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Abstract: Commercially available sorbent materials for solid-phase extraction are widely used in
analytical laboratories. However, non-selective binding is a major obstacle for sample analysis.
To overcome this problem, molecularly imprinted polymers (MIPs) were used as selective adsorbent
materials prior to determining target analysts. In this study, the use of non-covalent molecularly
imprinted polymers (MIPs) for cotinine adsorption on a paper-based scaffold was studied. Fiberglass
paper was used as a paper scaffold for cotinine-selective MIP adsorption with the use of 0.5% agarose
gel. The effects of salt, pH, sample matrix, and solvent on the cotinine adsorption and extraction
process were investigated. Under optimal conditions, the adsorption isotherm of synthesized MIPs
increased to 125.41 µg/g, whereas the maximum adsorption isotherm of non-imprinted polymers
(NIPs) was stable at 42.86 µg/g. The ability of the MIP paper scaffold to absorb cotinine in water
medium was approximately 1.8–2.8-fold higher than that of the NIP scaffold. From Scatchard analysis,
two dissociation constants of MIPs were calculated to be 2.56 and 27.03 µM. Nicotine, myosmine,
and N-nitrosonornicotine were used for selectivity testing, and the calculated selectivity factor of
cotinine to nicotine, myosmine, and N-nitrosonornicotine was 1.56, 2.69, and 2.05, respectively.
Overall, the MIP paper scaffold is promising for simple onsite sampling of cotinine and can be used
to assess tobacco smoke exposure.

Keywords: molecularly imprinted polymer; adsorption capacity; paper-based scaffold; cotinine

1. Introduction

Tobacco smoking is one of the risk factors associated with non-communicable diseases.
Additionally, environmental tobacco smoke is one of the causes of air pollution, which has a great
impact on human health, especially in children and pregnant women [1]. For many medications,
cigarette smoke can induce alterations of pharmacokinetics and drug metabolism, resulting in
inappropriate dosage adjustment [2,3], and in some cases of diagnosis, tobacco smoke can also
interfere with results [4]. Thus smoking is not allowed before investigating some substances (e.g.,
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blood ammonia). However, self-reporting of tobacco use is not reliable, as approximately 35%
of smokers do not confess their smoking, according to a report on patients before surgery [5].
Interestingly, there is evidence from meta-analyses and systematic reviews for an increased risk
of postoperative complications, including morbidity, general infections, pulmonary complications,
neurological complications, wound complications, and admission to the intensive care unit, associated
with preoperative smoking [6]. Apart from interviews and history-taking with patients, an appropriate
way to obtain reliable information about whether they have used cigarettes is needed. Detection
of the metabolites and chemical constituents of tobacco exposure, including nicotine, benzopyrene,
and thiocyanate, from body fluid specimens, e.g., urine, plasma, and saliva, is the target of smoking
assessment. Among those biomarkers, cotinine, a major metabolite of nicotine, is widely recommended
for monitoring of tobacco smoke exposure because of its long half-life and distribution in various
bodily fluids including blood, saliva, and urine [7].

There are various methods of cotinine detection, including lateral flow
immunochromatography [8–10], radioimmunoassay [11,12], enzyme linked immunosorbent
assay [13–15], and colorimetric determination [16–18]. Immunochromatography is one of the most
popular rapid testing platforms for preliminary screening of cotinine, since it is simple and easy to
use. However, variables of individual color perception among users and semiquantitative methods
have been addressed as limitations of this naked-eye detection [19]. For some patients, highly
sensitive methods such as gas chromatography (GC) [20,21], high-performance liquid chromatography
(HPLC) [22,23], and liquid chromatography–mass spectrometry (LC-MS) [24,25] are still in demand
for accurate quantitation of cotinine to provide the exact status of nicotine exposure. For all of these
techniques, sample preparation is a crucial step in the analytical method because most real samples
cannot be introduced to those instruments directly, due to many factors that can affect analytical
results depending on the sample matrix, type of analytical technique, and range of concentration
level [26]. Sample preparation consisting of adsorption and extraction of tobacco alkaloids in human
specimens to an adsorbent material prior to determination has been developed and studied [27].

The extraction of targets of analysis from biological samples is challenging. Although classical
approaches for sample preparation using solid- or liquid-phase extraction can adsorb the target analyte,
other chemicals are retained in the eluting sample [28]. Commercially available sorbent materials for
solid-phase extraction are widely used in most analytical laboratories. However, non-selective binding
is a major problem for sample analysis.

