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Abstract: The study of the non-isothermal crystallization behavior of polymers is of great
importance due to the effect of degree of crystallinity and crystallization process on the polymer
properties. The effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane (APIBPOSS) and
aminopropylisooctyl polyhedral oligomeric silsesquioxane (APIOPOSS) on poly(e-caprolactone) (PCL)
crystallization is studied by differential scanning calorimetry (DSC) under non-isothermal conditions
and polarized optical microscopy (POM). The crystallization kinetics is analyzed using the Avrami and
Mo models, and effective activation energies are evaluated by the Friedman isoconversional method.
The results show that the compatibility between polyhedral oligomeric silsesquioxanes (POSS) and
PCL and POSS loading affect the crystallization process. A higher crystallization temperature, a
narrower size distribution of crystallite, and a faster crystallization rate are obtained in the presence
of all the studied contents of APIBPOSS and at lower contents of APIOPOSS. At APIOPOSS contents
higher than 2 wt %, the crystallization temperature is lowered, the size distribution of crystallite is
broadened, and the crystallization process is retarded. The presence of POSS leads to an increase in
the number of nucleation sites, and a reduction in the size of the crystallite and the overall degree of
crystallinity, as a result of the confinement of PCL chains caused by POSS nanoparticles.

Keywords: poly(e-caprolactone) nanocomposites; POSS nanoparticles; DSC; nonisothermal
crystallization; kinetic

1. Introduction

Poly(e-caprolactone) (PCL), a semi-crystalline aliphatic and biodegradable polyester, compatible
with many types of polymers and having good biocompatibility, has been used in a wide range
of applications including food packaging material, tissue engineering scaffolding, medical devices,
and drug delivery systems [1,2]. However, some disadvantages such as slow crystallization rate,
deficiencies in thermal stability, and poor mechanical properties have limited the applications of PCL.
To overcome these problems, some nanofillers have been added to PCL, and significant improvement
in the physical properties of PCL can be achieved with quite a small amount of nanofillers [3-7].

Polyhedral oligomeric silsesquioxanes (POSS) are one of the most extensively used nanoparticles
in the preparation of hybrid polymer nanocomposites. The three-dimensional POSS molecules are
characterized by a cubic core (SigO1;), which is surrounded by organic groups linked to silicon
atoms via covalent bonding. POSS molecules have been incorporated into organic polymers via
copolymerization, grafting, or blending [8-10]. The incorporation of POSS molecules into some
semi-crystalline polymers affects their crystallization behavior [11-13], and the physical and mechanical
properties of a semi-crystalline polymer are strongly dependent on its crystallization and morphology.
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The crystallization process can proceed under either isothermal or non-isothermal conditions.
The study of the non-isothermal crystallization kinetics of polymers is important since their processing
often proceeds under non-isothermal conditions. Investigation of crystallization behavior can serve as
a guide for process and application.

PCL is one of the polymers that have been blended with POSS. Various POSS derivatives have
been used to prepare PCL-based nanocomposites [12-17]. Pan et al. [12] studied the morphology,
isothermal, and non-isothermal melt crystallization of PCL/octaisobutyl-POSS nanocomposites. They
found that the crystallization of PCL is enhanced by the presence of POSS and influenced by the POSS
loading. They suggested that the presence of POSS might provide heterogeneous nucleation sites
for the PCL crystallization while the aggregates of POSS might restrict large crystal growth of PCL.
Miltner et al. [13] investigated the influence of the addition of aminopropylheptakis(isobutyl)-POSS
into PCL on the thermal properties. The results showed that POSS nanoparticles barely nucleated the
PCL crystallization, and therefore hardly affected the PCL semi-crystalline morphology and thermal
behavior. Goffin et al. [14] reported the crystallization behavior and the thermomechanical properties
of PCL/aminopropylheptakis(isobutyl)-POSS and PCL/aminopropylheptakis(isobutyl)-POSS-g-PCL.
They saw that well-dispersed POSS nanoparticles acted as efficient nucleating sites, significantly
increasing the crystallinity degree of PCL. Guan and Qiu [16] studied the isothermal crystallization,
morphology, and dynamic mechanical properties of PCL in the PCL/octavinyl-POSS nanocomposites.
The presence of ovi-POSS enhanced the overall isothermal melt crystallization rates of PCL in the
nanocomposites, while the crystallization mechanism and crystal structure of PCL remained unchanged
despite the POSS loading. Lee and Chang [17] reported the effect of trisilanolphenyl-POSS on the
thermal and mechanical properties of PCL/POSS nanocomposites. They found that the degree of
crystallinity of the PCL decreased with incorporation of POSS into PCL. To the best of our knowledge,
there are no other reports indicating that the crystallization behavior of PCL blends with different
POSS derivatives having different alkyl substituents. However, it has been reported that not only the
POSS content but also the structure of the alkyl chains of POSS substituent groups have an effect on
the crystallization kinetics of polymer/POSS nanocomposites [11,18-21].

The purpose of the present study is to ascertain the effect of the alkyl-chain length of the
nonreactive organic substituents attached to the corner silicon atoms of two amine-functionalized
POSS on crystallization behavior of PCL. Recently, we have reported the effect of the alkyl-chain length
of these substituents attached to the corner silicon atoms of amino-derivative POSS on morphology,
thermal, and mechanical properties of PCL/amino-POSS nanocomposites [22]. We found that the
longer the alkyl chain, the better the extent of dispersion of POSS due to the greater compatibility
with PCL chains. In the present study, aminopropylisobutyl polyhedral oligomeric silsesquioxane
(APIBPOSS) and aminopropylisooctyl polyhedral oligomeric silsesquioxane (APIOPOSS) have been
used to prepare PCL/APIBPOSS and PCL/APIOPOSS nanocomposites, respectively, with different
POSS contents. The effects of the incorporation of amino-POSS derivatives on the non-isothermal
melt crystallization kinetics and spherulitic morphology of PCL were investigated by differential
scanning calorimetry (DSC) and polarized optical microscopy (POM). We have found that the POSS
structure and content had an effect on the rate of crystallization and the overall amount of crystallinity
of PCL. Lower degree of crystallinity and crystallization rate have been achieved using the POSS
molecule, showing better compatibility with PCL compared to the less compatible POSS. The obtained
material can be of semi-crystalline nature or almost amorphous depending on the POSS loading and
the alkyl-chain length of the nonreactive organic substituents attached to the vertices of the POSS cage.

