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Abstract: An erasable coating was prepared to modify material surfaces with accessibilities, including
specific conjugation, elimination of the conjugated chemistry/function, and the reactivation of a
second new chemistry/function. The coating was realized based on a vapor-deposited functional
poly-p-xylylene coating composed of an integrated 3-((3-methylamido)-disulfanyl)propanoic acid
functional group, resulting in not only chemical reactivity, but also a disulfide interchange mechanism.
Mechanically, the coating was robust in terms of the thermal stability and adhesive property on
a variety of substrate materials. Chemically, the anchoring site of carboxylic acid was accessible
for specific conjugation, and a disulfide bridge moiety was used to disengage already installed
functions/properties. In addition, the homogeneous nature of the vapor-phased coating technique
is known for its morphology/thickness and distribution of the functional moiety, which allowed
precision to address the installation or erasure of functions and properties. Characterization of the
precisely confined hydrophilic/hydrophobic wetting property and the alternating reversibility of this
wetting property on the same surface was achieved.
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1. Introduction

Coating technologies are widely adopted as robust surface modification tools for application
on substrate materials to achieve new surface properties. For instance, dopamine-based coatings
have been used to create versatile modifications, which were interesting for membranes, particles,
and hierarchical materials [1–3]. Examples of exploiting chitin, chitosan, and other bio-inspired coatings,
have also been shown in various biomedical applications, such as tissue engineering, drug delivery
systems, wound healing, cancer treatment, and biosensor design [4,5]. On the other hand, vapor-phase
initiators have been deposited on substrates to induce protein adsorption and external stimuli [6,7],
among others. Such modification technologies have continued to develop with advanced capabilities,
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including the following: (i) customizable; (ii) reversible; (iii) dynamic; (iv) precise confinement; and
(v) timed control of the surface properties [8–11]. In this study, we introduce a reactive coating of
disulfanyl propanoic acid-functionalized poly-p-xylylene (hereafter referred to as an erasable coating),
which was prepared based on vapor-phase deposition and a polymerization process. The erasable
coating includes a backbone structure of poly-p-xylylene, which is analogous to the commercial
ParyleneTM N, C, or D, but differs in that the side chain has a 3-((3-methylamido)-disulfanyl)propanoic
acid substitution [12]. With verified merits of using the functional side chain, the rationale of the
coating provides (i) an anchoring site for carboxylic acid that is designed with accessibility for specific
conjugation; (ii) a disulfide bridge moiety of the load-lock mechanism [13,14] to disengage already
installed functions/properties, which is comparably superior to existing techniques; (iii) a homogeneous
coating with a specific coating morphology/thickness and distribution of the functional moiety, which
allows precision to address the installation or erasure of functions and properties; and (iv) a coating
that is mechanically stable and is applicable for a wide spectrum of substrate materials, topologies,
and geometries. The concept of the coating technology enabled location-specific surface modification,
i.e., first, a molecule was conjugated at a defined location; then, an erasing procedure was programmed
to remove the first conjugated molecule with a defined location at selected areas; and finally, an option
to reactivate the surface property via a second conjugation and divergent molecule was manageable
during the programmed process. This coating technology results in a state-of-art surface modification
platform in which a surface property can have a precisely defined chemical functionality at a confined
geographical location, and this definition is erasable and/or reproducible with a new interface property.
This surface modification is analogous to the process of illustrating-erasing on a piece of paper.