Molecularly imprinted polymers (MIPs) are now attracting much interest in a number of
applications, including sample pretreatment [29], chromatographic separation, and chemical or
biosensing elements. In particular, the molecular imprinting technique provides synthetic materials
composed of specific binding sites that recognize target analytes. Typical components in the process
of MIP production are templates, monomers, crosslinkers, porogens, and initiators. Besides the
traditional production processes of MIP, advanced MIP strategies have been developed, including
multifunctional monomer imprinting, dummy imprinting, segment imprinting, composite material
imprinting, and multitemplate imprinting strategies [30]. Moreover, this technique is considered
versatile, robust, reproducible, and cost-effective compared with the antibody-based method [31–33].
MIPs can cooperate with other sensing elements, including surface plasmon resonance or infrared
spectroscopy sensing [34], colorimetric or ultraviolet (UV)-visible sensing [35], surface-enhanced
Raman scattering sensing [36,37], chemiluminescence sensing [38], electrochemical sensing [39],
paper spray ionization mass spectrometry [40], and fluorescence sensors [41]. Analytes in samples
should be enriched or preconcentrated to an optimal concentration prior to analysis, thus sample
preparation plays an important role in quantitative determination. Recently, there have been
many reports on composite materials as supporting substrates for MIPs, including filter paper and
glass fiber membrane [42]. Many platforms have been designed for various application strategies,
such as determination of organic compounds [43], human carcinogens [44], ocean pollutants [45],
pesticides [46,47], and 17β-estradiol [48]. The benefits of paper as a component material in a variety
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of areas include high porosity, degradability, no need for external power supply, and low cost [49].
These advantages have encouraged the use of paper in biosensor development. Recent advances in
the fabrication and modification of paper-based platforms have led to the feasible use of paper in a
wide range of sample types and sample preparations [50].

Glass fiber membranes have been widely used for sample preparation in processes such as DNA
extraction [51] and removal of particles or sediments in air sampling [52]. A glass fiber membrane
has also been used as a supporting substrate that has superior ability to enrich trace metals before
analysis [53]. Interestingly, there have been reports on the use of glass fiber membrane incorporated
with MIPs for determination of phenolic compounds [54]. However, no studies on kinetic adsorption
of target analytes on MIP glass fiber membrane–based scaffold with agarose gel assistance have
been reported.

In the present work, an MIP paper-based scaffold is introduced. Glass fiber membranes and
agarose gels were implemented for the immobilization of MIP particles. Glass fiber membranes
are commonly used as the conjugated pad in immunochromatography, which is able to release
labeled conjugate and low-protein binding [55]. The advantages allow researchers to apply glass
fiber membranes as part of paper scaffolds. Moreover, agarose gel, a common reagent used in many
molecular laboratories, was applied for the temporary immobilization of cotinine MIPs on the glass
fiber membrane. The effects of salt, pH, sample matrix, and solvent on cotinine adsorption and
extraction were investigated for the production of suitable MIPs. Based on our study, MIP paper-based
scaffold could potentially be used for sample collection in rural areas before being tested in a central
laboratory due to its advantages of convenient use, easy preparation, portability, and stability in a
wide temperature range.

2. Materials and Methods

2.1. Chemicals and Reagents

Cotinine, nicotine, myosmine, N-nitrosonornicotinine, methacrylic acid (MAA), ethylene glycol
dimethacrylate (EGDMA), azobisisobutyronitrile (AIBN), potassium phosphate monobasic (KH2PO4),
sodium phosphate dibasic (Na2HPO4), and agarose powder were purchased from Sigma-Aldrich
(St. Louis, MO, USA). MAS® DOA TOTAL Control liquid assayed drugs of abuse control was purchased
from Thermo Fisher Scientific (Waltham, MA, USA). High-performance liquid chromatography
(HPLC) grade chemical solvents including acetonitrile, dichloromethane, acetic acid, 2-propanol,
and methanol were purchased from Sigma-Aldrich and Merck (Kenilworth, NJ, USA). Ammonia (30%)
was purchased from Panreac Quimica SAU (Barcelona, Spain). Glass fiber (GF) membrane filter was
purchased from a local manufacturer in Thailand (Pacific Biotech CO. LTD, Phetchabun, Thailand).
Filter paper (Whatman, Grade 1) was purchased from GE Healthcare Life Science (Chicago, IL, USA).
CHROMABOND® column C18ec was purchased from Macherey-Nagel GmbH & Co. KG (Düren,
Germany). Deionized water was purified by a Milli-Q system (Merck Millipore, Billerica, MA, USA)
with resistivity of 18.2 Ω cm.