2. Materials and Methods

2.1. Materials

PCL (Mp, = 4.5 x 10* g mol~!) was purchased from Aldrich (Munich, Germany). APIBPOSS and
APIOPOSS were obtained from Hybrid Plastics (Hattiesburg, MS, USA), and used as received.
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2.2. PCL/POSS Nanocomposite Preparation

Nanocomposites with 2, 5, and 10 wt % POSS were obtained via solution and casting method as
described elsewhere [22]. Both PCL and POSS were first dissolved in chloroform separately. Then they
were mixed together and the mixture was sonicated for 3 h. The mixture was poured into a dish to
evaporate the solvent at room temperature for 24 h. The obtained film was further kept in a vacuum at
50 °C for 2 days to remove the solvent completely. For comparison, the neat PCL film was prepared in
the same way. The nanocomposites were named PCL/APIBPOSS-x and PCL/APIOPOSS-x, where x
denotes the weight percentage of POSS.

2.3. Sample Characterization

The non-isothermal crystallization characteristics of the pure PCL and PCL/POSS nanocomposites
were measured with a differential scanning calorimeter (DSC-Q2000) from TA Instruments (New
Castle, DE, USA). The temperature was calibrated with melting indium. All DSC measurements were
performed under ultrapure nitrogen atmosphere on samples of about 5 mg, placed in aluminum pans.
All specimens were first heated to 100 °C at 40 °C min~!, held for 5 min to erase previous thermal
history and then were cooled to —50 °C at various cooling rates (¢) ranging from 5 to 25 °C min~!. After
that, the samples were reheated from —50 °C to 100 °C at 10 °C min~! to evaluate the melting behavior.
The peak crystallization temperature (Tp) and heat of the crystallization (AH.) were obtained from the
cooling scans after first heating, whereas the melting temperature (Tmp) and the heat of fusion (AHm,)
were obtained during second heating of the samples.

XRD patterns were recorded on a Bruker D8 Advance X-ray diffractometer (Karlsruhe, Germany)
with a graphite monochromator, and the Cu K« radiation (A = 0.154 nm) operating at 40 kV/30 mA.

The spherulitic morphology of neat PCL and the PCL/POSS nanocomposites was analyzed by
polarized optical microscope (POM) on a Leitz Aristomet microscope (Wetzlar, Germany) equipped
with a Mettler Toledo FP82HT hot stage controlled by a Mettler Toledo FP80 central processor
(Mettler-Toledo SAE, Barcelona, Spain). The samples used for the POM analysis were placed between
two glass slides and melted on the hot stage at 100 °C at 40 °C min~", held there for 5 min to erase any
thermal history, and then cooled to 25 °C at 2 °C min~!.

3. Results

3.1. Non-Isothermal Crystallization and Melting Behavior

The non-isothermal crystallization thermograms at various cooling rates, ranging from 5 to 25 °C
min~!, for neat PCL, PCL/APIBPOSS, and PCL/APIOPOSS nanocomposites are shown in Figure 1. From
these crystallization exotherms, the temperature at 1% relative crystallinity (T 1), the temperature at
99% relative crystallinity (T0.99), and the temperature at the maximum crystallization rate (T¢p) were
obtained. T¢( 1, used to represent the beginning of the crystallization process, Tg.99, used to represent
the ending of the crystallization process for PCL and nanocomposites, are reported in Table 1, while
Figure 2 shows T, as a function of ¢.

As the cooling rate increases, the crystallization exotherm broadens and shifts to lower temperatures
for all samples, including neat PCL and POSS-based nanocomposites. With increasing of cooling rate,
Tc0.01, Tep, and Teg.g9 shift gradually to the lower temperatures, indicating that the lower the cooling
rate is, the earlier the crystallization starts. At a higher cooling rate, the activation of nuclei occurs at
lower temperatures, whereas when the samples are cooled at lower scanning rates, there is enough
time to activate nuclei and crystallization occurs at higher temperatures. When cooled at a low rate,
the melt polymer chains have enough response time to crystallize, whereas when the samples are
cooled fast, the motion of polymer molecules are not able to follow crystallization temperature.



Polymers 2019, 11, 1719

e
Endo <— Heat Flow (W/g) S

40f22

-~
Endo <— Heat Flow (W/g) &

(a)[rcL
20
z
z
=
=
=
<
=
=]
=
=
=
15 20 25 30 35 40 45
Temperature (°C)
PCL/APIBPOSS-2 - (¢)[pcL/apiBPOSS-5 3 (d)|pcr/apiBross-10
—sCain’ -& e 5C min” /\— . e 1/\_
——10°C min I 8|—wcmn c SR A
——15°C min”' —— ~— 2 [—15Cmin" z —— 15°C min" l
21 ] < S < 5
——20°C min z [ 20°Cmin Z |——20°C min"
——25°C min”! Tempersre €C) 2 [——25°C min® 2 |—25°C min®
= = = L
o, mperstere (O
- =
P51 <
-] =
=]
S S
= =
= =
T v T T T T T T T T T T T T T T T T
15 20 25 30 35 40 45 15 20 25 30 35 40 45 15 20 25 30 35 10 45
Temperature (°C) Temperature (°C) Temperature (°C)
PCL/APIOPOSS-2 (f) PCL/APIOPOSS-5 (g) PCL/APIOPOSS-10
|[——5°C min" e |—5°C min" g |=——5°C min"
20— 10°C min” 20 [——10°C min
2 [—1sc min® Z [——15°C min
< < :
z [——20°C min” g [ Cmi
2 [——25°C min” 2 [——25°Cmin
= =
- -
g S
T =
)
i E
= =
= =
T T T T T T T T T T T T T T T v T T
15 20 25 30 35 40 45 15 20 25 30 35 40 45 15 20 25 30 35 40 45

Temperature (°C) Temperature (°C)

Temperature (°C)

Figure 1. DSC traces of (a) PCL, (b—d) PCL/APIBPOSS nanocomposites, and (e-g) PCL/APIOPOSS

nanocomposites during cooling at various cooling rates.
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Table 1. Differential scanning calorimetry (DSC) results of pure poly(e-caprolactone)
(PCL), PCL/aminopropylisooctyl polyhedral oligomeric silsesquioxanes (APIBPOSS), and
PCL/aminopropylisobutyl polyhedral oligomeric silsesquioxanes (APIOPOSS).

