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Abstract: This paper designed and manufactured photosensitive resin-based 2-D lattice structures
with different types of variable cross-section cores by stereolithography 3D printing technology (SLA
3DP). An analytical model was employed to predict the structural compressive response and failure
types. A theoretical calculation was performed to obtain the most efficient material utilization of the
2-D lattice core. A flatwise compressive experiment was performed to verify the theoretical conclusions.
A comparison of theoretical and experimental results showed good agreement for structural compressive
response. Results from the analytical model and experiments showed that when the 2-D lattice core
was designed so that R/r = 1.167 (R and r represent the core radius at the ends and in the middle), the
material utilization of the 2-D lattice core improved by 13.227%, 19.068%, and 22.143% when n = 1, n = 2,
and n = 3 (n represents the highest power of the core cross-section function).

Keywords: Variable cross-section core; 2-D lattices structure; analytical model; material utilization;
compressive response

1. Introduction

A lattice structure is a type of neoteric structure composed of two high strength, high modulus thin
face sheets, and thick lightweight cores. The reasonable structure, lightweight, and high strength allow
the lattice structure to be commonly used in aerospace, shipbuilding, and automobile manufacturing.
Improving the structural load capacity, while reducing the weight, has become a main focus within
lattice structure research. The main configurations of the lattice structure are the tetrahedron, the
pyramid, and the Kagome [1–3]. Conventional lattice structure manufacturing methods include the
melt foaming method, the powder metallurgical method, the infiltration casting method, and the
extrusion-electro discharge method [4–9].

There has been substantial research regarding the mechanical properties of lattice structures with
different types of cross-sections and configurations. On the mechanical behaviors of lattice structure
with uniform cross-section cores, Xiong et al. [10,11] studied the compressive, shear, and flexural
behaviors of carbon fiber composite pyramidal truss structures fabricated with the molding hot-press
technique (M H-P). Results show that the fabricated low-density truss cores have superior compressive
strength. Sun et al. [12,13] studied the compressive and shear behaviors of an improved-pyramidal
truss core fabricated with M H-P. Results show that the main compressive failure types are mainly
Euler buckling and fracture failure of the struts, while greater deviation exists in shear tests due to
the occurrence of dominated node rupture. Wang et al. [14–20] studied the mechanical behaviors
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of pyramidal and X-type truss lattice structures. Results show that the mechanical behavior of the
pyramidal lattice truss core sandwich face sheets is dependent on the relative density of the core and
the material properties of the truss members. The compressive failure types of the X-type are mainly
crushed in cores in both ends. Schneider et al. [21] studied a novel manufacturing route to produce
fiber composite lattice structures. Results show that single polymer PET cores have better performance
compared to high-end foam cores, but have lower performances than carbon fiber lattice cores.

Lattice structures are fabricated by conventional manufacturing methods and great progress
has been made in understanding their mechanical behaviors. However, for the lattice structure
with variable cross-section cores, the fabrication by conventional methods is not easy and lacks
accuracy. Three-dimensional printing (3DP) offers an alternative for making a wide variety of lattice
structures with variable cross-section cores, thus making these structures available and accurate
for a wide variety of applications. According to the Cannikin Law and the force distribution of
the core, a reasonable cross-section design can make additional positions of the core reach load
capacity when damaged, which can effectively improve the material utilization of the lattice core.
Relatively few studies have investigated the mechanical behaviors of lattice structure with a variable
cross-section core. Wu et al. [22,23] studied the mechanical properties and failure mechanisms of
polymer sandwich face sheets fabricated by 3DP and the interlocking method with ultra-lightweight
3D hierarchical lattice cores. The study provides insights into the role of structural hierarchy in tuning
the mechanical behavior of sandwich structures, and new opportunities for designing ultra-lightweight
lattice cores with optimal performance. Rifaie et al. [24] studied the compression behavior of additively
manufactured or 3DP polymer lattice structures of various configurations. The lattice structure, based
on the body-centered cubic unit cells, was modified by adding vertical struts in different arrangements
to create three additional configurations. Results from the experimental data show that selective
placement of vertical support struts in the unit cell influence both the absolute and the specific
mechanical properties of the lattice structures.

