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Abstract: Supercapacitors are a very active research topic. However, liquid electrolytes present several
drawbacks on security and packaging. Herein, a gel polymer electrolyte was prepared based on
crosslinked renewable and environmentally friendly soybean protein isolate (SPI) and hydroxyethyl
cellulose (HEC) with 1.0 mol L−1 Li2SO4. Highly hydrophilic SPI and HEC guaranteed a high ionic
conductivity of 8.40 × 10−3 S cm−1. The fabricated solid-state supercapacitor with prepared gel
polymer electrolyte exhibited a good electrochemical performance, that is, a high single electrode
gravimetric capacitance of 91.79 F g−1 and an energy density of 7.17 W h kg−1 at a current density of
5.0 A g−1. The fabricated supercapacitor exhibited a flexible performance under bending condition
superior to liquid supercapacitor and similar electrochemical performance at various bending angles.
In addition, it was proved by an almost 100% cycling retention and a coulombic efficiency over 5000
charge–discharge cycles. For comparison, supercapacitors assembled with commercial aqueous PP/PE
separator, pure SPI membrane, and crosslinked SPI membrane were also characterized. The obtained
gel polymer electrolyte based on crosslinked SPI and HEC may be useful for the design of advanced
polymer electrolytes for energy devices.

Keywords: gel polymer electrolyte; soybean protein isolate; hydroxyethyl cellulose;
solid-state supercapacitors

1. Introduction

Supercapacitor (SC) is considered as an electrochemical energy storage device with a great
potential due to its high-power, long cycle life, low environmental impact, and high safety at present [1].
Recently, the development of flexible solid-state supercapacitors fabricated with polymer electrolytes
that can be used in wearable electronic devices has attracted more attention.

It is well known that the energy density of a supercapacitor is determined by the specific capacitance
and squared operating voltage window [2,3]. To improve the energy density, tremendous efforts
have been devoted to developing novel electrode materials to elevate the specific capacitance [4–10].
Apart from the electrodes, electrolyte is one of the key components of a supercapacitor, that can
significantly affect the operating voltage as well as lifespan and safety of supercapacitors [11–13].
The supercapacitors assembled with liquid electrolytes have the disadvantages of electrolyte leakage,
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high packaging costs, and usually being toxic or corrosive, which limits their application for portable
electronic devices [14].

The design and development of polymer electrolytes have been attracting much attention due
to excellent safety, stability, flexibility, etc., which make them widely used in various electronic
devices such as lithium-sulfur batteries, lithium-metal batteries, lithium-ion batteries, fuel cells,
and supercapacitors [15–22]. Piana et al. reported poly(ethylene oxide) (PEO)/Li1.5Al0.5Ge1.5(PO4)3

hybrid solid polymer electrolytes for super Li+ ion conducting ceramic with high ionic conductivity
and excellent Coulombic efficiency (>99.5%) under high current regimes [16]. A 3D GPE based
on poly(vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) with polymerized pentaerythritol
tetrakis-divinyl adipate was prepared and could suppress Li dendrites growth in lithium-sulfur
batteries [18]; Wang et al. prepared epoxy based adhesive polymer electrolyte with high ionic
conductivity (>10−2 S cm−1) for a solid-state supercapacitor [20]. In summary, polymer electrolytes can
replace liquid electrolytes and serve as both separator and electrolyte with a high ionic conductivity at
ambient temperature, good mechanical strength, excellent stability, and a wide potential window in
energy devices [23]. Polymer electrolytes can be classified into solid polymer electrolytes (SPEs) and
gel polymer electrolytes (GPEs). SPEs mostly deliver low ionic conductivities (10−8–10−5 S cm−1) and
poor interfaces with electrodes, resulting in deteriorated cycle performance [24–27]. GPEs have been
extensively investigated because they can deliver an ionic conductivity as high as liquid electrolyte
and provide a variety of potential advantages, including good interfacial contact with electrodes,
higher safety and adaptability, and flexibility for flexible energy storage devices [28–30].

GPE can be prepared by assembly of polymer skeleton and supporting liquid electrolyte.
The polymer substrate plays an important role in a GPE. However, non-degradable synthetic polymer
materials in GPE face several disadvantages and are not environmentally friendly. Hence, it is
imperative to develop biopolymer electrolytes by using natural polymers, which have gained more
and more attention, owing to their abundance in nature, low cost, friendliness to the environment,
and potential as substitute for some petrochemicals [31]. Biomass materials—such as cellulose, chitosan,
soybean protein, etc.—are of concern for their regenerability and degradation in nature.