Sample (0] Teo.01 T0.99 A?C AH. Tmp Tmp - Tcp AHpy, CRC CRP
(°Cmin1) (We] (@] (min)  (Jg™) (@] (@] Jg (min~1) (°C)
5 38.92 31.38 1.508 37.34 55.96 22.31 40.94
10 36.70 27.38 0.932 37.20 55.65 24.95 40.22
PCL 15 35.41 23.86 0.770 37.45 55.45 26.69 40.82 3.270 0.0854
20 34.33 20.43 0.695 37.43 55.34 27.97 40.09
25 33.73 18.35 0.615 37.45 55.20 28.55 40.20
5 39.03 31.48 1.510 36.85 56.05 20.59 41.08
10 36.97 28.66 0.831 35.72 55.75 22.68 41.50
PCL/APIBPOSS-2 15 35.68 24.89 0.719 36.25 55.57 24.18 40.80 3.806 0.1260
20 34.55 23.39 0.558 36.40 55.47 25.35 41.02
25 33.61 21.59 0.481 36.31 55.33 26.21 40.28
5 39.21 31.83 1.476 35.04 56.10 20.21 39.29
10 37.06 29.04 0.802 35.54 55.82 22.04 37.24
PCL/APIBPOSS-5 15 35.74 26.28 0.631 35.95 55.68 23.44 37.09 4.171 0.1684
20 34.43 24.67 0.488 35.74 55.56 24.46 37.93
25 33.63 23.58 0.402 35.77 55.51 25.34 36.98
5 39.37 27.23 2.428 33.29 56.39 22.43 38.64
10 36.93 27.44 0.949 32.76 56.18 24.68 37.87
PCL/APIBPOSS-10 15 35.59 23.51 0.805 32.86 56.13 26.22 37.52 3.334 0.1029
20 34.30 21.19 0.656 32.94 55.95 27.32 37.54
25 33.43 18.54 0.596 32.67 55.75 28.28 37.25
5 38.13 29.52 1.722 37.60 56.13 22.90 38.46
10 35.84 26.29 0.955 36.91 55.74 24.28 38.62
PCL/APIOPOSS-2 15 34.44 24.14 0.687 36.81 55.6 25.48 37.95 4.655 0.1463
20 33.03 21.26 0.588 36.63 55.43 26.50 37.96
25 32.21 20.56 0.466 36.41 55.34 27.44 38.36
5 38.25 27.41 2.168 36.74 56.02 24.07 37.03
10 35.83 24.56 1.127 36.59 55.72 26.51 37.10
PCL/APIOPOSS-5 15 34.25 21.54 0.847 36.32 55.50 28.15 37.47 3.512 0.0897
20 33.16 19.28 0.694 36.57 55.28 29.24 37.34
25 32.39 17.82 0.583 36.53 55.12 30.13 37.15
5 38.52 28.09 2.086 36.87 55.78 23.28 37.66
10 36.36 24.44 1.192 36.52 55.4 25.73 37.78
PCL/APIOPOSS-10 15 34.92 2141 0.901 36.22 55.2 27.55 38.36 3.236 0.0814
20 33.93 19.33 0.730 36.24 55.05 29.11 37.54
25 32.94 17.08 0.634 35.75 54.98 30.35 37.19

The DSC curves of the PCL/APIBPOSS nanocomposites, in addition to the exothermic peak
corresponding to the PCL crystallization, exhibit another small exothermic transition in the temperature
range 41-47 °C (inset of Figure 1b—d) that corresponds to the APIBPOSS crystal formation. As we
previously reported [22], APIBPOSS crystallizes and agglomerates in PCL matrix due to the POSS-POSS
interactions. Due to the amorphous nature of APIOPOSS, the DSC curves of PCL/APIOPOSS composites
exhibit only the exothermic crystallization peak of PCL.

The incorporation of APIBPOSS into the PCL matrix leads to an increase in T¢p of the
PCL/APIBPOSS nanocomposites (Figure 2). The difference between T¢p values of neat PCL and
those of APIBPOSS-based nanocomposites increases as cooling rate increases. However, the addition
of APIOPOSS to the PCL matrix leads to an increase in T, of the nanocomposite with 2 wt % POSS
loading and to a decrease in T, with POSS loadings greater than 2 wt %. These results suggest that
APIBPOSS increases the crystallization rate of PCL, while the crystallization rate of PCL upon the
addition of APIOPOSS depends on POSS loading. The nucleation of PCL crystals is retarded by the
addition of APIOPOSS nanoparticles at a concentration equal or higher than 5 wt %. The addition
of POSS nanoparticles as fillers into PCL shifts the crystallization peak temperature to higher values
because spherulites are created around the added particles and they act as nucleation centers, making
the molecular chains of PCL easier to crystallize and increasing the crystallization rate.
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The total crystallization time (At.) for neat PCL and the nanocomposite is calculated as

Too1 =T
At, = o.md) 0.9 )

where ¢ is the non-isothermal constant cooling rate, which decreases as cooling rate increases (Table 1)
for both pristine PCL and PCL/POSS nanocomposites. This result implies that as the cooling rate
increases, the crystallization process becomes faster and the process takes less time to complete. For
example, the crystallization period of PCL sample at a cooling rate of 5 °C min™! is about 1.51 min,
whereas it shortens to 0.69 min when the cooling rate is increased to 20 °C min~!. Crystallization of
PCL and its nanocomposites occurs at a higher temperature and over a larger time with decreasing
cooling rate, suggesting that the crystallization is controlled by nucleation process [23]. In addition,
the values of At are reduced for the PCL/APIBPOSS nanocomposites with 2 and 5 wt % POSS as
compared to the pure PCL for all cooling rates, whereas the PCL/APIOPOSS nanocomposite with 2 wt
% POSS exhibits shorter crystallization time than PCL at cooling rates higher than 5 °C min~!. The
lowered value for the At. implies that the time required for the crystallization process to be completed
is somewhat lower for the nanocomposites, and suggests a decreasing time for the growth of the
crystals in the presence of POSS and possibly indicates the effect of significantly increased nucleation
density in the POSS nanocomposites. POSS nanoparticles can act as nucleation centers, favoring the
process and increasing the speed of crystal formation.

The width at half height of the exothermic peak of crystallization, AW, is another useful parameter
to describe the non-isothermal crystallization behavior of PCL and its nanocomposites. The AW
denotes the distribution of the forming crystal dimensions, that is, the smaller the AW, the narrower
the distribution. It can be seen (Figure 3) that the distribution of the crystal dimensions is in the
order of AWpcr apBross < AWpcr, < AWpcr/apioross at a given cooling rate. The AW increases with
the increasing cooling rate for PCL and PCL/POSS nanocomposite, which suggests that increasing
supercooling results in a broader distribution of the crystal dimensions. Corresponding to the same
cooling rate, the crystallite size distribution of the PCL/APIBPOSS-2 nanocomposite is the most uniform.

124 —=—rcL

—e— PCL/APIBPOSS-2

1 —— PCL/APIBPOSS-5

104 —¥—PCL/APIBPOSS-10
—<&— PCL/APIOPOSS-2

1 —— PCL/APIOPOSS-5

8 PCL/APIOPOSS-10

Cooling rate (°C/min)

Figure 3. Crystallization peak width at half maximum as a function of cooling rate for PCL and
PCL/POSS nanocomposites.