2.2. Preparation of Cotinine-Imprinted Polymers

Cotinine-imprinted polymers were prepared as previously described [56], with minor
modifications. Briefly, 1 mmol cotinine, 4 mmol MAA, and 5.6 mL dichloromethane were mixed
in a glass test tube (13 × 100 mm), then 20 mmol EGDMA and 0.24 mmol AIBN were added and mixed
thoroughly. The prepolymerized mixture was deoxygenated by purging with nitrogen gas for 10 min.
After that, polymerization was allowed to occur by incubating the mixture at 35 ◦C for 8 h in a water
bath shaker, followed by increasing the temperature to 60 ◦C for 16 h. To produce the non-imprint
polymer, the control polymers were formed in parallel by using the same protocol, except for the
addition of cotinine templates in the reaction. Finally, rigid polymers were obtained and crushed to
fine particles by mortar and pestle. To extract the template from the imprinted polymer, a mixture of
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methanol and acetic acid (9:1 ratio) was used, and the synthesized polymers were then washed with
methanol. The washing step was repeated at 4 hour intervals for 12 cycles until the cotinine in the
solution was not detected by HPLC. In the final step, each polymer was obtained by centrifugation
and subsequently allowed to dry in a hot air oven at 65 ◦C for 24 h.

2.3. Preparation of Molecularly Imprinted Polymer (MIP) Paper-Based Scaffolds

Unless otherwise stated, for preparation of each batch of paper-based scaffold, 10 mg of MIP
was mixed with 250 µL of 0.5% melted agarose gel by using a microcentrifuge tube. This condition
was selected based on a compromise between gel volumes that evenly adsorbed to stacks of 4 papers
without the agarose gel overflowing from the papers. The percentage of agarose gel used in this
condition was based on time to polymerization. Here, a concentration of gel higher than 0.5% caused
too rapid polymerization and resulted in uneven dispersion of MIP particles on the papers. On the
other hand, agarose gel lower than 0.5% caused too slow polymerization and an inability to sustain
MIP particles adhering to the surface of paper stacks. The MIP–agarose gel mixture solution was
transferred to circular stacks of 4 glass fiber membranes (0.6 cm in diameter, 0.05 cm in thickness).
MIP paper scaffolds were incubated at 65 ◦C in a hot air oven for 6 h. Finally, the MIP paper-based
scaffolds were used for cotinine adsorption. A schematic of MIP paper-based scaffold preparation is
shown in Figure 1. NIP paper-based scaffolds were also prepared with the same protocol. Microscopic
images of glass fiber membranes observed under a stereo microscope (9.7×) and MIP paper-based
scaffold are also shown in the Supplementary Data (Supplementary Figure S1).
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2.4. Polymer Characterization

2.4.1. Study of Size and Shape of Synthesized Polymer

Field emission scanning electron microscopy (FESEM) was employed to investigate the
microstructure and morphology of the synthesized imprinted polymers. Different modes, including
lower secondary and upper secondary electron in-lens modes, were used to observe polymer
morphology. In addition, gentle beam mode, which reduces charge buildup and high resolution at very
low voltages, was used for surface observation. These topographical studies were carried out with a
JEOL model JSM-7610F (JEOL, Tokyo, Japan). Dried synthesized polymers were placed on metallic
sample holders and coated with gold by a sputter coater. Prepared samples were analyzed under
FESEM at an accelerating voltage of 2 kV. Micrographs of all samples were recorde d at magnifications
ranging from 50× to 30,000×.

To study the chemical interaction between components of polymers, Fourier transform–infrared
spectroscopy (FT–IR) (Perkin Elmer, Spectrum One) was employed for characterization of imprinted
polymers. Polymer powder (3 mg) was deposited on a diamond holder and processed by means of
transmitting the infrared radiation in the range of 4000–515 cm−1.

2.4.2. Optimization of the Cotinine Binding Experiment

To optimize and study the effect of each parameter on cotinine binding and extraction, the HPLC
method was used for the whole experiment. Cotinine determination was performed using HPLC with
260 nm UV detection at 40 ◦C. A reverse phase column, Purospher®STAR RP-18 endcapped (5 µm)
LiChroCART®250-4.6 (250 mm × 4.6 mm id, particle size 5 µm, Merck), was used for separation. The
mobile phase consisted of 71% ammonium acetate buffer (13 mM) and 29% acetonitrile. The pH of
the mobile phase solvent was adjusted to 5.0 by glacial acetic acid. Samples were filtered through a
0.45 µm syringe filter before injection. The injection volume was 20 µL and the flow rate was set at
0.8 mL/min. Cotinine standards in a concentration range of 62.5–500 µg/mL with internal standard
(2-phenylimidazole) were run as the mentioned condition. The chromatogram of standard mixture is
shown in the Supplementary Data (Supplementary Figure S2 and Table S1).