As a biomass material, soybean protein isolate (SPI), a byproduct of the soybean oil industry,
has been applied in many fields including energy storage due to its renewability, biocompatibility,
biodegradability, processability, and film-forming capacity [32], and the ionic protein containing
different types of amino acids can be used to transport ions for energy storage devices [33]. Zhu et al.
prepared porous membranes with SPI and PVA via electrospinning as separators for lithium ion
batteries [34]. A composite GPE was constructed from porous polydopamine spheres and SPI membrane
to suppress Li dendrite growth and trap manganese ions for a high-performance Li battery [35].
These studies demonstrate that SPI can be used as a polymer matrix for polymer electrolyte; furthermore,
SPI contains abundant polar functional groups to obtain excellent hydrophilicity, which provides the
membrane with a good electrolyte affinity. However, the application remains substantially limited
due to the high-water sensitivity, undesirable processability, and inferior mechanical strength [36].
A lot of investigations on modification of SPI have been carried out to solve the problems mentioned
above [37–39]. In our previous work, a series of crosslinked membranes was prepared by SPI crosslinked
with ethylene glycol diglycidyl ether (EGDE) as the crosslinker and it was found that the crosslinked
structure could improve the water resistance of SPI/EGDE membrane, but it also reduced the ionic
conductivity of the pure SPI film and electrochemical performance of the supercapacitor [40].

To improve the decline in electrochemical performance due to the crosslinked membrane and
maintain good water resistance, a highly hydrophilic polymer can be introduced into the crosslinked
structure to construct a composite system. Hydroxyethyl cellulose (HEC), a derivative of cellulose,
has a wide range of sources [41]. HEC has excellent hydrophilicity and been widely used as
a water-soluble additive. Simultaneously, it has other characteristics, such as film-forming capacity
similar to cellulose. Moreover, HEC can interact with polar groups such as amino groups and carboxyl
groups on SPI to form a uniform and stable film material [42].
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In this study, a series of membranes was prepared by SPI as the polymer matrix, blended with
HEC and crosslinked by ethylene glycol diglycidyl ether (EGDE) which is an epoxy compound with
low toxicity. The crosslinked membranes were then saturated with 1.0 M Li2SO4 electrolyte with
a large operating potential window to form gel polymer electrolytes (GPEs) and applied in solid-state
supercapacitors (SSCs). The comprehensive properties of the membranes, GPEs, and SSCs were
systematically investigated. The membrane based on the crosslinked SPI and HEC not only maintains
its water resistance, but also improves the ionic conductivity of GPE and electrochemical performance
of supercapacitor.

2. Materials and Methods

2.1. Materials

SPI (96.5 wt %) was purchased from Harbin Gaoke Food Technology Co., Ltd. (Harbin, China).
HEC was obtained from Aladdin Industrial Corporation. Glycerin (analytical grade) was acquired from
Guangfu technology development Co., Ltd. (Tianjin, China). Activated carbon (AC) and acetylene
black (battery grade) were provided by Japan KURARAY (Shanghai, China) and Crisco Chemical
Technology Co., Ltd. (Shanghai, China), respectively. EGDE and polytetrafluoroethylene (PTFE)
(60 wt %) concentrate were purchased from Aladdin Reagent (Shanghai, China) Co., Ltd. (Shanghai,
China). Nickel foam was purchased from Kejing Zhida Co., Ltd. (Shenzhen, China). Anhydrous lithium
sulfate and commercial hydrophilic PP/PE composite membrane were received from Saen Chemical
Technology Co., Ltd. (Shanghai, China) and Lizhiyuan Battery Co., Ltd. (Taiyuan, China) respectively.