From the DSC thermograms of the cooling process, the temperature at the intercept of the tangent
at the base line and the high temperature side of the exotherm peak was obtained (TY) [24,25]. The
parameter (T} —T¢p) is a measure of the overall rate of crystallization; lower values of (T — T¢p) suggest
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faster crystallization. From Figure 4, it can be seen that the nanocomposites containing 5 and 10 wt %
APIOPOSS exhibit the slower crystallization rate, while the nanocomposites containing APIBPOSS
and 2 wt % APIOPOSS exhibit faster crystallization as compared with neat PCL.

—=—PCL
10 4 —e— PCI/APIBPOSS-2
| —~—PcL/APIBPOSS-5
—¥— PCL/APIBPOSS-10
§ { —¢—PCL/APIOPOSS-2
~ —p— PCL/APIOPOSS-5
QU PCL/APIOPOSS-10
S
2 0 - ;
o L
E"i \‘\
i - X >
- > L
&~ 4
21 . D4 3 —e
1 L I v 1 v I ) T
5 10 15 20 25

Cooling rate ("C/min)
Figure 4. (T, — Tcp) parameter as a function of cooling rate for PCL and PCL/POSS nanocomposites.

Table 1 also shows the heat of crystallization (AH,). It is observed that the crystallization enthalpy
is affected by both the addition of POSS and cooling rate. The values of AH. obtained for both neat
PCL and PCL/POSS nanocomposite decrease with increasing the cooling rate, and the addition of POSS
leads to a decrease in AH,, indicating that the crystallinity of PCL is affected by the incorporation
of POSS.

The thermograms for the second heating process are shown in Figure 5. The melting temperature
(Tmp) and the melting enthalpy (AHm,) were evaluated from these curves. The results of the melting
behavior following each of the non-isothermal crystallization experiments are reported in Table 1.

The melting endotherm of neat PCL exhibits a shoulder on the higher temperature side, and it
becomes more obvious as the cooling rate increases. Similar behavior is observed for the PCL/POSS
nanocomposites. The melting peak and the shoulder at the higher temperature shift gradually toward
lower temperature with increasing cooling rate, and the endothermic curves broaden. More perfect
crystals are formed when the melt is cooled at low cooling rate, resulting in a higher melting peak.
When the cooling rate is increased, the polymer chains could not be correspondingly rearranged into
the lattice in such a short time, resulting in less perfect crystals that melt at a lower temperature. These
crystals, then during heating recrystallize and reorganize into more perfect and stable crystals that
melt at higher temperatures. The double endothermic peak can be attributed to the melting of the
crystals that recrystallize during the heating process.

The Tip of the peaks at the lower and higher temperatures (Table 1 and Figure 6) for the
PCL/APIBPOSS and PCL/APIOPOSS nanocomposites are almost unchanged in comparison with the
neat PCL at all cooling rates. The AHy, value for PCL is insensitive to the cooling rate at the studied
range, whereas for PCL/APIBPOSS and PCL/APIOPOSS nanocomposites this value decreases with
increasing the cooling rate, and the addition of POSS leads to a decrease in AHy, as compared with
neat PCL.
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Figure 5. DSC thermograms of melting of (a) PCL, (b—d) PCL/APIBPOSS nanocomposites, and
(e-g) PCL/APIOPOSS nanocomposites obtained during heating at 10 °C min~! after non-isothermal
crystallization at the indicated cooling rates.
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Figure 6. DSC thermograms of melting of (a) PCL, (b) PCL/APIBPOSS-2, (c) PCL/APIBPOSS-5,
(d) PCL/APIBPOSS-10, (e), PCL/APIOPOSS-2 (f) PCL/APIOPOSS-5, and (g) PCL/APIOPOSS-10
nanocomposites obtained during heating at 10 °C min~! after non-isothermal crystallization at
the indicated cooling rates.
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Figure 7 shows the extent of crystallinity (Xc) calculated by the following equation:

AH,,

Xe = 0 Yo W fier
AHy, X |1 - —55

x 100 )

where AHy, is the specific heat of fusion of the sample, AHY, is the enthalpy of fusion of a perfect PCL
crystal (142 J/g [26]), and % wtgyr is the total weight percentage of nanofiller.

49 | —s—PCL
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Figure 7. Degree of crystallinity as a function of cooling rate for PCL and PCL/POSS nanocomposites.

The crystallinity of PCL and its POSS-based nanocomposites are independent of the cooling
rate. The addition of APIBPOSS and APIOPOSS in the PCL results in a significant reduction in
the crystallinity, and the higher the POSS loading the lower the degree of crystallinity. In the case
of APIBPOSS nanocomposites, at 10 wt % APIBPOSS content, the crystallinity drops from 28 to
12% as compared to neat PCL. A more pronounced reduction is observed for APIOPOSS-based
nanocomposites: in the presence of 10 wt % APIOPOSS, the crystallinity falls to 5%.

The crystallinity of the polymer matrix in the presence of nanofillers can increase, decrease,
or remain similar depending on the effect of the filler. If the nanofiller acts as a nucleating agent,
either an enhancement or maintenance of crystallinity is expected, whereas a decrement is observed
if the nanofiller hinders the mobility of the polymer chains. The decrease in crystallinity is not the
expected behavior for APIBPOSS-based nanocomposites since the above results suggest that it acts as
nucleating agent. The liquid APIOPOSS exhibits higher compatibility with PCL than the crystalline
solid APIBPOSS, which was attributed to the more thermodynamically favorable interactions between
PCL and APIOPOSS [22]. The better compatibility leads to better dispersion; hence, smaller size
aggregates were found in the case of PCL/APIOPOSS blends. Crystalline aggregates of APIBPOSS
molecules are present in PCL/APIBPOSS nanocomposites. The incorporation of APIOPOSS results
in a retarded nucleation of PCL crystals at POSS contents higher than 2 wt %, and a remarkable
reduction in the degree of crystallinity. Pracella et al. [18] reported similar results in their study of the
crystallization behavior of nanocomposites of isotactic polypropylene (PP) with POSS having different
alkyl substituents. They found that the liquid isooctyl-POSS displayed a very fine filler dispersion
compared with the crystalline solids octamethyl-POSS and octaisobutyl-POSS, lower crystallization
rate than PP and other PP/POSS nanocomposites, and no nucleation activity. They ascribed their
results to the high dispersion of isooctyl-POSS as liquid phase component. Heeley et al. [20] prepared
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polyethylene/POSS nanocomposites bearing different long linear alkyl groups, all POSS molecules
being crystalline solids. They observed that there was some aggregation of POSS crystals in the polymer
matrix but, as the alkyl-chain length increased, the POSS dispersed into the amorphous domains of the
polyethylene. From the crystallization behavior of their blends, they conclude that regardless of the
dispersion degree in the polymer matrix, all POSS molecules acted as nucleating agents, and increased
the crystallinity and crystallization kinetics when compared with pure polyethylene. Taking into
account the results of our study and the studies above mentioned, it could be concluded that the liquid
nature of APIOPOSS and better compatibility with PCL are responsible for the different crystallization
behavior of the PCL/APIOPOSS nanocomposites compared to those containing APIBPOSS. The
reduction in the overall crystallinity with increasing POSS content can be explained by the formation
of larger aggregates, which hinder the transport of the polymer chains from the melt toward the
crystallization growth front.