2. Materials and Methods

2.1. Synthesis and Chemical Vapor Deposition (CVD) Polymerization

The synthesis of the starting material of 4-(3-((3-methylamido) disulfanyl)-propanoic acid)
[2,2]paracyclophane (dimer) was performed prior to the CVD polymerization to produce
the erasable coating. The dimer was synthesized and modified from a commercial
compound, [2,2]paracyclophane (Galxyl N, Galentis, Italy), via a five-step route [12]. Briefly,
the commercial [2,2]paracyclophane was used as received and was first reacted with 44 mmol
a,a-dichloromethyl methyl ether and 77 mmol titanium(IV) chloride for 6 h to form
4-formyl[2,2]paracyclophane. Then, the product was dissolved in a mixture of MeOH and
anhydrous tetrahydrofuran and reduced with 28 mmol sodium borohydride for 3 h to yield
4-hydroxymethyl[2,2]paracyclophane. Subsequently, the product was dissolved in anhydrous
CH2Cl2 and reacted with 31.8 mmol PBr3 for 4 h to produce 4-bromomethyl[2,2]paracyclophane.
Then, 80% aqueous hydrazine was added to yield 4-aminomethyl[2,2]paracyclophane. Next,
the 4-aminomethyl[2,2]paracyclophane was reacted with 10 mmol 3,3′- dithiodipropionic acid and
10 mmol N- ethyl-N′-(3-(dimethylamino)propyl)carbodiimide in anhydrous tetrahydrofuran for 20 min,
resulting in the final product of 4-(3-((3-methylamido)disulfanyl)propanoic acid) [2,2]paracyclophane.
Upon obtaining the final dimer product, preparation of the erasable coating was thus performed
via the CVD polymerization process of this dimer. During the CVD process, 4-(3-((3-methylamido)
disulfanyl)-propanoic acid) [2,2]paracyclophane was first sublimated at 125 ◦C, and the vaporized
dimers were then subjected to a pyrolysis temperature of 550 ◦C to turn the dimers into reactive
monomers (p-quinodimethane). Finally, the monomers were transferred to a deposition chamber
and polymerized upon condensation/deposition at 20 ◦C to form the erasable coating. A reduced
pressure of 100 mTorr was maintained throughout the entire CVD process, and the deposition rate was
regulated and monitored by a thin-film monitor (STM-100/MF, Sycon Instruments, East Syracuse, NY,
USA) at approximately 0.5 to 1.0 A◦/s.
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2.2. Immobilization

Fluorescein-labeled Arg-Arg-Cys-Cys peptide (Yao-Hong Biotechnology Inc., Taiwan) was reacted
with the coating surface by the addition of 5 mM 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
(Alfa Aesar, Haverhill, MA, USA) with 5 mM N-hydroxysuccinimide (Alfa Aesar, Haverhill, MA, USA)
for 2 h at 4 ◦C, and a microcontact printing (µCP) process [15,16] was used to localize the reaction in
selected areas. The resulting samples were washed with phosphate-buffered saline (PBS, contains
Tween 20, Sigma-Aldrich, St. Louis, MO, USA) three times and with deionized water twice to remove
excess and unreacted reagents. The erase process was performed by using a 100 mM glutathione
(Sigma-Aldrich, St. Louis, MO, USA) reductant to treat the samples for 6 h at 20 ◦C, and a similar µCP
process (oval pattern, major axis = 50 µm, minor axis = 20 µm) was again used to localize the reaction
to selected areas. A similar wash process using PBS three times and deionized water twice was used
after the reaction to remove excess and unreacted reagents. The reactivation process was demonstrated
by reacting 100 mM cysteamine (Sigma-Aldrich, St. Louis, MO, USA) with the sample surface via the
addition of 1 mM 2,2’-dithiodipyridine (DTP; Sigma- Aldrich, St. Louis, MO, USA) for 6 h at 4 ◦C.
Finally, a 10 mM Alexa Fluor 350 NHS ester (Life Technologies, Carlsbad, CA, USA) was used to
confirm that conjugated cysteamine was on the coating surface. A fluorescence microscope (TE2000-U,
Nikon, Tokyo, Japan) was used to examine the modified sample surfaces. However, to demonstrate the
hydrophobic/hydrophilic modification of the erasable coating, the hydrophilic molecule of cysteamine
(100 mM) and the hydrophobic perfluorodecanethiol (5 vol% in ethanol, Sigma-Aldrich, St. Louis,
MO, USA) were used for the same conjugation and erasing process mentioned above. The same wash
process was also conducted during the hydrophobic/hydrophilic modification experiments.

2.3. Surface Characterization

FT-IR spectra were recorded with a Spectrum 100 FT-IR spectrometer (PerkinElmer, Waltham, MA,
USA). A liquid nitrogen-cooled mercury-cadmium-telluride (MCT) detector and an advanced grazing
angle specular reflectance accessory (PIKE Technologies, Fitchburg, WI, USA) were used during the
spectra acquisition. The scan range was from 500 cm−1 to 4000 cm–1, and 64 scans were performed for
each acquisition. For the coating adhesion experiments, the coated samples were purposely scratched
with a metal multi-blade (ZCC 2087 cross-cut tester, Zehntner, Sissach, Switzerland). The scratched
samples were then applied with ScotchTM adhesive tape (3M, Maplewood, MN, USA) and were
subsequently subjected to a quick-removal process to remove the ScotchTM tape from the sample
surfaces. The resulting samples were examined with a scanning electron microscope (SEM, Nova
NanoSEM 230, FEI, Hillsboro, OR, USA), which was operated under a reduced pressure of 4 × 10–6