2.2. Preparation of Gel Polymer Electrolyte Based on Crosslinked SPI and HEC

SPI powder was dispersed in deionized water and stirred constantly to form a suspension.
Glycerol was added and the pH of suspension was adjusted to 10, after which the suspension was
stirred for 30 min at room temperature followed by being heated at 85 ◦C under constant stirring
for 30 min. The suspension was then cooled down to room temperature and ultrasonicated for
10 min. Finally, a 5 wt % SPI solution was obtained. The HEC powder was dissolved in deionized
water to form a 5 wt % solution simultaneously. The SPI solution and HEC solution were mixed for
2 h. The crosslinker EGDE was dropped into the solution and stirred for 1 h. In order to maintain
a similar degree of crosslinking of each membrane, equal amount of crosslinker EGDE was added in
the membranes of the same quantity. The homogeneous solution was cast onto a dry flat glass plate
and dried at 50 ◦C for 24 h. The membrane based on crosslinked SPI and HEC was peeled off and
recorded as MCM-H. SPI membrane named MCM-S and crosslinked SPI membrane named MCM-E
were prepared in a similar process described above. For comparison, the commercial hydrophilic
PP/PE membrane was used as a separator and named MCM-C. The component information was listed
in Table 1. All the membrane samples were immersed in 1.0 M Li2SO4 electrolyte to form GPEs named
GPE-H, GPE-S, GPE-E, and GPE-C, respectively.

Table 1. Component information of the prepared modified membranes.

Samples SPI (5 wt % Solution, g) Glycerol (g) EGDE (g) HEC (5 wt % Solution, g)

MCM-S a 12 0.3 0 0
MCM-E b 12 0.3 0.12 0
MCM-H c 8.4 0.21 0.12 3.6

a The pure SPI membrane; b The crosslinked SPI membrane; c The crosslinked SPI membrane with HEC.

2.3. Fabrication of SSCs

Firstly, the AC electrodes were prepared by 80 wt % AC powder, 10 wt % acetylene black and 10 wt
% PTFE, and each electrode was 4.1 mg. The SSCs were then assembled as the following sandwiched
structure: AC electrode//GPE//AC electrode and simply packaged. The process was described as
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shown in Figure 1. For comparison, a SSC with GPE-C was also fabricated by the same method and
recorded as SSC-C. The flexibility of supercapacitor was named SSC-H’ and tested by assembling
polymer electrolyte and electrodes with area of 3 cm2 (1 × 3 cm).
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Figure 1. Schematic illustration of the assembly process of SSC and schematic diagram of crosslinked
based on SPI and HEC.

2.4. Characterization of Membrane Samples

The ATR-FTIR spectra of all the samples were recorded from 500 to 4000 cm−1 using a Spectrum
One FTIR spectrophotometer (Nicolet Co., Madison, WI, USA). XRD of samples were evaluated
with a D/max-2 200 diffractometer (Rigaku International Corporation, Tokyo, Japan). X-ray radiation
was generated from a Cu-Kα source at an accelerating voltage of 40 kV and a current of 30 mA.
The diffraction data were collected from 5◦ to 50◦ with a step interval of 0.02◦. Thermogravimetric
analysis (TGA) of samples were analyzed using a Netzsch 209 F3 TGA instrument (NET Scientific
Instruments Trading (Shanghai) Co., Ltd., Shanghai, China) under a Nitrogen atmosphere from 30 ◦C
to 600 ◦C at a heating rate of 10 ◦C min−1.

2.5. Electrolyte Uptake of Membranes

Membrane samples (1.5 × 4.0 cm) were dried at 80 ◦C for 24 h to a constant weight which was
recorded as Wdry. The dry membrane was immersed in 1.0 M Li2SO4 for 30 min at room temperature,
followed by wiping with filter paper for removal of excess Li2SO4 solution on the surface, the weight of
the wet membrane was recorded as Wwet. The electrolyte uptake (EU) was calculated by the equation.

EU(Electrolyte uptake)(wt %) =
Wwet −Wdry

Wdry
× 100%

Five replicates were performed for each membrane.

2.6. Ionic Conductivity of GPEs

The ionic conductivity (σ, S cm−1) of the GPEs can be calculated by the equation.

σ =
L

Rb × S

where L (cm) is the thickness of the GPE, S (cm2) is the effective interface area between GPE and
stainless-steel electrode. Rb (ohm) is the bulk resistance of the GPE and measured by electrochemical
impedance spectroscopy (EIS) measurement with a potential amplitude of 10 mV and a frequency range
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from 1 Hz to 100 kHz by using electrochemical workstation (CHI660B, Shanghai, China). In order to
establish the relationship between the ionic conductivity of GPE and the electrochemical performance of
the corresponding SSC, only one set of data for each GPE and corresponding solid-state supercapacitor
is used and discussed.