Nucleation and retarded polymer chain mobility are the two factors that influence and compete
in the crystallization. The nucleation effect prevails at low amino-POSS loading, increasing the
crystallization rate, whereas as the POSS content increases, the retarded mobility of the polymer chains
becomes more important and dominates over the nucleation, and the rate of crystallization decreases.

Under non-isothermal conditions, the crystallization process of PCL is hindered by the
incorporation of both amino-POSS derivatives, with the hindrance more pronounced in the presence
of APIOPOSS.

For non-isothermal crystallization, the relative degree of crystallinity, Xr, which is a function of
temperature, is defined as

Jy. (dH/dT) dT
Xr =

(3)
Jpo (He/aT) T

where Ty and T represent the initial and the end of crystallization temperature, respectively; T is any
temperature in the crystallization process and dH. represents the differential crystallization enthalpy
change in temperature range of dT.

Figure 8 shows the relative crystallinity (X7) as a function of temperature for PCL, PCL/APIBPOSS,
and PCL/APIOPOSS nanocomposites. It can be seen that all curves in Figure 8 have approximately the
same reversed sigmoidal shapes. The higher the cooling rate, the lower the temperature to initiate the
crystallization. There is no enough time to activate nuclei at higher temperatures when crystallized at
higher cooling rates, and nucleation occurs at lower temperatures.

The data of X7 can be transformed into X; using the following equation:

 To-T
¢

where T is the temperature at the crystallization time ¢, and ¢ is the cooling rate. The plots of X; as
a function of t for neat PCL, PCL/APIBPOSS, and PCL/APIOPOSS nanocomposites are presented in
Figure 9. All the curves have similar sigmoidal shapes, and the lower the cooling rate is, the larger
the time range over which the crystallization occurs, implying that the crystallization is controlled
by the nucleation process. Crystallization of PCL and PCL/POSS nanocomposites occurs at a higher
temperature and is completed in a longer time under a lower cooling rate. Three distinct periods
for these S-shaped crystallization curves can be observed: an induction period corresponding to the
primary nucleation process that takes place in the homogeneous melt, followed by a rapid increase
of the crystallization where the crystal growth occurs at the crystal-melt interface, and ultimately a
constant value of crystallinity is reached because of the spherulite impingement in the later stage of
crystallization. During the early stage, fast primary crystallization happened, and in the later stage
slow secondary crystallization occurred. At higher cooling rates, the transition between the primary
and secondary crystallization regions was less pronounced.

t

(4)
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Figure 8. Development of relative crystallinity with temperature for non-isothermal crystallization

of: (a) PCL, (b—d) PCL/APIBPOSS nanocomposites, (e-g) PCL/APIOPOSS nanocomposites at various
cooling rates.

From Figure 9, the half time of crystallization (t;) can be taken directly, which is the change
in time from the beginning of crystallization to the time at which X; is 50%. The inverse value of
t1 denotes the bulk crystallization rate and the lower the 1/t;5 value, the slower the crystallization.
Figure 10 presents the values of reciprocal of crystallization halftime as a function of cooling rate.

The 1/t values depend on the cooling rate, increasing with increasing cooling rate, indicating
that non-isothermal crystallization rate of PCL and nanocomposite becomes faster with increasing
cooling rate. When cooling occurs at a higher rate, quick freezing of chain mobility takes place. The
crystallization rate is higher for all PCL/APIBPOSS samples and PCL/APIOPOSS at 2 wt % loading
than neat PCL, and lower for PCL/APIOPOSS containing 5 and 10 wt % POSS. The crystallization
processes of PCL/APIBPOSS nanocomposites are finished in shorter time than that of pure PCL at
cooling rates > 10 °C min~!, while at cooling rates lower than 10 °C min~!, PCL and its nanocomposites
exhibit similar 1/t values. These results indicate that APIBPOSS nanoparticles could accelerate the
crystallization process of PCL, signifying that APIBPOSS acts as nucleation agent; therefore, time
needed for crystallization shortens. In the PCL/APIOPOSS nanocomposites, the sample containing
2 wt % behaves as APIBPOSS-based nanocomposites, whereas in the nanocomposites containing 5
and 10 wt % APIOPOSS, the crystallization process completion takes a longer time than that of pure
PCL. The presence of APIOPOSS at 5 and 10 wt % loading obstructs the crystal growth process of PCL,
hindering the crystallization of PCL.
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Figure 9. Development of relative crystallinity with time for non-isothermal crystallization of (a) PCL,
(b—-d) PCL/APIBPOSS nanocomposites, (e-g) PCL/APIOPOSS nanocomposites at various cooling rates.
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Figure 10. Reciprocal halftime of crystallization at different cooling rates for PCL and PCL/POSS
nanocomposites.

In order to quantitatively compare non-isothermal crystallization rates obtained for neat PCL
and PCL/POSS nanocomposites, two approaches can be used: (1) the crystallization rate coefficient
(CRQC) [27] and (2) the crystallization rate parameter (CRP) [28]. The CRC can be determined from
the slope of a line by plotting the cooling rate against Try, —T¢p. The higher the CRC value, the faster
the crystallization rate. The CRP can be determined from the slope of a line by plotting 1/t;, versus
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cooling rate (Figure 10). The faster the crystallization rate, the higher the slope. The values or CRC and
CRP are summarized in Table 1. The CRC value for PCL (3.271 min~!) is lower than that of PCL/POSS
nanocomposites containing 2, 5, and 10 wt % APIBPOSS and 2 and 5 wt % APIOPOSS (3.806, 4.171,
3.333, 4.655, and 3.511 min~!, respectively), indicating that crystallization rate increases when adding
APIBPOSS and APIOPOSS at these concentrations. However, the CRC value of PCL/APIOPOSS-10
nanocomposite is lower than that of PCL, indicating that crystallization rate decreases when adding 10%
APIOPOSS. The CRP value for PCL (0.0854 °C~1) is lower than that of PCL/APIBPOSS nanocomposites
(0.1260, 0.1684, and 0.1029 °C~!) and PCL nanocomposites containing 2 and 5 wt % APIOPOSS
(0.1463 and 0.0897 °C~!) suggesting that these materials are more crystallizable than PCL. The PCL
nanocomposite containing 5 wt % APIBPOSS exhibits the highest CRC and CRP values among the
three PCL/APIBPOSS composites, indicating that this content is the most effective in accelerating the
crystallization rate of PCL. The nanocomposite containing 2 wt % APIOPOSS exhibits the highest CRC
and CRP values among the three PCL/APIOPOSS composites. Whereas, increasing the APIOPOSS
content beyond 5 wt % retards the crystallization rate. The decrease in crystallization rate with an
increase in APIOPOSS content can be attributed to the restrictions imposed by nanoparticles on the
mobility of PCL chains, which interfere with the growth of crystals during the crystallization process.

