Supplementary Information

Influence of the lignin content on the properties of poly(lactic acid)/lignin-containing cellulose nanofibrils composite films

Xuan Wang 1*, Yuan Jia 1, Zhen Liu1 and Jiaojiao Miao 2

- ¹ College of Chemical Engineering, Xi'an University, Xi'an 710065, PR China; jiayu_an_happy@126.com (Y.J); liuzhen.lz @163.com (Z.L)
- ² School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China; mjj.smile@163.com
- * Correspondence: wangxuan201441@163.com; Tel.: +86 17791696569

Surface energy calculation

The theory of the contact angle of pure liquids on a solid responds to the widely applied Young's equation (Eq. S1):

$$\gamma_{I}\cos\theta = \gamma_{S} - \gamma_{SI} \tag{S1}$$

where γ_L is the experimentally determined surface energy of the liquid, θ is the contact angle, γ_S is the surface energy of the solid and γ_{SL} is the solid/liquid interfacial energy.

Surface energy values were calculated according to the acid-base theory, which also allowed to obtain the disperse, acid and base components. Acid-base theory introduces a combining rule that factors molecular consideration and theories of intermolecular forces and eliminates γ_{SL} from Young's equation. The total surface energy of a solid (γ_s) is calculated from the sum of one disperse component, associated with polar component (γ_s^P) and dispersion component (γ_s^d) (Eq. S2).

$$\gamma_S = \gamma_S^p + \gamma_S^d \tag{S2}$$

In addition, we derived the relations between polar component and dispersion component of liquids and solids (Eq. S3).

$$\gamma(1+\cos\theta) = 2\sqrt{\gamma_S^d \gamma_L^d} + 2\sqrt{\gamma_S^p \gamma_L^p}$$
 (S3)

Where γ_L^P is the polar component of test liquids, γ_L^d is the dispersion component of test liquids. The γ_S^P and γ_S^d can be obtained by taking the γ_L^P and γ_L^d of each two test liquids in to equation S3.