2.4.3. Effect of pH and Salt Ions

To study the effect of pH, cotinine standard solutions in each pH from 5–8 were incubated with
MIP paper scaffolds for 2 h. To study the effect of salt ions on adsorption, NaCl was added to a
standard solution of cotinine for investigation of adsorption capacity and extraction. NaCl solution in
the range of 1.25–10% w/v (pH 7.0) was used to study the effect on cotinine adsorption and extraction.
In the extraction process, MIP and NIP paper-based scaffolds were washed with 3 mL of water and
eluted with a mixture of methanol and acetic acid (9:1). The solution obtained after the adsorption and
extraction process underwent determination by HPLC.

2.4.4. Effect of Solvent on Binding

Solvents, including methanol and acetonitrile, were employed to investigate their effect on
cotinine adsorption capacity. Cotinine was dissolved in each constituent of 25%, 50%, 75%, and 100%
methanol or acetonitrile. Then MIP and NIP particles were incubated with prepared solvents for
investigation of adsorption capacity. After adsorption, cotinine remaining in the supernatant was
determined by HPLC-UV.

2.4.5. Kinetic and Adsorption Isotherm Experiment

To investigate adsorption dynamics, an MIP paper-based scaffold was placed in a microcentrifuge
tube and mixed with a standard solution of cotinine (62.5–4000 µg/mL). The concentration of cotinine
remaining after adsorption for 2 h was determined by HPLC-UV at 260 nm. For the adsorption
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isotherm experiment, after adsorption of cotinine standard by MIP at different incubation times
(10–300 min), the amount of cotinine adsorbed to each polymer was calculated using the following
equation [57]:

Q =
(C0 − Ce)× V

W
, (1)

where Q is the adsorption capacity, C0 is the initial cotinine concentration (µg/mL), Ce is the equilibrium
of cotinine concentration at different time intervals (µg/mL), V is the volume of cotinine standard
solution (mL), and W is the weight of the dry polymer (g).

The equilibrium dissociation constant (Kd) of MIPs and NIPs was further determined using the
following Scatchard equation [58]:

Q
C

=
(Qmax−Q)

Kd
, (2)

where Q is the amount of cotinine bound to the polymer, Qmax is the maximum adsorption amount of
cotinine on the polymer, and C is the equilibrium of cotinine concentration (µg/mL).

2.4.6. Selectivity of the Synthesized Polymer

Testing the selectivity of the synthesized polymer was conducted. Structures similar to cotinine,
including nicotine, myosmine, and N-nitrosonornicotinine, were used for the rebinding experiment.
Standard solutions of nicotine, myosmine, N-nitrosonornicotinine, and cotinine were incubated with
MIPs and NIPs for 2 h. The remaining amount of cotinine or cotinine analog in the supernatant was
determined by HPLC. The imprinting factor (IF) can be determined by the following equation:

IF = Q MIP/Q NIP (3)

In addition, the selectivity factor (α) can be calculated as follows:

Selectivity (α) = IF cotinine/IF cotinine analog (4)

2.4.7. Interference Study on Adsorption Capacity of MIP and Recovery Study on Extraction Process

Cotinine standard at concentrations of 62.5 and 125 µg/mL was spiked into control urine to
obtain low and high cotinine levels before assay. To investigate the effect of interference, 125 µg/mL
nicotine was spiked into the urine control samples. The same amounts of MIP particles and MIP-paper
based scaffold were separately incubated with cotinine-spiked urine control for 2 h. Then, adsorption
capacity was evaluated by HPLC.

To demonstrate the applicability of the MIP paper-based scaffolds for heavy tobacco use, cotinine
standard at 5 µg/mL was spiked into matrix samples (e.g., water and urine control), in which nicotine
(2.5 and 5 µg/mL) was also spiked, to test the robustness. Recovery of the cotinine in a water and
urine matrix with the presence of nicotine was investigated.

2.4.8. Application and Method Comparison of MIP Paper-Based Scaffold

First, conditioning of the MIP paper-based scaffold was performed by applying 200 µL of
methanol and 200 µL of Milli-Q water. Then the conditioned MIP paper-based scaffold was incubated
with 250 µL of urine control (3–10 µg/mL) for 2 h. After the adsorption process, the scaffold
was transferred to a microcentrifuge tube containing 500 µL of dichloromethane and 500 µL of
dichloromethane:2-propanol:25% ammonia (8:2:0.2). The eluted solution was evaporated to dryness
under nitrogen. Finally, it was resuspended with 250 µL Milli-Q water for further HPLC analysis.