3.2. Non-Isothermal Crystallization Kinetics

The non-isothermal crystallization kinetics analysis is of practical importance since it can reflect
the crystallization behavior of polymers under processing conditions. Several models have been
proposed to study the non-isothermal crystallization of polymers.

3.2.1. Avrami Analysis

The Avrami model assumes that crystallization occurs under a constant temperature and expresses
the relationship between X; and crystallization time by the following equation:

1- Xt = exp(—Zt tn> (5)

where Z; is the rate parameter and 7 is the Avrami exponent, which describes the nucleation
(homogeneous or heterogeneous) and growth (rod, disc, sphere, sheaf, etc.) processes in non-isothermal
crystallization. Equation (5) is converted to the following equation

In{-In[1 - X;]} = nint +1InZ; (6)

In the case of non-isothermal crystallization, nucleation depends on both crystallization time and
temperature; however, the Avrami model assumes that only nucleation is a function of crystallization
time. To overcome this shortcoming, Jeziorny suggested that the value of rate parameter Z; should be
adequately corrected introducing ¢ [29]. If ¢ is assumed to be constant or approximately constant, the
final form of the rate parameter (Z.) that characterizes the kinetics of non-isothermal crystallization is

given as follows:

InZ
InZ, = % @)

Drawing the straight line corresponding to In{—In[1 — X;]} versus In t, the value of the Avrami
exponent 7 and the rate parameter Z; can be determined from the slope and the intercept, respectively.
Figure 11 shows the double logarithm plots for the non-isothermal process of the PCL and PCL/POSS
nanocomposites, respectively.
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Figure 11. Avrami plots of In[-In(1-X{)] versus In f for non-isothermal crystallization of (a) neat PCL,
(b—-d) PCL/APIBPOSS nanocomposites, and (e-g) PCL/APIOPOSS nanocomposites.

The curves of neat PCL and PCL/POSS nanocomposites show similar tendencies and indicate
that the crystallization of the samples takes place through two main stages involving the primary and
secondary crystallization processes. The primary crystallization is comprised of two different stages,
indicating the complex process of the crystallization of PCL/POSS nanocomposites.

Different values of n and the rate parameter (Z.) for the various cooling rates and different stages
of crystallization have been determined and compiled in Table 2.

It must be taken into account that in non-isothermal crystallization, the values of Z. and n do not
have the same respective physical meaning as in isothermal crystallization, due to the constant change
of temperature under non-isothermal conditions. Nevertheless, these values can provide an insight
into the kinetics of non-isothermal crystallization for PCL and its POSS-based nanocomposites. 17 and
Zq, and ny and Zy, correspond to the first stage of the primary crystallization (which corresponds
to a relative conversion of 1-30%, being a little different for each curve), and to the second one
(which corresponds to a relative conversion between 30 and 80%, being a little different for each
curve), respectively. During the first stage of the primary crystallization, all n were more than 2
(Table 2), indicating that the crystallization growth likely occurred between two-dimensional and
three-dimensional patterns. For PCL, all n; values are between 2.5 and 3, and are not much affected
by the presence of amino-POSS. During the second stage, the high 1, values (> 3) may be due to the
combination of other complex processes. n, values are higher than n; values, suggesting that more
complicated nucleation mechanism and geometry could be predominant as the crystallization process
proceeds. In the case of PCL, n, values are not significantly affected by the cooling rate.
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Table 2. Non-isothermal crystallization kinetics based on Avrami analysis for PCL and PCL/POSS

nanocomposites.
Sample ¢ (CCmin1) nq Z4 r? ny Zo r?
5 3.06 0.735 0.999 5.38 0.694 0.999
10 2.56 0.999 0.997 5.38 1.148 0.999
PCL 15 2.81 1.058 0.998 5.47 1.212 0.999
20 2.45 1.066 0.998 5.20 1.220 0.998
25 3.07 1.081 0.999 5.36 1.213 0.999
5 2.67 0.805 0.995 4.67 0.950 0.997
10 2.67 1.027 0.993 5.05 1.299 0.993
PCL/APIBPOSS-2 15 2.78 1.066 0.993 6.03 1.372 0.991
20 2.71 1.079 0.994 6.55 1.411 0.989
25 2.57 1.073 0.993 7.02 1.425 0.993
5 294 0.803 0.995 454 0.966 0.993
10 2.74 1.046 0.989 5.92 1.462 0.991
PCL/APIBPOSS-5 15 2.84 1.082 0.990 7.01 1.549 0.991
20 2.80 1.117 0.987 6.90 1.563 0.989
25 2.88 1.110 0.988 7.60 1.551 0.989
5 2.48 0.624 0.997 3.95 0.804 0.995
10 2.55 1.023 0.999 5.51 1.212 0.998
PCL/APIBPOSS-10 15 2.77 1.057 0.998 6.67 1.252 0.993
20 2.59 1.069 0.998 522 1.256 0.991
25 2.68 1.061 0.993 5.67 1.247 0.993
5 2.45 0.688 0.996 6.27 0.690 0.998
10 2.44 0.942 0.992 7.74 1.367 0.997
PCL/APIOPOSS-2 15 2.74 1.036 0.993 7.62 1.472 0.995
20 2.30 1.040 0.990 6.26 1.414 0.995
25 2.43 1.055 0.992 6.15 1.364 0.997
5 2.55 0.711 0.995 3.40 0.738 0.999
10 2.70 0.951 0.995 423 1.047 0.999
PCL/APIOPOSS-5 15 2.66 0.998 0.997 4.60 1.125 0.999
20 2.51 1.032 0.997 4.50 1.165 0.999
25 2.62 1.047 0.998 4.59 1.163 0.999
5 2.67 0.770 0.998 2.69 0.785 0.999
10 2.75 0.996 0.997 3.29 1.038 0.999
PCL/APIOPOSS-10 15 2.74 1.052 0.997 3.46 1.103 1.000
20 2.81 1.070 0.998 3.55 1.117 1.000
25 2.75 1.076 0.998 347 1.118 1.000

3.2.2. Combined Ozawa—Avrami Method

Ozawa [30] extended the Avrami equation to the non-isothermal condition by replacing the time
variable by a cooling rate and derived a kinetic equation as follows:

1-X; = exp[%] (8)
where X; is the relative crystallinity, K(T) represents the cooling function, which is related to the overall
crystallization rate and indicates the speed at which crystallization occurs, ¢ is the cooling rate, and m
is the Ozawa exponent depending on the crystal growth and nucleation mechanism. Ozawa assumes
that there is no secondary nucleation kinetics and no volume changes during the crystallization process.