A great deal of work has been performed on the mechanical response of lattice structures with
uniform cross-section core fabricated by the conventional manufacturing methods and more accurate
3DP. There is a lack of literature regarding their mechanical behaviors, and the analytical model of
lattice structures with a variable cross-section core on analyzing the force distribution of the lattice
core. Therefore, designing and manufacturing different types of photosensitive resin-based 2-D lattice
structures with variable cross-section cores, and creating a complete set of analytical models represent
a worthy research project.

2. Design and Fabrication

2.1. Core Design

The sizes of the variable cross-section core are shown in Figure 1:
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The radius of core y:
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where n is the highest power of core cross-section function.

2.2. Unit Cell Design

A 2-D lattice structure with variable cross-section core unit cell schematic illustration is shown
in Figure 2. The structural compressive behavior depends on the mechanical behaviors of the raw
materials, the length (a), the width (b), and the thickness (t) of the face sheet, the distance (c) between
the cores, the length (l), the inclination angle (ω), and the distance (h) between face sheets. The relative
density ρ of the variable cross-section core is:

ρ =
2
∫ l

0 π
(

k
∣∣∣x− l

2

∣∣∣n + r
)2

dx

abh
, (5)

a = 2(lcosw + c), (6)

h = lsinω, (7)
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As seen in Figure 1 and Equation (1), the experiments were divided into three cases to investigate
the effects of core cross-section sizes on the structural compressive behavior: n = 1, n = 2, and n = 3,
where R = 1.75 mm was a fixed value, r was 1.75, 1.50, 1.25, 1.00 or 0.75 mm, ω = 45◦, l = 12.5

√
2 mm,

a = 50 mm, b = 25 mm, c = 12.5 mm, and t = 4 mm. The core cross-section functions are shown in
Table 1.
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Table 1. Core cross-section functions.
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2.3. Fabrication

2-D lattice structures with different types of variable cross-section cores composed of photosensitive
resin (DSM8000, Harbin, China) were designed and manufactured by stereolithography 3D printing
(E-Plus-3D S450, Harbin, China), see Figure 3 for the manufacturing processes.
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The 2-D lattice structures with variable cross-section cores comprised of eight unit cells were
manufactured, and each unit cell had two cores, as shown in Figure 4. The size of the lattice structure
was 100 mm × 100 mm × 20.5 mm, including the 16 variable cross-section cores.
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3. Analytical Model

3.1. Force Distribution of Core

As shown in Figure 5a, the structure was ideally simplified into a rod structure with fixed
connections between the upper and lower ends. The core in the upper end was subjected to a
concentrated load, where it produced a vertical displacement of ∆. The lateral displacement and the
rotation angle were both 0. The lateral displacement, the vertical displacement, and the rotation angle
of the core in the lower end were 0. A detailed analysis of the uniform cross-section core is found in
ref. [25].
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The structural mechanics force method was used to solve the force distribution of the variable
cross-section core. The processes were as follows:

1. Determine the basic system, as shown in Figure 5b: X1 = MA, X2 = MB, X3 = FN

2. Establish the basic equations of the force method:

δ11X1 + δ12X2 + ∆1c = 0, (8)

δ21X1 + δ22X2 + ∆2c = 0, (9)

∆sinω =
∫ l

0

X3

EA(x)
dx, (10)

3. Determine coefficients and free items:
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δ11 = δ22 =
∫ l

0

x2

EI(x)l2
dx, δ21 = δ12 = −

∫ l

0

x(l− x)
EI(x)l2

dx, ∆1c = ∆2c =
∆cosω

l
,

4. Solve the equation, calculate the rod end bending moment, and the axial force of the core:

X1 = X2 = − ∆1c

δ11 + δ12
, X3 =

∆sinω∫ l
0

1
EA(x)dx

The bending moment was positive in the clockwise direction and the axial force was positive in
the compressive stress.