Torr. During the SEM acquisition, the acceleration voltage was 10.0 kV and the working distance was
approximately 5.4 mm. Elemental maps were recorded and analysed with the energy dispersive X-ray
analysis (EDX) feature of the same SEM instrument. The thermal stability of the coating was examined
by exposing the same coating samples in a forced air-drying oven (OVP30, Hondwen, Taiwan) under
an elevated temperature from 25 ◦C to 210 ◦C for 2 h for each temperature increment. The resulting
changes in the chemical compositions were analysed and compared with the recorded FT-IR spectra
from the same Spectrum 100 FT-IR instrument mentioned above. Surface wetting properties were
examined via a water condensation experiment, which was performed by spraying and drying a water
film on the modified surfaces, and the sample surface was then visualized with a microscope (Olympus,
Tokyo, Japan). The water contact angle was measured at room temperature by using a contact angle
goniometer (First Ten Angstroms, Portsmouth, VA, USA) upon the placement of 5 µl of distilled water
on the surfaces. Each measurement was conducted using three different locations on the same sample
and repeated for different samples in triplicate.
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3. Results and Discussion

Preparation of the coating was realized by using a chemical vapor deposition (CVD) polymerization
process from the 3-((3-methylamido)-disulfanyl)propanoic acid-substituted [2.2]paracyclophane (dimer)
starting material, whose synthesis details are included in the Materials and Methods. During the
CVD process, the dimer was vaporized at approximately 125 ◦C and then subjected to pyrolysis
treatment at 550 ◦C to ensure the transformation into highly reactive p-quinodimethanes (monomers).
The monomers then underwent radical polymerization to deposit the erasable coating on substrates at
approximately 20 ◦C. The coating thickness was controlled based on the time duration of the CVD
process and was from 100 nm to 150 nm, as measured based on the in-situ quartz crystal microbalance
(QCM) and also by spectroscopic ellipsometry after retrieving the coated samples from the CVD system.
The resulting coatings exhibited excellent mechanical adhesion on the substrates compared to other
ParyleneTM and derivatives [17,18], and the adhesion test results agree with the American Society for
Testing and Materials (ASTM), with a high standard of class 5B [19]. As revealed in Figure 1, the SEM
images and EDX unambiguously confirmed the adhesive properties, and also revealed the coating
conformity and the homogeneousness of the coating by confirming the anticipated and consistent
chemical composition of 53.46 atom-% carbon (C), 46.24 atom-% silicon (Si), and 0.29 atom-% sulfur
(S) at various locations on the same coating surface, whereas 100.00 atom-% silicon (Si) was found
for the bare substrate (by harshly removing the coating by a cutting blade). However, the thermal
stability of the coating was also evaluated by exposing the coating samples to elevated temperatures
of 25 ◦C, 90 ◦C, 130 ◦C, 170 ◦C, and 210 ◦C, and the possible compositional changes were examined
based on FT-IR analysis. The recorded spectra showed characteristic peaks of the C=O asymmetric
stretch at 1662 cm–1 and the C–N stretch at 1036 cm–1, detected from 25 ◦C to 170 ◦C, which verified
the existence of a secondary amide side group. Additionally, no signals were observed for these peaks
at 210 ◦C, which may be due to possible decomposition of the side chain. Furthermore, a considerable
drop in intensity at 210 ◦C for the overlapped adsorption bands of the N–H and O–H stretches from
3114 cm–1 to 3520 cm–1 ambiguously confirmed the instability of the side group at this temperature.
Notably, the characteristic adsorption peaks of C–H at 2857, 2923, and 2958 cm–1 were detected with
decreasing peak intensities with an increase in treatment temperature, and a possible decomposition of
the backbone structure of poly-p-xylylene occurred at approximately 90 ◦C. The thermal stability data
are included in the Supplementary Materials in Figure S1. In light of the similarity to other functional
poly-p-xylylene systems using a vapor-based deposition process, which have been demonstrated
to be successfully modified on materials including metals, oxides, alloys, polymers, glass, silicon,
and liquids [20–22], with excellent mechanical stabilities, including corrosion resistance, enhanced
lubricity, a high tensile strength, and surface consolidation to avoid flaking or dusting [23], the present
coating technique is theoretically applicable to a wide range of materials.
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Figure 1. The mechanical adhesion of the erasable coating on the substrates was examined via an
adhesion test. (a) Scanning electron microscope (SEM) images of the erasable coating before and after
the cross-cut tape adhesion test. (b) SEM/energy dispersive X-ray analysis (EDX) elemental maps of
carbon (C) and sulfur (S) showed no apparent damage after the adhesion test compared with those
before the test. (c) SEM/EDX Point and ID precisely indicated carbon (C), sulfur (S), and silicon (Si) on
the intact regions (square-shaped areas), whereas only Si was detected on the bare substrate. Scale bars:
600 µm.

