

Supplementary File

Multi-step Enzymatic Synthesis of 1,9-Nonanedioic Acid from a Renewable Fatty Acid and Its Application for the Enzymatic Production of Biopolyesters

Hyun-Ju Lee^{1,+}, Young-Seo Kang^{1,+}, Chae-Yun Kim¹, Eun-Ji Seo¹, Sang-Hyun Pyo², and Jin-Byung Park^{1,+}

- ¹ Department of Food Science & Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- ² Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, SE-22100 Lund, Sweden
- * Correspondence: ibpark06@ewha.ac.kr; Tel.: +82-2-3277-4509
- + Hyun-Ju Lee and Young-Seo Kang contributed equally to this work.

Figure S1. Map of pCES208H36GFP-ChnDE for the ChnDE expression in *Corynebacterium glutamicum* ATCC 13032. The alcohol/aldehyde dehydrogenase genes (chnDE) of *Acinetobacter* sp. NCIMB 9871 [1] were inserted into an *E. coli/C. glutamicum* shuttle vector, pCES208H36GFP [2, 3].

Figure S2. SDS-PAGE analysis of the protein extracts of *C. glutamicum* ATCC 13032 and the recombinant *C. glutamicum* ATCC 13032 pCES208H36GFP-ChnDE. The wild type (lanes 1,2,3) and recombinant cells (lanes 4,5,6) were harvested after 12 h of cultivation in CGXII medium and fractionated to total, soluble and insoluble fractions. Lane M: marker protein; lanes 1,4: total fraction; lanes 2,5: soluble fraction; lanes 3,6: insoluble fraction.

Polymers 2019, 11

Figure S3. The specific oxidation rates of the recombinant *C. glutamicum* for the C9 to C12 ω -hydroxycarboxylic acids. The whole-cell bioconversion was initiated by adding 20 mM substrate (e.g., 9-hydroxynonanoic acid, 10-hydroxydecanoic acid, 11-hydroxyundecanoic acid, 12-hydroxydodecanoic acid), which were prepared in dimethyl sulfoxide (DMSO). The reaction was conducted in 50 mM Tris-HCl buffer (pH 8.0) containing 8 g dry cells/L and 0.5 g/L Tween 80 at 35°C, 200 rpm. The specific oxidation rates were determined based on the product concentrations at 10 or 30 min.

Polymers 2019, 11

Figure S4. HPLC chromatogram of the biopolyester, which had been produced from azelaic acid and 1,8-octanediol by the immobilized lipase B from *Candida antarctica* (i.e., GF CalB-IM (GenoFocus (Korea))) (**A**). The biopolyester, which had been isolated from the reaction medium (**B**).

(B)

 $5 \ of \ 8$

(A)

	Relevant characteristics	Reference or source
Strains		
E. coli DH5α	F- (80d lacZ M15) (lacZYA-argF) U169 hsdR17	RBC (Real Biotech)
	(r - m +) recA1 endA1 relA1 deoR	
C. glutamicum	Wild type	ATCC 13032
Plasmids		
pCES208H36GFP	6.7 kb, E. coli-C. glutamicum shuttle vector, Km ^r ,	[3]
	pCES208 derivative; PH36, eGFP	
pCES208H36GFP-	8.9 kb, pCES208 derivative; PH36, eGFP	This study
ChnDE		
Primers		
ChnE-F	5'-GAGTAGCATGGGATCCATGAACTATCCA	BamHI
	AATATACCTTTATATATCAACGGTGAG-3'	
ChnE-R	5'-TCATGCTGTTTCATATGCTAATTGAGTTG	NdeI
	CGTAATAAATTTGGTTCTGAGGT-3'	
ChnD-F	5′- AATGGAATCAAA GTT<u>AGAAAGGAGG</u>AT	HpaI
	GCACTGTTACTGCGTGACG-3'	
ChnD-R	5'- TCTAATTTTGAAGTTTCAGTTTTCGTGCA	HpaI
	TAAGCACAATACG-3'	

Table S1. Bacterial strains, plasmids, and oligonucleotides used in this study.

Restriction sites are shown in bold. The underlined nucleotides represent ribosome binding site.

References

- Iwaki, H.; Hasegawa, Y.; Teraoka, M.; Tokuyama, T.; Bergeron, H.; Lau, P.C. Identification of a Transcriptional Activator (ChnR) and a 6-Oxohexanoate Dehydrogenase (ChnE) in the Cyclohexanol Catabolic Pathway in *Acinetobacter* sp. Strain NCIMB 9871 and Localization of the Genes that Encode Them. *J. Appl. Environ. Microbiol.* 1999, 65, 5158-5162.
- 2. Park, J.-U.; Jo, J.-H.; Kim, Y.-J.; Chung, S.-S.; Lee, J.-H.; Lee, H.-H. Construction of Heat-Inducible Expression Vector of *Corynebacterium glutamicum* and *C. ammoniagenes*: Fusion of λ Operator with Promoters Isolated from *C. ammoniagenes*. J. *Microbiol. Biotechnol.* **2008**, *18*, 639-647.
- 3. Yim, S.S.; An, S.J.; Kang, M.; Lee, J.; Jeong, K.J. Isolation of Fully Synthetic Promoters for High-Level Gene Expression in *Corynebacterium glutamicum*. *Biotechnol. Bioeng.* **2013**, *110*, 2959-2969, doi:10.1002/bit.24954.