



Supplementary Information

## Fabrication of PPy Nanosphere/rGO Composites via a Facile Self-Assembly Strategy for Durable Microwave Absorption

Ying Wang <sup>1</sup>, Yunchen Du <sup>1,2,\*</sup>, Bo Wu <sup>1</sup>, Binhua Han <sup>1</sup>, Shaoming Dong <sup>1</sup>, Xijiang Han <sup>1,\*</sup> and Ping Xu <sup>1,\*</sup>

- <sup>1</sup> MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; wangying901115@hit.edu.cn (Y.W.); 11749060@mail.sustc.edu.cn (B.W.); BinHuaHan@yeah.net (B.H.); Dong\_ShaoMing@163.com (S.D.)
- <sup>2</sup> Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
- \* Correspondence: yunchendu@hit.edu.cn (Y.D.); hanxijiang@hit.edu.cn (X.H.); pxu@hit.edu.cn (P.X.); Tel.: +86-451-8641-8750 (X.H.)

**Table S1.** The pH values and zeta potentials of the aqueous dispersions of commercial GO and PPy nanosphere.

| Samples                         | Concentration (mg/mL) | pН   | Zeta potential<br>(mV) |
|---------------------------------|-----------------------|------|------------------------|
| Commercial GO                   | 1.0                   | 2.35 | -35.0                  |
| PPy nanosphere                  | 0.6                   | 6.62 | -42.4                  |
| PPy nanosphere-HCl <sup>1</sup> | 0.6                   | 2.35 | -18.2                  |

<sup>1</sup> PPy nanosphere-HCl is the dispersion of PPy nanosphere whose pH value is adjusted to 2.35 by HCl.



**Figure S1.** XPS wide-scan spectra of GO, PPy nanospheres, and PPy nanosphere/GO hybrid (a); C1s core-level spectra of GO, PPy nanospheres, and PPy nanosphere/GO hybrid (b); N1s core-level spectra of PPy nanospheres and PPy nanosphere/GO hybrid (c).



**Figure S2.** Digital photograph of commercial GO suspension (a), PPy nanosphere suspension (b), PPy nanosphere/rGO composite (mass ratio of PPy nanospheres and rGO is 0.6) suspension (c), and pure rGO suspension, after static treatment for 48 h.



**Figure 3.** SEM image of PPy nanospheres, and the inset is the corresponding statistical data on the diameters of PPy nanospheres.



Figure S4. SEM images of commercial GO (a) and as-prepared rGO (b).



**Figure S5.** *RL* values of PPy/rGO-S1, PPy/rGO-S2, PPy/rGO-S3 with absorber thicknesses of 1.46 mm, 3.82 mm, and 1.00 mm, respectively.



**Figure S6.** Real parts  $\mu'$  (a) and imaginary parts  $\mu''$  (b) of complex permeability of PPy/rGO-S1, PPy/rGO-S2, and PPy/rGO-S3, and their corresponding magnetic dissipation factor (c) in the frequency range of 2.0-18.0 GHz.