hydrogen bonds in the developed materials can be due to N–H···O=C, N–H···N–H, O–H··O–H,
N–H···O–H, etc. Some of these interactions, for instance, O–H··O–H interaction or N–H···O–H
interaction, are already active in the epoxy matrix (even in the absence of functional groups on the
walls of carbon nanotubes). For this reason, we have evaluated the increase of hydrogen bonds
specifically due to functional groups with respect to those due to the structure of the hosting epoxy
matrix. This investigation has been performed by means of FT/IR analysis of the cured epoxy resin
and the self-healing nanocomposites. Concerning this aspect, the attention has been focused on the
absorbance of OH groups. Infrared spectroscopy can be used to analyze the O–H stretching vibration in
the region between 3100 and 3650 cm−1. This region is diagnostic of the hydrogen bonds. Although in
a solidified epoxy resin, a relevant presence of –OH groups determined by the curing process is always
present [70], isolated sharp bands due to “free” hydroxyl bands are not observed because of the massive
presence of O–H groups and the distances between them, which favor hydrogen bonds. Therefore,
in the solidified state of an epoxy resin, the O–H stretching vibration appears as a broad band because
of the hydrogen bonding formed during the curing cycle. However, the profile of the band in the
region of the hydroxyl groups, and the presence of more or less accentuated shoulders together with
their position can provide important information about the nature and the extent of hydrogen bonding
interactions [59]. Generally, in the profile of the FT/IR spectrum, corresponding to the O–H region,
a board band or a shoulder appearing at a lower frequency (between 3550–3100 cm−1) with respect to
the signal of “free” hydroxyl band (3400–3650 cm−1) is diagnostic of intermolecular hydrogen bonds.
It is expected that the larger the intensity of the band/shoulder, the larger the amount of hydrogen
bonds and hence the larger the amount of hydrogen bond-based interactions, which affect the material
properties. It is worth noting that the frequency of the hydrogen bonds dependents not only on the
chemical nature of the involved atoms (N, O, etc.), but also on the distances of intramolecular bonds.
Previous studies evidenced that the H···O and the N···O distances of hydrogen bonds are very sensitive
to changes in the nature and environment of the donor and acceptor groups [75] and the electrostatic
potential at appropriate distances [76].

These factors determine the enlargement of the band of the hydrogen bonds. For this reason,
the band of the O–H group has been decomposed into different components using a complex fitting in
which a Lorentzian and Gaussian contributions have been considered, as in previous papers [77,78].

The results of this deconvolution procedure for the cured epoxy resin and the for the
self-healing nanocomposites at a concentration of 0.5% by weight of functionalized MWCNTs, in the
above-mentioned ranges of wavenumbers, are shown respectively in Figures 11–13. In particular,
three different peaks have been considered for this deconvolution procedure. The areas of the two
peaks at about 3380 cm−1 (3379 cm−1 in the epoxy resin and 3388 cm−1 in the nanocomposites) and
about 3245 cm−1 (3242 cm−1 in the epoxy resin and 3347 cm−1 in the nanocomposites) have been
attributed to hydrogen bonding interactions, whereas the area of the peak at higher frequency, around
3510 cm−1 has been attributed to nonhydrogen-bonded or almost “free” hydroxyl groups, which can
determine a band less sharp with respect to that observed in vapor phase or in very diluted solution
(in nonpolar solvent) because of the solid state. The total area of the two bands at around 3380 cm−1

and 3245 cm−1 is considered to be due to hydrogen bonds.
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The ratio R, between the area of the O–H bonded signal (AOH-bond) and the area of the free O–H
signal (AOH-free) has been considered to make an assessment of the extent of H-bonding interactions
formed in the composites. The results of this evaluation are shown in the histogram of Figure 14.Polymers 2019, 11, x FOR PEER REVIEW 16 of 23 
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Figure 14. Values of the ratio R = AOH-bond/AOH-free for the epoxy resin and the nanocomposites
containing 0.5 wt % and 2% wt % of MWCNT-b and MWCNT-t.

Data shown in Figure 14 clearly highlight an increase of hydrogen bonds in the samples containing
incorporated functionalized MWCNTs. In particular, the ratio R = AOH-bond/AOH-free for the self-healing
nanocomposites shows an increased percentage, which ranges between 68% and 80% (depending most
of all on the nature of the functional group).
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3.6. Electrical Properties

In order to evaluate the electrical behavior of nanocharged materials, electrical conductivity
measurements have been performed on disk-shaped specimens shown in Figure 15. The values of the
electrical conductivity are shown in Table 3.
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Table 3. Values of electrical conductivity for the analyzed samples.

Sample % MWCNT Electrical Conductivity [S/m]

TCTBD 1.16 × 10−14

TCTBD + 0.5%MWCNT 0.5 2.56 × 10−2

TCTBD + 0.5%MWCNT-b 0.38 6.28 × 10−12

TCTBD + 0.5%MWCNT-t 0.38 6.47 × 10−12

TCTBD + 2.0%MWCNT-b 1.50 6.76 × 10−3

TCTBD + 2.0%MWCNT-t 1.50 3.77 × 10−2

It is evident that the incorporation of pristine MWCNTs to the resin TCTBD causes formation of
conductive paths changing the behavior of the material from insulant for the TCTBD with an electrical
conductivity value of 1.16 × 10−14 S/m to conductive for the sample TCTBD+0.5%MWCNT, having an
electrical conductivity value of 2.56 × 10−2 S/m.