Mo and coworkers [31] suggested a novel kinetic model by combining the Avrami Equation (5)
with the Ozawa Equation (8):

Inp =InF(T) —alnt )
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where the parameter F(T) = [K(T)/K] I/m refers to the value of the cooling rate chosen at a unit
crystallization time, when the system has a certain degree of crystallinity. The smaller the value of F(T),
the higher the crystallization rate. The parameter « is the ratio of the Avrami exponent n to Ozawa
exponent m (x = n/m). According to Equation (9), a straight line with an intercept of In F(T) and a slope
of —a should be obtained by plotting In ¢ against In ¢, at a given degree of crystallinity. As it is shown
in Figure 12, plotting In ¢ versus In ¢, at a given degree of crystallinity, yields a good relationship. The
values of F(T), «, and correlation coefficients r? are listed in Table 3.

(d) PCL/APIBPOSS-10

- X=10%
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.
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Figure 12. Plots of In ¢ versus In t during the non-isothermal crystallization process of
(a) PCL, (b) PCL/APIBPOSS-2, (c) PCL/APIBPOSS-5, (d) PCL/APIBPOSS-10, (e) PCL/APIOPOSS-2,
(f) PCL/APIOPOSS-5, and (g) PCL/APIOPOSS-10 at different relative degree of crystallinity.

The values of F(T) increases with increasing the relative crystallinity, indicating that at unit
crystallization time, a higher cooling rate should be used to obtain a higher degree of crystallinity.
In addition, the value of F(T) for all PCL/APIBPOSS and PCL/APIOPOSS-2 nanocomposites are
generally smaller than those for neat PCL, suggesting that crystallization rate of nanocomposites
containing APIBPOSS and 2 wt % of APIOPOSS is higher than that of PCL. However, values of
F(T) for PCL/APIOPOSS nanocomposites containing 5 and 10 wt % POSS are slightly higher than
that of neat PCL, indicating that the crystallization rate for these nanocomposites is slower than that
for PCL. These results are in good agreement with those obtained from t,. These results suggest
that the presence of APIBPOSS nanoparticles acts as nucleating sites for the dynamic crystallization
process of PCL. The values of « show a slight variation at different relative crystallinities for PCL and
its nanocomposites, indicating that the method of Mo and co-workers can effectively describe the
non-isothermal crystallization kinetic of PCL and PCL/POSS nanocomposites. The advantage of this
method is that it correlates the cooling rate to temperature, time, and morphology, that is, nucleation
and growth mechanism of crystals.
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Table 3. The non-isothermal crystallization kinetic parameters based on Mo model for PCL and
PCL/POSS nanocomposites.

Sample Xt (%) 10 20 30 40 50 60 70 80 90

o 1.39 1.38 1.36 1.34 1.34 1.34 1.34 1.37 1.43

PCL K(T) 3.39 4.77 5.68 6.30 6.85 7.32 7.81 8.42 9.42
2 09849 09899 09911 09892 09931 09932 0.9938 0.9936  0.9925

e 1.44 1.38 1.34 1.31 1.29 1.29 1.29 1.31 1.37

PCL/APIBPOSS-2 F(T) 2.58 3.43 3.93 4.34 4.69 5.07 5.52 6.10 7.05
2 09958  0.9966 09971  0.9975 0.9978 09981  0.9982  0.9982  0.9967

1oa 1.18 1.13 1.12 1.11 1.11 1.12 1.13 1.16 1.23

PCL/APIBPOSS-5 F(T) 3.09 3.79 4.15 443 4.68 4.95 5.29 5.77 6.61
r2 0.9907  0.9928 09935 0.9938 0.9951 09948 0.9956  0.9962  0.9953

o 1.53 1.43 1.33 1.28 1.26 1.26 1.28 1.32 1.38

PCL/APIBPOSS-10 F(T) 2.53 3.82 5.09 5.78 6.27 6.70 7.15 7.77 8.88
r? 09814 0.9889 09933 09947 0.9946 09933  0.9927 0.9917  0.9896

102 1.05 1.01 1.01 1.01 1.03 1.04 1.07 1.11 1.17

PCL/APIOPOSS-2 F(T) 4.54 5.42 5.82 6.09 6.34 6.62 6.98 7.49 8.39
r? 09942 09961 09969 09969 0.9971 09969  0.9968 0.9973  0.9971

o 1.37 1.33 1.29 1.26 1.242 1.23 1.229 1.24 1.26

PCL/APIOPOSS-5 F(T) 3.93 5.27 6.27 7.09 7.82 8.53 9.25 10.12 11.39
r? 09916  0.9955 09969  0.9982  0.9982 09987  0.9987  0.9990  0.9990

o 1.38 1.39 1.37 1.34 1.32 1.29 1.28 1.28 1.29

PCL/APIOPOSS-10 F(T) 3.39 4.65 5.71 6.72 7.70 8.67 9.66 10.76 13.33

2

0.9897  0.9937 09955  0.9967 0.9970 09972 09970 0.9970  0.9966

-

3.2.3. Crystallization Activation Energy

For a process that occurs on cooling, reliable values of the effective energy barrier for the process
can be obtained by the differential iso-conversional method of Friedman [32]. The Friedman equation
is expressed as:

A Ey,

Xt

(10)

dX
In| — = constant —
dt Xt

where dX/dt is the instantaneous crystallization rate as a function of time at a given conversion X, and
AEy;y is the effective energy barrier of the process at a given conversion X. The relative crystallinity
function of temperature X(T), obtained from the experimental data shown in Figure 1, needs to be
converted to the relative crystallinity function of time X(t) by transforming the horizontal temperature
axis into time. Once the function is obtained, it is differentiated with respect to time to obtain dX/d¢.
Furthermore, by selecting appropriate degrees of crystallinity, the values of dX/dt at a specific X; are
correlated to the corresponding crystallization temperature at this Xy, i.e., Tx;. Finally, by plotting the
left hand side of Equation (10) with respect to 1/Tx;, a straight line must be obtained with a slope equal
to AExt/R. The dependence of the effective activation energy AE, on the relative degree of crystallinity
for PCL and PCL/POSS nanocomposites is shown in Figure 13.