In the method comparison, solid-phase extraction columns (CHROMABOND® column C18ec) [27]
were used to extract cotinine in urine control by the following protocol with some modification: 1 mL of
urine control (3–10 µg/mL) was added with 200 µL of 0.01 mol/L NaOH. The column was applied with
2 × 2 mL methanol, then 2 × 2 mL water, then the prepared sample was applied through the column.
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Next, the washing step was performed by adding 3 mL of distilled water. The column was dried under
nitrogen. In the eluting step, 1.5 mL of dichloromethane, then 1 mL of dichloromethane:2-propanol:25%
ammonia (8:2:0.2) were added. The eluted solution was evaporated to dryness at 50 ◦C with a gentle
stream of nitrogen. Samples were resuspended in 250 µL Milli-Q water for further measurement by
HPLC and the results from both methods were compared and plotted as a Band–Atman plot.

3. Results

3.1. Morphological Characteristics

FESEM was employed to observe the surface morphology of MIPs and NIPs. The morphological
structure of MIPs (Figure 2a) and NIPs (Figure 2b) shows a rough porous surface and uneven shape
due to the mechanical grinding process. There are no significant differences in cavity size between the
MIP and NIP particles. Figure 2c shows an untreated glass fiber with numerous large cavities between
fibers; thus, MIP particles can be temporarily immobilized by agarose coating. Figure 2e shows the
MIP paper-based scaffold. When compared with MIPs immobilized on glass fiber, a small amount of
MIPs were adsorbed onto the filter paper (Figure 2g) due to the small diameter of the pores (11 µm).
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3.2. Attenuated Total Reflection Fourier Transform–Infrared (ATR-FT–IR) Analysis

To investigate the chemical interaction of the polymers, ATR-FT–IR was performed. The graph
shows the small differences among the three lines; however, MIP (nonextract) provides the difference in
% transmittance along the range 515–4000 cm−1 when compared to MIP (extracted) and NIP (Figure 3).
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Regarding the spectra of MAA and EGDMA, significant bands at 1633 and 1636 cm−1 were
assigned to C=C stretching [32]. Synthesized MIPs and NIPs also presented two significant peaks.
Although both cotinine-MIPs and NIPs also exhibited the band corresponding to C=O stretching,
the band of nonextracted MIPs was slightly shifted to the lower wave number (1719 and 1720 cm−1 for
nonextracted MIP and NIP, respectively) (Supplementary Figure S3). The band corresponding to C=O
stretching in extracted MIPs was slightly larger than in the nonextracted MIPs. This demonstrated the
formation of H-bonds between the functional monomer and cotinine.

3.3. Adsorption Isotherm and Adsorption Kinetics of Synthesized Polymers

A saturation adsorption experiment was conducted using different concentrations of a cotinine
standard (Figure 4a). The remaining cotinine concentration was detected by HPLC. The linearity of
HPLC method was found in range from 0.5-500 µg/mL, and the limit of detection of 0.35 ng/mL
(S/N = 3) was obtained. The amount that bound to MIPs was significantly higher than the amount that
bound to NIPs at all concentrations of cotinine (Student’s t-test; p < 0.05). The adsorption capacity of
synthesized MIPs increased from 4.41 to 125.41 µg/g when the concentration of cotinine was increased
from 62.5 to 4000 µg/mL. Although NIPs showed a similar pattern of cotinine-MIP adsorption,
their adsorption capacity remained stable at 42.86 µg/g. This indicates that even at a high concentration
of cotinine, MIPs were able to continually adsorb target analytes. The binding sites of MIPs with high
affinity to cotinine were formed in large quantity during the polymerization process [59]. Kinetic
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adsorption of synthesized polymers was observed from 10 min to 300 min (Figure 4b). Although the
adsorption rate of both MIPs and NIPs reached equilibrium within 2 h, the maximum adsorption
capacity of MIPs was almost twofold higher than that of NIPs. This indicates that a large amount of
cotinine can be adsorbed in a shorter period of time compared with NIPs. This rapid adsorption makes
synthesized MIPs appropriate for solid-phase extraction [60]. Especially, the adsorption capacity of
NIP and MIP paper-based scaffold (Figure 4b) was higher than NIP and MIP particles alone, because
the paper-based scaffold delayed the release of target analyte. Moreover, the paper-based scaffolds
without MIP particles could non-specifically adsorbed cotinine six times lower than MIP paper-based
scaffold (Supplementary Figure S4 and Table S2). Agarose is a naturally derived polysaccharide
polymer capable of controllable fluid transport through tunable pore size and porosity [61,62].
This biopolymer has many general advantages, including hydrophilic permeability, compatibility with
various types of buffers, stability under a wide range of pH, and excellent mechanical properties [63].
Based on its benefits, agarose was used as immobilizing gel material for application of functional
layer by layer capsules [64] and preparation of optical sensor [65]. Furthermore, this biomaterial
incorporated with other paper-based materials was implemented to control flow rate in lateral flow
immunochromatography in order to enhance the sensitivity of the reaction [66]. As a result, the use
of agarose gel as immobilizing medium for layered MIP on paper-based scaffold can enhance the
adsorption capacity when compared with cotinine-MIP particles alone.
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3.4. Scatchard Analysis