The important and unique capability of the erasable coating to control interface properties by
offering (i) specific conjugation accessibility, (ii) an erasable capability to disengage the already-installed
chemistry/property in (i), and (iii) precise confinement of (i) and (ii) in selected areas of interests is
illustrated and demonstrated in Figure 2a. The end group of the erasable coating provides abundant
carboxyl moieties that are readily accessible via the conjugation reaction with an amino group,
forming a peptide bond in the well-known 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)
and N-hydroxysuccinimide (NHS) environment [24]. In the experiment, a model fluorescence probe of
fluorescein (FITC, green channel)-conjugated Arg-Arg-Cys-Cys (RRCC) peptide, which also contains
abundant amino groups, was allowed to react with the coating surface, and control over spatial
confinement was enabled by the assistance of a microcontact printing (µCP) technique. The µCP was
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also used to form a uniform coating and homogeneously distributed functionality on the coating
surface, providing an intimate engagement between the two contact surfaces [15,16]. As shown in
Figure 2b, the FITC signals were detected in the anticipated areas, displaying good agreement with
the pattern (squares, 300 µm × 300 µm) used during the µCP, which indicated successful conjugation
and confinement when using the end groups. Subsequently, an erasing process to disengage the
immobilized FITC−RRCC was performed via a disulfide interchange reaction under glutathione
conditions [25–27], which was also applied to the surface via the µCP confinement technique and a
divergent pattern (oval pattern, major axis = 50 µm, minor axis = 20 µm) for better demonstration of
the concept. The erasure removed the FITC signals at the correct locations (if previously installed) that
correspond to the anticipated oval pattern of the µCP stamp. The disulfide interchange reaction of the
disulfanyl propanoic acid moiety on the erasable coating provided a more exciting route to reinstall
the second chemistry/function after the erasure was performed. As discovered in the experiments,
the confined areas of erasure exhibited reactivity towards a thiol-active compound, i.e., cysteamine,
and conjugation via a second disulfide interchange reaction efficiently resulted in the immobilization
of cysteamine. The detection of cysteamine was confirmed by a previously modified Alexa Fluor
350 NHS ester (blue channel) on the cysteamine, which was found to be well-distributed in the
areas of the oval patterns. The resulting modification on the coating surface exhibited (i) elegant
manipulation of the immobilization/cleavage of molecules on the surface, enabling installation/erasure
of the surface chemistry of interest, and (ii) precise confinement of this manipulation to provide
geographical control. Since the area or pattern that already installed the first chemistry/property
and the area or pattern that subsequently overwrote the second chemistry/property can be different,
the resulting modification surface will be multifunctional (i.e., areas of the first functional molecule,
the second functional molecule, and no functional molecules coexist on the surface), with a controllable
distribution. Verification of the conjugation chemistry was conducted via FT-IR analysis. The recorded
FT-IR spectra of the pure erasable coating (Figure 3a) was first compared to a coating that was treated
with an erasing process. A significantly reduced peak intensity for C=O stretches at 1715 cm–1 and
for the O–H single bond bends at 1417 cm–1 showed the decomposition of disulfide bonds after this
treatment (Figure 3b). However, the conjugation of cysteamine produced increased intensities in the
range of 3111 cm–1 to 3616 cm–1, which indicated amine adsorption from the conjugated cysteamine
(Figure 3c).