2.7. Electrochemical Characterization of SSCs

The electrochemical performance of the SSCs with different GPEs was investigated in
a two-electrode system by EIS, cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD)
techniques by using electrochemical workstations (CHI660B, Shanghai, China). The EIS spectrum
was used to analyze the impedance behavior of the single cell with frequency range from 0.01 Hz
to 100 kHz at the amplitude of open-circuit voltage. CV tests of the solid-state supercapacitors were
conducted within a stable potential window (0–1.5 V) at different scan rate (10, 20, 50, 100, 200 mV s−1).
GCD characterization was conducted within a stable potential window (0–1.5 V) at different current
density (1, 2, 5, 10 A g−1). GCD measurement was used to determine the capacitance and the cycle
performance of cells. The single electrode gravimetric specific capacitance (Csp, F g−1) was calculated
from the GCD curves according to the equation.

Csp =
4I
m
×

dt
dv

where I is the constant current (A), m is the AC mass of two electrodes (g), dv/dt (V s−1) is the slope of the
fitting straight line to the discharge curve excluding the IR drop. The energy density (Ecell, W h kg−1)
and power density (Pcell, W kg−1) of SSC were calculated as.

Ecell =
CV2

2
=

CspV2

8

Pcell =
Ecell
∆t

where V is the cell voltage without voltage drop, ∆t is the discharge time.
The electrochemical cycling life of the SSC-H was investigated for 5000 charge and discharge

cycles at a current density of 2 A g−1 by using LAND test equipment (LAND, CT3001A, Wuhan, China).

3. Results and Discussion

3.1. Structural Analysis of Membrane Samples

The ATR-FTIR spectra of HEC powder, MCM-S, MCM-E, and MCM-H are shown in Figure 2.
The adsorption band at 3000–3500 cm−1 and about 2900 cm−1 were attributed to the free bound –OH
and –CH3 and –CH2– in the prepared membranes, respectively. The absorption peaks of characteristic
group of protein were observed at 1626 cm−1, 1537 cm−1, and 1223 cm−1 and correspond to amide
I (C=O stretching vibration), amide II (N–H bending vibration), and amide III (C–N stretching and
N–H bending vibration), which were consistent with a previous report [43]. The COO– and –C–NH2

absorption peaks could be observed at 1396 cm−1 and 1036 cm−1, respectively [44,45]. From Figure 2b,
it can be observed that the introduction of HEC, the absorption peak of amide II (1537 cm−1) shifted to
1556 cm−1, which was due to the hydrogen bond interaction between HEC and SPI.
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Figure 2. (a) ATR-FTIR spectra of HEC powder, MCM-S, MCM-E, MCM-H from 500 to 4000 cm−1,
(b) ATR-FTIR spectra from 800 to 2000 cm−1.

XRD patterns of pure SPI power and membrane samples are shown in Figure 3. Characteristic
diffraction peaks at 2θ ≈ 9.3◦ and 19.3◦ of the pure SPI power represent the α-helix and β-sheet
structures of SPI secondary structure, respectively [46]. It is obvious that these two characteristic
diffraction peaks can be found in MCM-S. With the addition of EGDE, the characteristic absorption
peak at 2θ ≈ 9.3◦ of MCM-E disappeared, which indicates that a chemical reaction occurred between
EGDE and SPI. The XRD curves of MCM-E and MCM-H are almost the same, indicating that high
compatibility between SPI and HEC.
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3.2. Thermal Stability

Thermal stability of samples was investigated using TGA. The TGA curves recorded from
30 ◦C to 600 ◦C are shown in Figure 4. Only one decomposition stage can be observed for thermal
decomposition of the SPI powder. The initial degradation and the maximum decomposition rate of
SPI powder occurred at around 200 ◦C and 310 ◦C. Initial decomposition of modified SPI membranes
occurred at around 125 ◦C, which is lower than that of the SPI powder, which may be due to partial
degradation of the SPI molecular structure caused by KOH and glycerol. Decomposition temperature
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of MCM-H is higher than MCM-S and MCM-E from the beginning to the end of thermal decomposition.
Maximum decomposition rate temperature of MCM-E is significantly higher than MCM-S and is even
higher than that of SPI powder. Although the maximum decomposition rate temperature of MCM-H
is slightly lower than that of MCM-E, it is still higher than that of MCM-S, which indicates that the
crosslinked structure can significantly improve the thermal stability of MCM-H membrane.
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3.3. Electrolyte Uptake, Water Resistance of Membrane Samples, and Ionic Conductivities of GPEs