3.2. Structural Compressive Behavior

3.2.1. Failure Types

According to Mohr’s stress circle, the axial compression force, the bending moment, and the shear
force are coupled, the maximum/minimum axial stress, σ1,3 is given in ref. [26]:

σ1,3 =

√(
σx − σy

2

)2
+
(
τxy
)2 ±

σx + σy

2
, (11)

There were two structural dangerous locations:

1. The core in middle position had the smallest cross-section area and the axial compressive stress
generated by the axial force was the largest. The bending stiffness EI of the core in the middle
position was small, resulting in a smaller variable of bending moment, so we approximated
that τxy = 0. With σy = 0, the maximum axial stress of the core in the middle position was
calculated with:

σ1 = σx =
X3

πr2 , (12)

2. The bending moment of core at two ends was the maximum, the combined compressive stress
generated by the bending moment and the axial force was maximum. The dangerous positions of
the core at both ends were at the edge of the cross-section, shown in Figure 2. The area moment
of this position was zero, so τxy = 0. With σy = 0, the maximum axial stress of the core at the
two ends was calculated in ref. [27]:

σ1 = σx =
X3

πR2 +
4X1

πR3(sinω)2 , (13)

With σ2 = 0, the Mises yield stress σM is given by:

σM =

√
(σ1)

2 + (σ2)
2 + (σ1 − σ2)

2

2
= σs, (14)

Where σs is the material yield strength of the 2-D lattice core.

We solved ∆1, ∆2 according to Equations (11)–(14) with the ideal elastic–plastic core and the
maximum stress criterion [28].

Displacement ∆ during structure failure was given by:

∆ = min (∆1, ∆2),

When ∆ = ∆1, the structure was destroyed by the axial compressive stress in the middle position
of the core.
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When ∆ = ∆2, the structure was destroyed by the combined compressive and bending load at the
two ends of the core.

When ∆1 = ∆2, the structure had the most efficient material utilization of the lattice core because
the two dangerous positions of the core reached their load capacity simultaneously.

X3

πR2 +
4X1

π(sinω)2R3
=

X3

πr2 , (15)

For the slender core, the failure type of the Euler buckling should be taken into consideration.
The discriminant slenderness λp that was the threshold value of strut slenderness in Euler’s

formula was calculated as:

λp =

√
(π)2E
σp

, (16)

where σp was the proportional limit of the core material. When the slenderness of the cores exceeded
λp, the core was damaged by Euler buckling.

According to the mechanical behavior of the raw material and unit cell sizes, we solved
Equations (15) and (16) to obtain the optimized r and λp. The failure mode maps of 2-D lattice
structures with variable cross-section cores are shown in Figure 6.Polymers 2019, 11, 186 7 of 14 

 

 
Figure 6. Failure mode maps of the 2-D lattice structures with variable cross-section cores. 

3.2.2. Load Capacity 

The structural load capacity depends on the displacement ∆ at the time of structural failure, 
where the load capacity Fmax of the 2-D lattice structure with variable cross-section core is given by: F୫ୟ୶ = NቀXଷsinω + ଡ଼భାଡ଼మ୪ cosωቁ,  (17)

Note: N is the number of cores, the 2-D lattice structure with variable cross-section core has eight 
unit cells, each unit cell has two cores, so N = 16. 

3.2.3. Equivalent Compressive Elastic Modulus 

The equivalent compressive elastic modulus is given by: Eୣ୯ = ଶ୊(୦ାଶ୲)୒ୟୠ∆ = ቆ (ୱ୧୬ன)మ׬ భుఽ(౮)ୢ୶బౢ + ଶ(ୡ୭ୱ୵)మ(ஔభభାஔభమ)୪మቇ ଶ(୦ାଶ୲)ୟୠ ,  (18)

3.2.4. Specific Strength 

The specific strength refers to the strength of a unit mass per unit volume, so its value is equal 
to the ratio of the strength to the density. It is an indicator to measure if the material is light and 
strong [25]. When the 2-D lattice structure is subjected to flatwise compressive load, the specific 
strength σഥୱୱ of the 2-D lattice structure with variable cross-section core is given by: σഥୱୱ = ቀଡ଼యୱ୧୬னା౔భశ౔మౢ ୡ୭ୱனቁ∙୦஡౦౨ ׬ ஠൬୩ቚ୶ିమౢቚ౤ା୰൰మୢ୶బౢ , (19)

Where ρpr = 1.16g∙cm−3, is the density of photosensitive resin. 

4. Experiments 

4.1. Raw Material Mechanical Properties 

Photosensitive resin (DSM8000) was purchased from the Harbin Free Manufacturing 
Technology Development Co., Ltd., Harbin, China. The compressive, the flexural, and the tensile 
properties of the photosensitive resin were measured according to the standards of ISO 604-2002, ISO 
178-2010, and ASTM D638-2014. The mechanical properties of the photosensitive resin are shown in 
Table 2. 
  

Figure 6. Failure mode maps of the 2-D lattice structures with variable cross-section cores.