To estimate the equilibrium dissociation constant of MIPs and NIPs, the Scatchard equation was
used as an explanation model. The Scatchard analysis provides advantages for binding characteristics
of synthesized polymers, and this model is commonly used in the determination of solid-material
heterogeneity, such as MIPs and NIPs. As shown in Figure 5, there are two distinct Kd values, which
were obtained from the relationship between Q/C0 and Q. The equations of the left and right linear
regressions of MIPs (Figure 5) were Q/C = −0.391Q + 14.243 (r2 = 0.99) and Q/C = −0.037Q + 9.332
(r2 = 0.91), respectively. The first dissociation constant (Kd1) was determined to be 2.56 µM, which
indicates low affinity with a large amount of unoccupied binding sites. The second dissociation
constant (Kd2) was determined to be 27.03 µM, which indicates higher affinity of MIPs with target
molecules, with a small amount of unoccupied binding sites. It could be concluded that these two
dissociation constants of cotinine-MIPs are a consequence of nonhomogeneity of polymer binding sites
due to noncovalent interaction in the polymer matrix. During polymerization, two types of binding
sites are formed: the first is a complete interaction between the functional monomer and the template,
which is supposed to be a specific binding site of the MIP, and the second is a free functional monomer
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in the polymer matrix that causes non-specific binding [67]. In contrast to MIPs, a Scatchard plot
derived from NIPs (Supplementary Figure S5) providing a small correlation derived from the NIP
equation indicates that cotinine can be adsorbed on the surface of control polymers by nonselective
interaction, including van der Waals force, although NIPs do not contain imprinting sites [68].
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3.5. Effect of NaCl and pH on Cotinine Adsorption and Extraction

Many chemical and biological phenomena are affected by ionic strength. Interactions between
template molecules and MIPs depend on hydrogen bonding [69]. Salt ions are commonly added during
the extraction process to decrease interference from water molecules in the MIP binding sites [70].
Figure 6a shows the effect of NaCl on the adsorption capacity of MIP/NIP paper scaffolds. MIPs can
adsorb nearly twofold greater cotinine than NIPs at 1.25% w/v NaCl, indicating that this concentration
provides the maximum absorbed cotinine ratio (QNIP/QMIP). The adsorbed cotinine ratio between
MIPs and NIPs was reduced when the concentration of NaCl was greater than 1.25% w/v. In accordance
with the results obtained from the cotinine adsorption study, the maximum yield of cotinine extraction
was also obtained with 1.25% w/v NaCl (Figure 6b). To enhance the maximum cotinine adsorption on
MIPs, 1.25% w/v NaCl was implemented for extraction. The optimal concentration of NaCl can reduce
weak interactions or nonspecific binding, whereas higher concentrations of NaCl interfere with the
affinity of specific binding of absorbent to target analytes [71].

To study the effect of pH on cotinine adsorption and extraction, the stock cotinine standard
solution was diluted in phosphate buffer to obtain a final pH in the range of 5–8, which is the
physiological range of human urine. Results demonstrated that pH 8.0 provides the maximum
percentage of imprint factor for cotinine adsorption (Figure 6c), in which the cotinine was also extracted
at the highest ratio (Figure 6d). This implied that using pH 8.0 as an adsorption buffer is applicable
and suitable for both cotinine adsorption and further extraction. According to many reports, alkaline
conditions for cotinine extraction can provide optimum recovery and a low percentage of relative
error [72,73]. The pKa of cotinine is 4.5, thus a high pH reflects an optimal condition in which cotinine
is in unionized form and is easily extracted from adsorbents [74].