Finally, the important surface wetting properties (hydrophobicity and surface energy) were
manipulated by controlling the (i) sophisticated, hybrid presentation of the wetting property at
precisely confined locations for the modifications, and the (ii) reversibility of alternating the wetting
property, i.e., erasability and/or alteration of the wettability from a hydrophobic state to a hydrophilic
state or vice versa. In the demonstration shown in Figure 4a, coating surfaces were uniformly modified
with cysteamine, yielding an overall hydrophilic surface; subsequently, the same erasing process was
used to remove cysteamine from the selected areas. Additionally, we used the disulfide interchange
reaction to conjugate/install a hydrophobic perfluorodecanethiol in the vacated areas. The successful
conjugation of perfluorodecanethiol was also verified in a separate experiment, which showed an
increased peak adsorption for C–F at 1414 cm–1 in the FT-IR analysis, as demonstrated in in Figure 3d.
This straightforward erasure and reinstallation process results in a hybrid wetting property that
provides both hydrophobic and hydrophilic pockets on the coating surfaces, as shown in the water
condensation experiments (allowing water molecules to adsorb onto the surface). Moreover, upon
continuing the same erasing and reinstallation process on the same sample surface, a state-of-the-art
hierarchical hydrophobic/hydrophilic property was created with elegant control in defined and confined
areas on the coating surfaces. A more statistical demonstration was performed by measuring the
water contact angles (WCA) of the modified surfaces, which showed consistent alterations between
hydrophilic (WCA = 50 degrees) and hydrophobic (WCA = 96 degrees) states during two complete
cycles (equal to four erase cycles), as shown in Figure 4b. A recovery rate of 92.6 ± 2.8% was estimated
for such a hydrophobic/hydrophilic alteration, and a 88.5 ± 3.7% conversion rate for the erasure
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process (Supplementary Materials, Figure S2) also unambiguously verified the results. The data were
also well-supported by the EDX elemental map analysis based on a comparison before and after the
erasure process used to remove the previously installed perfluorodecanethiols from the coating surface.
As indicated in Figure 4c, strong signals from fluorine were detected throughout the coating surface,
which indicated the homogeneous and successful conjugation/installation of the perfluorodecanethiol.
Subsequently, erasure via the disulfide interchange reaction occurred in selected areas and resulted in
a significant reduction of the fluorine signals in these areas. However, a detectable reduction in sulfur
intensity between the disulfides and the thiols was also found on the coating surface after the erasure
and with a good consistency of the mapping pattern compared with the fluorine and the pattern during
the erasing process.
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Figure 2. (a) Schematic illustration of the surface modification platform based on the erasable coating to
provide spatially confined accessibilities of (i) specific conjugation to alter the surface chemistry, (ii) an
erasable mechanism to remove the existing chemistry, and (iii) reactivation of the surface property for a
second divergent chemistry via a disulfide interchange route. (b) A demonstration of using the erasable
coating to confine the conjugations of multiple fluorescent molecules on the same surface. Fluorescein
(FITC)-Arg-Arg-Cys-Cys (RRCC) (green signals) was conjugated to the surface at selected areas in a
300 µm × 300 µm square pattern (fluorescence micrograph on the left), and subsequent removal of the
conjugated FITC-RRCC occurred with a second independent oval pattern (major axis = 50 µm, minor
axis = 20 µm) in the middle (erased green signals). Finally, reactivation occurred to install a divergent
molecule system of cysteamine/Alexa Fluor 350 NHS ester (blue channel) in the oval pattern areas,
as shown to the right.
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Figure 3. FT-IR spectral characterization used to monitor the surface chemistry modifications for the
erasable coating. The FT-IR spectra were recorded to compare (a) the as-deposited erasable coating with
(b) the erased treatment of the coating, (c) the conjugation with cysteamine, and (d) the conjugation
with perfluorodecanethiol. The surface modifications were conducted on the same sample surface.
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Figure 4. Confinement and manipulation of the surface wetting properties. (a) A hydrophilic molecule
of cysteamine was conjugated to the erasable coating, creating a homogeneous hydrophilic surface
with well-adsorbed water molecules, as shown in the left micrograph. The same erasing process was
performed to selectively remove the conjugated cysteamine to result in a confined area with a low
adsorption of water molecules (hydrophobic), as exhibited in the middle micrograph. A reinstallation of
cysteamine onto the same surface and with an independent pattern system was performed to render a
hierarchical hydrophobic/hydrophilic property, as shown on the right. (b) Statistical analysis of altering
the wetting properties during two complete cycles. A recovery rate of 92.6± 2.8% was estimated. (c) EDX
elemental maps of fluorine (F) and sulfur (S) to confirm the conjugation of perfluorodecanethiol on the
coating surface. The erasure process used to selectively remove the conjugated perfluorodecanethiol
showed reduced signals for F and S, with a consistency in the confinement patterns. Scale bars: 300 µm.
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4. Conclusions

Advanced control over the interfacial properties, including the specific conjugation accessibility,
a homogeneous and high molecular resolution to enable precise geographical control, a capability to
eliminate existing properties, and a timed flexibility for manipulating the properties, were realized by
using the erasable coating introduced in this study. The coating technique exhibited inherent merits of
being a vapor-deposited conformal coating, having a long-term stability and a high biocompatibility,
compared to its predecessors, the poly-p-xylylenes, and the coating process is expected to be applicable
to substrates and devices, regardless of the materials or the shape. With the feasibility of exploiting
copolymerization with other functional poly-p-xylylene derivatives that are already on the shelves,
in order to create multifunctional coatings, we foresee uses of the coating technology to create
prospective and more sophisticated interfacial properties that are hampered by current technologies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/10/1595/s1,
Figure S1: FT-IR spectra showing the thermal stability of the coating. Figure S2: Reaction efficiency analysis of the
erasable coating. Figure S2: Reaction efficiency analysis of the erasable coating.
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