3.2.2. Load Capacity

The structural load capacity depends on the displacement ∆ at the time of structural failure, where
the load capacity Fmax of the 2-D lattice structure with variable cross-section core is given by:

Fmax = N
(

X3sinω+
X1 + X2

l
cosω

)
, (17)

Note: N is the number of cores, the 2-D lattice structure with variable cross-section core has eight
unit cells, each unit cell has two cores, so N = 16.

3.2.3. Equivalent Compressive Elastic Modulus

The equivalent compressive elastic modulus is given by:

Eeq =
2F(h + 2t)

Nab∆
=

 (sinω)2∫ l
0

1
EA(x)dx

+
2(cos w)2

(δ11 + δ12)l
2

2(h + 2t)
ab

, (18)
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3.2.4. Specific Strength

The specific strength refers to the strength of a unit mass per unit volume, so its value is equal
to the ratio of the strength to the density. It is an indicator to measure if the material is light and
strong [25]. When the 2-D lattice structure is subjected to flatwise compressive load, the specific
strength σss of the 2-D lattice structure with variable cross-section core is given by:

σss =

(
X3sinω+ X1+X2

l cosω
)

∆h

ρpr
∫ l

0 π
(

k
∣∣∣x− l

2

∣∣∣n + r
)2

dx
, (19)

where ρpr = 1.16 g·cm−3, is the density of photosensitive resin.

4. Experiments

4.1. Raw Material Mechanical Properties

Photosensitive resin (DSM8000) was purchased from the Harbin Free Manufacturing Technology
Development Co., Ltd., Harbin, China. The compressive, the flexural, and the tensile properties of the
photosensitive resin were measured according to the standards of ISO 604-2002, ISO 178-2010, and
ASTM D638-2014. The mechanical properties of the photosensitive resin are shown in Table 2.

Table 2. Photosensitive resin mechanical properties.

Compressive Modulus
(MPa)

Compressive Strength
(MPa)

Flexural Modulus
(MPa)

Flexural Strength
(MPa)

Tensile Modulus
(MPa)

Tensile Strength
(MPa)

1699.968 53.170 1897.297 59.285 1205.019 36.460

4.2. Flatwise Compression Test

According to the standard ASTM C365-16, the flatwise compressive behavior of the 2-D lattice
structures with variable cross-section cores was measured. The experimental values of the structural
load capacity were obtained based on the peak of the displacement-force curve. The straight-line
segment of the displacement-force curve was used to calculate the experimental values of the equivalent
compressive elastic modulus.

5. Results and Discussion

5.1. Failure Analyses

The three failure types, including 15 types of 2-D lattice structures with variable cross-section
cores are shown in Figure 7a. The three varieties of stress–strain curves corresponding to failure types
are shown in Figure 7b.

Note: In Figure 7a, the dimensions are denoted in mm, and the core damage position is in the
middle. In the purple circle section, the core damage position is located at both ends of the core in the
red circle section.

The failure modes of the 2-D lattice structure with variable cross-section cores are shown in
Figure 7a, when r was 0.75, 1.00, and 1.25 mm, the failure mode was primarily compressive failure of
the cores in the middle position. As r increased to 1.5 mm, the failure modes included the compressive
failure in the middle position and the combined compressive bending failure at the two ends. When
r = R = 1.75 mm, the failure mode was mostly combined compressive and bending failure at the two
ends of the core.

When r = R = 1.75 mm, the core was a uniform cross-section straight rod and the bending
stiffness was EI, according to the structural mechanics displacement method: MA = MB = 6EIl−2∆cosω,
FN = EA∆sinωl−1. The bending moment of the core at the two ends was positively correlated to the
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bending stiffness EI. The bending moment was large at both ends and small near the middle position.
According to the symmetry of the core, the middle position of the core was subjected to no bending
moment, however, the core was subjected to the same axial force as any of the positions of the cores.
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The analysis showed that both ends of the core were subjected to axial force and larger bending
moment, but the core in the middle position was only subjected to axial force. The uniform cross-section
core was damaged by the combined compressive and bending load at both ends of the core. The core
was designed so that both ends were large and the middle was small, which reduced the bending
stiffness EI of the core and the bending moment at both ends of the core. The force distribution in the
middle position of the core was relatively straightforward and was only subjected to axial force, so
reducing the r within a reasonable range could effectively improve the utilization of the lattice core
materials. When the r was reduced a small extent, the load capacity of the core at the middle position
was greater than at both of the ends. The structure was destroyed by the combined compressive and
bending load at the two ends of the core. When r increased to the optimal value (r = 1.5 mm), the two
ends and the middle positions of the core reached their load capacity simultaneously. As r decreased
to 1.25, 1.00, and 0.75 mm, the load capacity of the core at the middle position was less than at the two
ends. The structure was destroyed by the axial compressive stress in the middle position of the core.
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5.2. Structural Load Capacity, Equivalent Compressive Elastic Modulus, and Specific Strength