Figure 16 shows the percolation curve of the Epoxy/MWCNT nanocomposite systems. It is
observable that at a concentration of 0.5% by weight of MWCNTs, the sample is beyond the electrical
percolation threshold (EPT) and hence behaves as a conductive material.
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The values of electrical conductivity shown in Table 3 indicate that the functionalization of
MWCNTs has a relevant influence on the electrical behavior of the nanocomposites, reducing their
electrical conductivity to values of pS/m. This result is most likely due to the modifications in the aspect
ratio of the nanofiller, evidenced by Transmission Electron Microscopy (TEM) investigation, as a result
of the functionalization procedure. The functionalization partially reduces the π-electron delocalization
of the aromatic rings, and hence the sp2 hybridization of the carbon atoms, as already found in the
literature for other types of covalent functionalization. In order to achieve values in the electrical
conductivity of the self-healing nanocomposites comparable to those obtained with nonfunctionalized
MWCNTs, nanofiller loadings up to 2.0 by wt % (see Table 2) are necessary. It is worth noting that a
percentage of 2% by weight of functionalized MWCNTs corresponds to a percentage of 1.5% by weight
of MWCNTs, calculated by subtracting the weight of the functional groups.

3.7. Self-Healing Efficiency

As described in Section 2.2.6, for all the samples, the evolution of the storage modulus during
a dynamic test at constant temperature was considered as a measurement of the healing efficiency.
In particular, the healing efficiency (Hr) is defined here as the ratio between the actual elastic modulus
(E’) during the measurement and the elastic modulus of the pristine sample (E’) before applying the
crack. Figure 17 shows the healing efficiency of all the analyzed samples as a function of the time during
the test. As clearly shown, all the samples containing modified MWCNTs present partial recovery of
the elastic modulus during monitoring. The behavior is quite similar for all formulations. After an
initial delay, the recovery mechanism is evidenced by a rise of the modulus up to a maximum and a
subsequent reduction of the healing efficiency. This decrease of the healing efficiency after a maximum
has previously been found in the literature [79] and it has been ascribed to a crack propagation as a
result of the cyclic fatigue stress. The sample containing nonfunctionalized carbon nanotubes, TCTBD
+ 0.5%MWCNT, did not show any healing mechanisms, demonstrating that MWCNTs alone are not
able to confer self-healing functionality to the epoxy resin.Polymers 2019, 11, x FOR PEER REVIEW 18 of 23 
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It is worth noting that, contrary to the expected results, the higher the percentage of functionalized
MWCNTs, the lower the entity in the recovery mechanisms. This result is most likely due to the
higher rigidity and therefore the reduced dynamic mobility of the epoxy matrix containing the
highest percentage of functionalized MWCNTs. In fact, TCTBD + 2.0%MWCNT-b and TCTBD + 2.0%
MWCNT-t, respectively, undergo glass transition at 195 ◦C and 192 ◦C, whereas, for the same samples



Polymers 2019, 11, 903 19 of 23

with a content of functionalized MWCNTs of 0.5%, the values of glass transition temperature are lower:
182 ◦C for TCTBD + 0.5%MWCNT-t and 175 ◦C TCTBD + 0.5% MWCNT-b (see Figure 6d).

4. Conclusions

In this work, electrically conductive self-healing resins based on RHB interactions have been
developed. The change in the aspect ratio of MWCNTs due to the functionalization procedure requires
higher MWCNT percentages (2% by weight) to reach the same value in the electrical conductivity
achievable with nonfunctionalized MWCNTs.

This paper demonstrates the validity of the hydrogen bonding strategy where the dynamic
repetition of hydrogen bonds is enabled, as an effective solution to confer self-healing ability in addition
to the ability to contrast the electrical insulating property typical of this kind of material. Occurring
stress can cause the breaking of hydrogen bonds, which have the ability to regenerate the electron
donor/acceptor interaction without any external stimulus. The approach proposed here offers combined
advantages that allow the design and manufacturing of self-healing nanocomposites with potential for
fulfilling many requirements of structural applications in many technological fields, such as aerospace,
automotive, etc. The chosen functional groups, covalently attached on the walls of carbon nanotubes,
are able to activate hydrogen bonds via electron donation and electron acceptance, as shown in
Figure 10 for MWCNTs functionalized with barbiturate. The peculiar chemical formulation allows RHB
interactions between the functional groups on different MWCNTs, or between the functional groups
on MWCNTs and the modified rubber phase and the epoxy matrix hardened with DDS. A CuAAC
“click” reaction was used to perform the functionalization of the MWCNTs with hydrogen bonding
moieties. It is well recognized that this kind of reaction presents excellent yields with a high tolerance
of functional groups. In this paper, it has been deduced that the electrical properties of the self-healing
nanocomposites can be suitably tailored by controlling the percentage of MWCNTs. In particular,
for self-healing nanocomposites containing 2.0% by weight of MWCNT-b and MWCNT-t, electrical
conductivity values of 6.76 × 10−3 S/m and 3.77 × 10−2 S/m have been obtained, respectively. A lower
amount of functionalized MWCNTs leads to stronger recovery mechanisms. This result is most
likely due to the lower rigidity of the epoxy matrix containing the lower amount of functionalized
MWCNTs. In fact, the glass transition temperatures of samples TCTBD + 2.0%MWCNT-b and TCTBD
+ 2.0%MWCNT-t are 195 ◦C and 192 ◦C, respectively, whereas, for the same samples containing a
lower percentage of functionalized MWCNTs, the glass transition temperatures are 182 ◦C and 175 ◦C.
Considering the results of electrical conductivity shown in Figure 16, further experiments are in
progress with the aim of obtaining higher values of electrical conductivity and self-healing efficiency.
The simultaneous use of nonfunctionalized and functionalized MWCNTs has the potential to allow
reaching the EPT at a very low content of MWCNTs, hence preserving the maximum healing efficiency
of the samples. The curing degree, glass transition temperatures, and storages moduli of the formulated
samples are typical for functional structural material applications.
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