3.6. Effect of Sample Matrix and Solvent on Cotinine Adsorption on MIP Paper-Based Scaffolds

Urine control was used for simulation of real sample analysis. MIP paper-based scaffolds were
used for cotinine adsorption and extraction at different concentrations. Figure 6e shows that the
imprinting effect ratios varied from 1.7 to 2.8. The maximum peak area ratio obtained from cotinine
extraction (Figure 6f) was obtained at 2.2 µM of cotinine, which was in good agreement with the results
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obtained from the adsorption study. Results from the effect of sample matrix on cotinine adsorption
provided a similar adsorbed cotinine ratio, which was determined using a cotinine standard solution in
the rebinding experiment. These results indicated that MIP paper-based scaffolds could potentially be
used for the adsorption of cotinine in a urine matrix. Inconsistent results derived from the adsorption
and extraction experiments may be due to unspecific adsorption of a component in the urine control
matrix. According to Caro et al., the cleanup process of the urine sample matrix following absorption by
MIPs can potentially increase the extraction efficacy of target analytes [75]. To apply MIP paper-based
scaffolds in aqueous solutions, different content mixtures of aqueous methanol and acetonitrile were
implemented. The results showed that the highest peak area ratio of MIPs and NIPs was obtained
with the use of 75% methanol and acetonitrile in the adsorption experiment, whereas the imprinting
factor obtained with water medium still provided an imprinting effect of 1.8. This suggested that MIP
paper-based scaffolds could be feasible for onsite urine sampling. This result correlated with another
study reporting that optimized MIPs can be potentially used in aqueous environments [76,77].
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Figure 6. Effects of NaCl, pH, sample matrix, and solvent on cotinine adsorption and extraction.
(a) Effect of NaCl on adsorbed cotinine ratio between MIPs and NIPs. (b) Effect of NaCl on peak area
ratio of cotinine extraction. (c) Effect of pH on normalized different percentage of MIPs and NIPs.
(d) Effect of sample matrix on adsorbed cotinine ratio between MIPs and NIPs. (e) Effect of sample
matrix on peak area ratio of cotinine extraction. (f) Effect of MeOH, ACN, and water on cotinine
adsorption on MIP/NIP paper-based scaffolds.

3.7. Interference Study and Selectivity of Synthesized Polymers

From an interference study of MIP and NIP in control urine matrix (Figure 7), the adsorption
capacity of MIP to 125 and 250 µg/mL of cotinine compared to cotinine-spiked nicotine decreased by
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11.3% and 22.4%, respectively. In contrast to NIP, adsorption capacity increased 65.76% and 52.32% at
125 and 250 µg/mL cotinine concentration, respectively. The difference in adsorption capacity of MIP
paper-based scaffolds indicates the robustness of nicotine as interference in the urine control sample
matrix. Additionally, recovery of the extraction process was tested. Table 1 shows recovery of MIP
and NIP paper-based scaffolds in urine matrix and water with the presence of nicotine at ratios of 2:1
and 1:1. Recovery of cotinine extraction at ratios of cotinine and nicotine of 2:1 and 1:1 was 87% and
68% in control urine and a 1% decrease in extracted yield in water, whereas recovery of NIP (urine
control) increased from 72% to 77% and there was a 7% increase in extracted yield (water), which
corresponded to the decreased adsorption capacity of MIP and the increased capacity of NIP with the
presence of nicotine (Figure 7). The results indicated that MIP paper-based scaffold can be used in
the presence of interference (nicotine) with a <50% constituent. Selectivity of MIPs was investigated
with cotinine analogs (nicotine, myosmine, N-nitrosonornicotinine, and cotinine) as shown in Figure 8.
The imprinting factors of MIPs toward nicotine, myosmine, N-nitrosonornicotinine, and cotinine are
2.13, 1.23, 1.63, and 3.34, respectively. Regarding the resemblance of analogs to cotinine (176.22 g/mol),
the selectivity factors of cotinine to nicotine, N-nitrosonornicotinine, and myosmine were determined
to be 1.56, 2.05, and 2.69, respectively. As the calculated selectivity factor, nicotine can interact with the
binding site of cotinine-MIPs, providing the lowest selectivity due to the lower molar mass of nicotine
(162.23 g/mol) and its smaller size when compared with cotinine. Notably, only the carbonyl group
contained in the cotinine structure provided a difference from the nicotine structure. Cotinine and its
analogs contain the same pyridine ring structure [20]. For example, N-nitrosonornicotinine, a potent
carcinogen in an animal model [78], with molar mass closest to cotinine (177.20 g/mol) compared
to other analogs, can also bind to the pocket of MIP resulting from hydrogen bonding between the
nitrosonium group in N-nitrosonornicotinine and MIP matrix. This is another genotoxic alkaloid
found in tobacco leaves, and its structure is related to nicotine. This substance has the smallest size and
lowest molar mass (146.19 g/mol) among the three cotinine analogs, resulting in the highest selectivity
factor. From the results and discussion, it can be suggested that except for their resemblance in size and
molar mass, which affect MIP binding capacity, the oxygen atom in cotinine and its analog structure
plays a significant role in the binding affinity of MIPs.
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Table 1. Recovery of MIP and NIP paper-based scaffold in urine matrix and water with the presence of
nicotine at ratios of 2:1 and 1:1.