The experimental values of flatwise compressive load capacity were obtained based on the peak
of the displacement-force curves. The straight-line segments of the displacement-force curves were
used to calculate the experimental values of the equivalent compressive elastic modulus. The test
results are shown in Tables 3 and 4.

Table 3. Experimental values of the structural load capacity.

r
Experimental Value (N)

n = 1 n = 2 n = 3

1.75 4841.900 ± 65.300 4841.900 ± 65.300 4841.900 ± 65.300
1.50 4396.232 ± 164.643 3806.811 ± 164.343 3795.670 ± 89.658
1.25 3057.369 ± 81.650 2978.522 ± 123.720 2809.702 ± 131.432
1.00 1881.722 ± 57.155 1872.668 ± 103.325 1776.109 ± 104.137
0.75 1058.960 ± 97.980 1058.96 ± 81.352 894.255 ± 59.334

Table 4. Experimental values of the equivalent compressive elastic modulus.

r
Experimental Value (MPa)

n = 1 n = 2 n = 3

1.75 9.976 ± 0.227 9.976 ± 0.227 9.976 ± 0.227
1.50 8.305 ± 0.417 7.343 ± 0.368 7.705 ± 0.368
1.25 6.762 ± 0.534 5.719 ± 0.621 5.303 ± 0.141
1.00 4.868 ± 0.367 5.201 ± 0.557 3.828 ± 0.130
0.75 3.679 ± 0.259 3.133 ± 0.351 2.337 ± 0.098

According to Equation (15), when R = 1.75mm, the optimal r was calculated when n = 1, n = 2,
and n = 3, N = 1, r ≈ 1.5 mm, n = 2, r ≈ 1.5 mm, n = 3, r ≈ 1.5 mm.

The theoretical values of the structural load capacity, the equivalent compressive elastic modulus,
and the specific strength were obtained from Equations (17)–(19), see Table 5.

Table 5. The theoretical load capacity, the specific strength, and the equivalent compressive elastic modulus.

n r
(mm)

V
(mm3)

-
ρ

(%)
X1
(∆)

X3
(∆)

Fmax
(N)

-
σss

(N·m/g)
Eeq (MPa)

1/2/3 1.75 170.079 2.177 189.742 654.224 4489.428 17.778 9.556
1 1.50 146.939 1.881 162.636 560.764 4391.629 20.129 8.191
1 1.25 126.113 1.614 135.530 467.303 3049.742 16.287 6.826
1 1.00 107.601 1.377 121.114 373.842 1959.093 12.262 5.481
1 0.75 91.403 1.170 81.3180 280.382 1097.907 8.090 4.095
2 1.50 139.534 1.786 147.537 532.124 4385.488 21.167 7.761
2 1.25 112.692 1.442 108.150 415.686 3039.769 18.167 6.052
2 1.00 89.552 1.146 72.532 306.147 1940.480 14.594 4.446
2 0.75 70.114 0.897 42.017 205.265 1087.645 10.448 2.970
3 1.50 135.865 1.739 138.305 138.305 4380.421 21.714 7.554
3 1.25 106.114 1.358 93.255 93.255 3032.192 19.245 5.702
3 1.00 80.825 1.035 55.961 55.961 1932.824 16.106 4.025
3 0.75 60.000 0.768 27.792 27.792 1081.866 12.144 2.554