The Nyquist plots of GPEs are shown in Figure 5a,b. The Ionic resistance (Rb) can be determined
by the intersection of the Nyquist plot and the Z’ axis in high frequency area. The ionic conductivities of
GPEs can be calculated and displayed in Table 2. The lower ionic conductivity of GPE-E resulted from
the consumption of the hydrophilic amino groups in the SPI via the crosslinking reaction with EGDE.
GPE-H has a higher ionic conductivity and electrolyte uptake than GPE-S and GPE-E. The addition
of hydrophilic HEC compensates for the loss of hydrophilic functional groups due to crosslinking
reaction and due to HEC facilitating the transport of electrolyte ions, which can be obviously observed
from the electrolyte uptake results in Figure 5c. SPI membrane has a good ionic conductivity due
to the good hydrophilicity as well as ionic property to facilitate the ion transport of the polymer
electrolyte. This is an important factor in the selection of SPI as a polymer matrix of polymer electrolyte.
Furthermore, comparison between GPE-H and GPE-C was carried out. GPE-C exhibits a higher ionic
conductivity due to the high porosity facilitating the transport of ions.
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Table 2. Electrolyte uptakes of membrane samples and thickness, ionic conductivities of GPEs.

GPE Sample Thickness of
GPEs (cm)

Ionic Conductivity
(10−3 S cm−1)

Membrane
Samples Electrolyte Uptake (%)

GPE-S a 0.0133 7.58 MCM-S 35.35 ± 2.16
GPE-E b 0.0157 2.25 MCM-E 8.84 ± 1.15
GPE-H c 0.0168 8.40 MCM-H 61.03 ± 2.80
GPE-C d 0.0138 9.40 MCM-C 49.27 ± 1.68

a Gel polymer electrolyte with MCM-S; b Gel polymer electrolyte with MCM-E; c Gel polymer electrolyte with
MCM-H; d Gel polymer electrolyte with MCM-C.

As a natural polymer material, SPI has poor water resistance. To study the water resistance of SPI
membranes, the membrane samples were submerged in deionized water for 24 h as shown in Figure 5d.
MCM-S has been excessively swollen and almost lost its mechanical strength. Conversely, MCM-E and
MCM-H exhibited better stability in deionized water.

3.4. Electrochemical Performance of SSCs

The electrochemical performance of SSCs was explored by EIS, CV and GCD techniques.
For comparison, the electrochemical performance of SSC with GPE-C was also investigated.
Nyquist plots of SSC-X (SSCs with different GPEs) in the frequency range of 0.01 Hz-100 kHz
was shown in Figure 6. The intercept with real axis (Z’ axis) in the high frequency region (Z” = 0)
reflects equivalent series resistance (Rs) of SSC cells, which is associated with the ionic resistance of the
electrolyte, the intrinsic resistance of the electrode material and the contact resistance at the interface of
electrode material [47–49]. An approximate semicircular behavior at the high to medium frequency
region refers to the interfacial charge transfer resistance (Rct), which is related to the process at the
electrolyte/electrode interface [50]. A slope line at medium frequency region is related to diffusion of