The crystallization activation energy is closely related to crystallization process, and can exhibit
the crystallization ability; high AE, value implies low crystallization ability. For all the samples studied,
the activation energy is negative, indicating that the rate of crystallization increases with decreasing
temperature. In the case of PCL, AE, is almost constant up to a X; of 30%, and then increases with
the degree of crystallinity up to an X; of 80%, where the activation energy value attains a maximum
value, and then decreases slightly as X; further increases. The AE, values for PCL crystallization
were between —140 and —67 k] mol™! in the X; range from 10 to 90%, which are similar to those
reported in the literature and obtained by the Friedman isoconversional method [33-35]. AE, value
for PCL/APIBPOSS containing 2 and 5 wt % POSS increases monotonically with increasing the extent
of the relative crystallization (X}), indicating that crystallization occurs much easier at lower relative
crystallinity. However, the composite containing 10 wt % APIBPOSS decreases as X; increases from
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10 to 30%, then remains constant in the X; range from 30 to 70%, and finally increases notably as X
further increases. PCL/APIBPOSS composites show lower activation energy than that of neat PCL
for a conversion range between 10 and 70%, indicating that the crystallization ability of PCL in these
nanocomposites is higher than neat PCL, due to heterogeneous nucleation effect in the beginning of
the process. For PCL/APIOPOSS nanocomposites, only the sample containing 2 wt % POSS exhibits
lower AE, values than neat PCL in the relative crystallinity range from 10 to 60%, whereas activation
energy values of those composites with 5 and 10 wt % APIOPOSS are lower than that of neat PCL in
the conversion range from 50 to 90%. The AE, values of PCL/APIBPOSS composites are lower than
those of the PCL/APIOPOSS composites, especially in the conversion range from 30 to 70%, indicating
that the crystallization ability of PCL in the presence of APIBPOSS is higher than in the presence of
APIOPOSS. At low extent of conversion (10-20%), the composites containing 2 and 10 wt % APIBPOSS
exhibit higher AE,; values than those of the composites containing 5 wt % APIBPOSS and 2 wt %
APIOPOSS, which indicates that the first two need higher effective activation energy for initiation of
crystallization. However, at the extent of conversion higher than 30%, PCL/APIOPOSS-2 displays
AE, values higher than those of PCL/APIBPOSS composites, suggesting that the diffusion of the melt
chains to the growth front becomes more difficult in the case of the APIOPOSS composite.
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Figure 13. Dependence of the activation energy on the relative crystallinity using isoconversional
analysis for PCL and PCL/POSS nanocomposites.

3.3. XRD Characterization

Figure 14 shows the XRD patterns of neat PCL and PCL/POSS nanocomposites containing 2 wt %
POSS. Neat PCL and PCL/POSS nanocomposites exhibit the same XRD profile in the 26 range of 15-30°,
that is, the characteristic diffraction peaks at 20 = 21.34°, 21.96°, and 23.56°. However, PCL/POSS
nanocomposites show weaker diffraction peaks than PCL, and those of nanocomposite containing
APIOPOSS are the weakest. This result indicates that the incorporation of POSS nanoparticles has effect
on the degree of crystallinity of PCL, and this effect is more pronounced in the presence of APIOPOSS.
The addition of APIBPOSS and APIOPOSS leads to a reduction in the extent of crystallinity of polymer
matrix, being the reduction more remarkable when the most compatible POSS with PCL is present.
This result is in agreement with the DSC results presented in this study.
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Figure 14. XRD patterns of neat PCL and PCL/POSS nanocomposites.

3.4. Spherulitic Morphology

Morphology during non-isothermal crystallization was studied with a polarizing microscope.
Polarized micrographs of neat PCL and its nanocomposites after non-isothermal crystallization from
100 to 25 °C at a cooling rate of 2 °C min~! are shown in Figure 15. The spherulites of neat PCL are
fairly larger with the maltese cross than those of the PCL/POSS nanocomposites. Compared with pure
PCL, the spherulitic concentration in PCL/POSS nanocomposites is much higher, and the spherulites
are smaller and more imperfect. This is attributed to the larger number of heterogeneous nuclei in PCL
matrix in the presence of POSS, which reduces the sizes of spherulites.

Figure 15. POM images of (A) PCL, (B) PCL/APIBPOSS-2, (C) PCL/APIBPOSS-5, (D) PCL/APIBPOSS-10,

(E) PCL/APIOPOSS-2, (F) PCL/APIOPOSS-5, and (G) PCL/APIOPOSS-10 nanocomposites, at 38 °C
during non-isothermal crystallization from their melts at a cooling rate of 2 °C min~".
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4. Conclusions

Non-isothermal crystallization behavior and kinetics, and subsequent melting behavior of neat
PCL, PCL/APIBPOSS, and PCL/APIOPOSS composites containing 2, 5, and 10 wt % POSS were studied
by DSC. The results showed that the crystallization process was affected by the POSS type and loading.
POSS hindered the crystallization of PCL due to the confinement caused by the nanoparticles on the
PCL. The crystallization peak temperature of PCL shifted to higher temperature and the crystallization
rate increased upon incorporation of APIBPOSS at all nanoparticle loadings studied, and at 2 wt %
APIOPQOSS. Based on the CRC and CRP approaches, the highest crystallization rate was obtained by
addition of 5 wt % APIBPOSS and 2 wt % APIOPOSS. The Avrami and combined Ozawa—Avrami
methods were able to describe the non-isothermal crystallization process of PCL/POSS nanocomposites.
The activation energy for non-isothermal melt crystallization of neat PCL and PCL/POSS composites
was determined using Friedman isoconversional method. The addition of APIBPOSS caused a decrease
of AE. PCL/APIOPOSS composites required more energy for crystallization than PCL/APIBPOSS
samples. PCL/POSS nanocomposites with 2, 5, and 10 wt % of APIBPOSS loading, and 2 wt % of
APIOPOSS loading crystallized easier than PCL. Morphological analysis using POM showed that both
APIBPOSS and APIOPOSS dispersed in the PCL matrix acted as a heterogeneous nucleation centers
for the crystallization of PCL. The incorporation of POSS nanoparticles into the PCL matrix enhanced
the nucleation density of PCL and increased with an increase in the POSS content. POSS nanoparticles
played a dual role in the PCL crystallization process: first they served as a nucleating medium to
promote the nucleation process of PCL, and second they hindered the mobility of PCL chains.
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