A comparison of the theoretical and the experimental load capacity showed good agreement,
see Figure 8. When the face sheet size, the core length, and the inclination angle were constant, the
cross-section type of core determined the structural load capacity. When R and n were constant, r = 0.75,
1.00, and 1.25 mm, the structural failure mode was mainly compressive failure in the middle position of
the cores. The bending stiffness and the compression area of the core in the middle position increased
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as r increased, resulting in a greater anti-compression capacity of the core in the middle position
and an improved structural load capacity. With r continuing to increase, the structural failure modes
transformed from compressive failure of the core in the middle position into combined compressive
and bending failure at the two ends. This resulted in a higher structural load capacity and a lower rate
increase. When R and r were constant, but n was smaller, the lattice structure underwent the same
failure type, but the bending stiffness and the volume of core were larger, according to Equation (2).
This resulted in a higher structural load capacity.Polymers 2019, 11, 186 11 of 14 
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A comparison of the theoretical and experimental equivalent compressive elastic modulus showed
good agreement, see Figure 9. When the face sheet size, the core length, and the inclination angle were
constant, the cross-section type of the core determined the structural equivalent compressive elastic
modulus. When R and n were constant but r = 0.75, 1.00, or 1.25 mm, the compressive stiffness of
the core in the middle position was small and the structure produced a large vertical displacement
when it was subjected to a lower flatwise compressive load. This resulted in a smaller equivalent
compressive elastic modulus. The compressive stiffness of the core became larger as r increased and the
capacity of the structure to resist deformation increased, which increased the equivalent compressive
elastic modulus.
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According to Figure 10, when the face sheet size, the core length, and the inclination angle
were constant, the cross-section type of the core determined the structural specific strength. When
R and n were constant but r was smaller, the structure had a lower specific strength. The structural
specific strength increased as r increased. When r reached the optimized value (r = 1.5 mm), the
structural specific strength reached the maximum value. As r continued to increase, the structural
specific strength decreased. When r and R were constant, the structural specific strength increased as
n increased.

When r = 0.75 mm, the axial stress of the core in middle position was greater than the combined
compressive and bending stress at the two ends of the core. When the middle position of the core was
damaged by axial force, the force at both ends of the core was far less than its load capacity, resulting
in material waste at both ends of the core and a lower specific strength. When r = 1.00 and 1.25 mm,
the combined compressive and bending stress at both ends of the core gradually approached the axial
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stress in the middle of the core. When the axial stress in the middle of core was equal to the combined
compressive and bending stress at both ends of the core (r = 1.50 mm), maximum specific strength and
the core utilization were achieved. When r = R = 1.75 mm, the axial stress of the core in the middle
position was less than the combined compressive and bending stress at the two ends of the core. When
the core at two ends was damaged by the combined compressive and bending stress, the load in the
middle position of the core did not reach its load capacity, resulting in material waste in the middle
position of core, where the specific strength of the structure and the utilization of the core decreased.
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Assuming that the structural load capacity increased by m and the volume of the core material
was reduced by n, the degree of improvement in the structural specific strength q is given by:

q =
1 + m
1− n

− 100%, (20)

By comparing Table 5 and Equation (20), when n = 1, n = 2, and n = 3, the structural load capacity
of the optimal cross-section core (r = 1.5 mm) was higher than the uniform cross-section core −2.178%,
−2.315%, and −2.428%. The volume of core material decreased by 13.605%, 17.959%, and 20.117%, so
the specific strength of the structure increased by 13.227%, 19.068%, and 22.143%.

6. Conclusions

2-D lattice structures with a variable cross-section core were designed and manufactured
via stereolithography 3D printing (SLA 3DP). According to theoretical analysis and experiments,
conclusions on the compressive behavior of the 2-D lattice structure with variable cross-section cores
were made:

1. Stereolithography 3D printing (SLA 3DP) successfully manufactured a photosensitive resin-based
2-D lattice structure with a variable cross-section core with a high degree of precision and
mechanical behavior.

2. When the face sheet size, the core length, and the inclination angle were constant, the cross-section
type of core determined the structural compressive response and the failure types.

3. When the 2-D lattice structure with variable cross-section core was subjected to flatwise
compressive load, both ends of the core were subjected to large bending moments and axial
forces. The middle position of the core was only subjected to axial force. The lattice core was
designed so that R⁄r = 1.167, which effectively improved the utilization of the core material. After
theoretical analysis, the structural specific strength of the optimal cross-section core was 22.143%
higher than its uniform cross-section core.
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The analytical model of the 2-D lattice structure with variable cross-section core could be applied
to the tetrahedral, the pyramidal lattice, the X-type, and the three-dimensional Kagome lattice structure.
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