Polymers 2019, 11, 1895 9 of 17

the electrolyte, its length depends on the frequency of electrolyte ions transporting between electrode
and polymer electrolyte [51]. The straight line nearly vertical to the axis at low frequency region
indicates excellent capacitive behavior of the SSC cells [52]. Electrostatic diffusion capacity and overall
capacitance behavior of SSCs assembled by SPI membranes are superior to SSC assembled with
GPE-C. Various electrical parameters of SSC-E associated with bulk properties of electrolyte and
electrode–electrolyte interface in different frequency ranges are worse than SSC-S. This is because
crosslinked structures consume a large number of hydrophilic groups in the SPI and reduce the
electrolyte uptake of MCM-E. Conversely, SSC-H exhibits a similar Rs with SSC-S and shows a better
capacitive behavior than SSC-S. HEC in GPE-H is beneficial for absorption of liquid electrolyte and
the transport of ions, and the moderate swelling of GPE-H caused by HEC improves the interface
performance and promotes the transport of ions at the electrode–electrolyte interface. Compared with
SSC-H, SSC-C assembled with GPE-C shows a low Rs due to its high ionic conductivity, however,
SSC-C exhibits a larger ion transfer resistance between GPE-C and electrodes than SSC-H since MCM
cannot be swelled by electrolyte, which results in a worse electrochemical performance than SSC-H.
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CV curves of SSCs at scan rates of 20 and 100 mV s−1 are shown in Figure 7a,b, respectively.
All curves of SSCs have similar rectangular profiles, symmetric with respect to the X axis and without
redox peaks. The CV curves of SSC-C and SSC-E deviate significantly from the rectangle, while those
of SSC-S and SSC-H still maintain a good rectangular at high scan rates. In addition, integral area of
the curves of SSC-S and SSC-H are almost overlapping, which are far greater than those of SSC-E and
SSC-C, demonstrating that the SSC-S and SSC-H exhibit similar capacitance behaviors better than
SSC-E and SSC-C. The result further illustrates that the introduction of HEC in GPE-H improved the
electrolyte uptake and accelerated the transport of electrolyte ions at the electrode–electrolyte interface,
which elevated the capacitance of SSC-H. CV curves of SSC-H at different scan rates (10–200 mV s−1),
as depicted in Figure 7c, showed only a slight deviation from perfect rectangular even at high scan rate
of 200 mV s−1, which indicated that the capacitive behavior of SSC-H belongs to electrical double-layer
formation and SSC-H had lower internal resistance. HEC in MCM-H accelerates transport of the
electrolyte ions and reduces the equivalent series resistance of the GPE-H, which endows SSC with
a higher specific capacitance and a better power performance.
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GCD curves of SSCs at the current density of 1 A g−1 are shown in Figure 8a. The curves of SSC-S
and SSC-H exhibited an ideal linear profile, the charge curves were almost perfectly symmetrical with
their corresponding discharge curve within the potential window (0–1.5 V). However, the GCD curves
of SSC-E and SSC-C deviate from the ideal symmetrical triangle, which indicates that SSC-H has
superior electrical double layer capacitance characteristics and reversibility of charge and discharge
over SSC-E and SSC-C. The GCD curves of SSC-H at different current densities (1–10 A g−1) are
shown in Figure 8b. The GCD curve of SSC-H still maintains a symmetrical linear shape even at high
current density, which further demonstrates that SSC-H has a good reversibility charge and discharge.
Csp and voltage drop (Vdrop, V) of the SSC-X were calculated according to the discharge profile and
demonstrated in Figure 8c. The Csp of SSC-S and SSC-H decreased slightly and the Vdrop increased
with the increase of current density due to internal resistance of SSCs. However, the Csp of SSC-E and
SSC-C are greatly reduced and the Vdrop increase substantially with the increase of current density.
This demonstrates that SSC-H has a better reversibility of charge and discharge and small internal
resistance, which indicates that GPE-H can accelerates the transport of electrolyte ions and reduces the
internal resistance of SSC-H due to the introduction of HEC. The Csp value of SSC-H was 98.91 F g−1

which is much higher than that of SSC-C (86.22 F g−1) at a current density of 1 A g−1. Even at high
current densities of 5 A g−1, the Csp of SSC-H can reach 91.79 F g−1, whereas the sharp decay of Csp of
SSC-C with commercial membrane MCM-C is only 69.9 F g−1. The Csp, Ecell, and Pcell of SSC-H were
calculated at different current densities and listed in Table 3.
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Table 3. Specific capacitance, energy density, and power density of SSCs at different current densities.

Sample Current Density
(A g−1)

Specific Capacitance (Csp,
F g−1)

Energy Density
(Ecell, W h kg−1)

Power Density
(Pcell, W kg−1)

SSC-S a 1 100.35 7.84 771.15
5 95.27 7.44 5351.76

SSC-E b 1 100.55 7.86 862.68
5 65.98 5.15 6621.43

SSC-H c 1 98.91 7.73 786.10
5 91.79 7.17 4780.00

SSC-C d 1 86.22 6.74 786.89
5 69.9 5.46 5312.43

a Solid-state supercapacitor with GPE-S; b Solid-state supercapacitor with GPE-E; c Solid-state supercapacitor with
GPE-H; d Solid-state supercapacitor with GPE-C.