Urine Matrix Water

Cotinine: nicotine
(2:1)

Cotinine: nicotine
(1:1)

Cotinine: nicotine
(2:1)

Cotinine: nicotine
(1:1)

MIP 88 ± 0.77% 68 ± 0.85% 71 ± 1.6% 70 ± 1.0%

NIP 72 ± 2.6% 77 + 3.0% 41 ± 4.0% 50 ± 4.8%
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3.8. Application and Comparison of MIP Paper-Based Scaffold

Cotinine-spiked urine control in the range of 3–10 µg/mL was used to mimic real samples (n = 6)
and were assayed with the proposed MIP paper-based scaffold. The results were compared with a
commercial solid-phase extraction (SPE) method and demonstrated that no bias for determination of
cotinine of any samples was obtained, because the difference between the two methods fell within
the mean ±1.96 standard deviation (SD), as shown in Figure 9. A chromatogram after extraction by
MIP paper-based scaffold is shown in Supplementary Figure S6. The proposed method was not able to
distinguish between MIP and NIP for cotinine levels lower than 1 µg/mL, so it is not applicable for low
tobacco exposure or secondhand smoke. However, the sensitivity of the method can be increased by
increasing the number of stacks of MIP paper scaffolds. Nevertheless, the proposed MIP paper-based
scaffold is still merit to apply with regular active smokers that usually have cotinine concentration in
urine about 1–8 µg/mL [79].
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4. Conclusions

In this study, MIP paper-based scaffolds were successfully developed and characterized,
simple and inexpensive facilities were applied for their preparation. Glass fiber
membrane/cotinine-MIP hybrid materials were used for investigation of adsorption capacity,
while agarose gel was used as a biologically derived immobilizing agent for layering MIP particles
on the paper-based scaffold. The benefits of this layering method are the ease of fabrication and
the lack of surface treatment process. In contrast to NIP, MIP paper-based scaffold provides the
highest adsorption capacity. As regards the merits of exploiting agarose gel in cooperation with glass
fiber membrane filter for making MIP paper-based scaffolds, this can increase the permeability of
fluid through the heterogeneous pores of agarose gel, which can enhance the adsorption capacity
compared with MIP particles alone. Apparently, the synthesized MIPs exhibited an affinity for
cotinine template molecules compared with control polymers. From the interference and selectivity
testing, the results show robustness against cotinine analog. The recovery of the extraction process
in urine control and water matrix with the presence of nicotine also showed the capability of using
MIP paper-based scaffolds, which offers potential use in the presence of interference (nicotine)
lower than 50% constituent. In addition, the selectivity of MIPs toward cotinine was higher than
nicotine, myosmine, and N-nitrosonornicotinine, indicating the specific binding of MIPs to cotinine
target molecules. Interestingly, the imprinting effect obtained from the rebinding experiment in an
aqueous environment still provided good results, which can potentially be used in biological samples.
A comparison of methods between commercial SPE column and the proposed MIP paper-based
scaffold indicated potential practical use. In summary, MIP paper-based scaffolds can be feasible for
real sample preparation. Immobilization of MIP particles on paper provides a ready-to-use platform
for onsite sample preparation with specific binding to cotinine prior to performing other processes in a
central laboratory.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/3/570/s1:
Figure S1. Microscopic pictures of glass fiber membranes. Figure S2. Chromatogram of standard mixture. Figure S3.
Infrared spectra of synthesized polymers. Figure S4. Remaining cotinine standard after rebinding with different
adsorbent materials. Figure S5. Scatchard plot of NIP. Figure S6. Chromatogram of eluted cotinine from MIP-paper
based scaffold. Table S1. Chromatographic parameters for HPLC method. Table S2. Concentration of adsorbed
cotinine (µg/mL) from MIP paper-based scaffold and bare paper-based scaffold (initial concentration of cotinine:
5 µg/ mL).
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