Flexibility is a crucial parameter for SSCs applied in wearable electronic devices and portable
devices. The electrochemical performance of SSC-H’ was systematically measured under different
bending angles as shown in Figure 9. The resulting CV curves, GCD curves and EIS curves with
the bending angles of 0◦, 30◦, 45◦, 90◦, and 180◦ are shown in Figure 9a–e, respectively. Figure 9f is
physical pictures of the various angles in the experiment. From the Nyquist plots in Figure 9a,b, it is
known that at different angles, there is a small equivalent series resistance in the high frequency region,
indicating that the bend has little effect on the equivalent series resistance; a vertical line close to 90◦

is shown in the low frequency region, indicating that the bend has almost no effect on the interface
change between GPE-H and the electrode. The almost overlap CV and GCD curves for SSC-H’ at
different bending angles are obtained from the Figure 9c–e. Figure 9b presents the analogous CV
responses and area. The as-measured GCD curves in Figure 9d,e show a negligible change at different
bending angles at a current density of 1.0 A g−1 and 5.0 A g−1. The approximate EIS, CV, and GCD
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curves at different angles reveal good angle stability and ideal flexibility of SSC-H’ for application in
flexible electronic devices.
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Figure 9. Electrochemical properties of SSC-H under various bending angles. (a) Nyquist plots in
a frequency range from 0.01 Hz to 100 kHz, (b) Nyquist plots in the high frequency region, (c) CV
curves at a scan rate of 50 mV s−1, (d) GCD curves at a current density of 1.0 A g−1, (e) at a current
density of 5.0 A g−1, and (f) picture of various bending angles.

Two SSC-H cells connected in series and parallel were evaluated by CV and GCD measurements as
shown in Figure 10a,b. Two SSC-H cells could be connected in series or in parallel and obtain a device
that outputted approximately twice the potential, or twice the current density and charge–discharge
time of the single SSC-H. As shown in Figure 10c, the 2 V light-emitting diode (LED) could be lighted
up by three SSC-H cells in series connection, which indicated their good practical prospects.
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(c) photograph of the LED powered by three SSC-Hs connected in series.

The long cycle life of SSCs is one of the most important factors with regard to its practical
application. To investigate the cycling stability, the SSC-H cell was tested at a constant current density
of 2 A g−1 over 5000 continuous cycles. Figure 11 exhibits the variation of the coulombic efficiency and
cycling retention as a function of the charge–discharge cycle numbers and the first 10th and last 10th
charge–discharge curves of SSC-H are displayed in the inset of Figure 11. The coulombic efficiency
calculated from the ratio of the discharge capacitance to the charge capacitance, maintained almost as
high as 100% for 5000 cycles, which indicates that SSC-H has good charge and discharge reversibility.
Even though the cycle retention shows a slight fluctuation in the early stage of charge–discharge,
it remained almost 100% even after 5000 cycles. The GCD curves still maintain a good symmetrical
and linear shape and are almost the same as the initial GCD curves indicating an excellent electric
double layer capacitive behavior and cycle stability of SSC-H.
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4. Conclusions

A transparent, flexible, biodegradable membrane based on crosslinked SPI and hydrophilic
HEC was successfully prepared, and the GPE-H was obtained by the membrane saturated with
1 M Li2SO4. The water resistance of the MCM-E is significantly improved due to the crosslinked
structure of the membranes. However, the ionic conductivity of GPE-E is reduced. The addition of
the HEC not only improves the water resistance of the MCM-H, but also facilitates the transport of
electrolyte ions for GPE-H. The electrochemical performance of SSCs assembled from SPI composite
membranes were higher than that of SSC assembled by commercial aqueous PP/PE membrane. SSC-H
assembled with GPE-H exhibits a high capacitance of 91.79 F g−1 and an energy density of 7.17 W
h kg−1 at a current density of 5 A g−1, which is much higher than SSC-E assembled with GPE-E.
According to the experiments at various angles, it was proved that SSC-H’ fabricated with GPE-H
has good flexibility. The solid-state supercapacitors also show considerable application performance
at series a parallel connection condition. Electrochemical cycle performance of the SSC-H indicated
almost 100% cycling retention and near 100% coulombic efficiency over 5000 charge–discharge cycles at
2 A g−1. The results obtained in this work confirm that GPEs based on renewable, degradable biomass
material are interesting candidates for replacing liquid electrolytes for flexible solid-state devices.
Further investigations on regulating composition structure of gel polymer electrolyte based on SPI/HEC
system to optimize the mechanical stability and improve the electrochemical performance such as
energy density and specific capacitance are currently in progress.
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