
Supporting information

Highly Sensitive Detection of melamine based on the fluorescence resonance energy transfer between conjugated polymer nanoparticles and gold nanoparticles

Cui-jiao Zhang^{a,b}, Zhi-yan Gao^{a,b}, Qiu-bo Wang^{a,b}, Xian Zhang*^{a,b}, Jin-shui Yao^{a,b},

Qin-ze Liu a, b, Cong-de Qiao a, b

- ^a School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- ^b Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics; Key Laboratory of Amorphous and Polycrystalline Materials; Qilu University of Technology, Jinan 250353, China

Fig. S1. (a) Size distribution of AuNPs (average size = 24.4 nm); (b) size distribution of AuNPs with the addition of melamine (average size = 58.8 nm); (c) size distribution of CPNs (average size = 50.7 nm); (d)

size distribution of AuNPs and CPNs with the addition of melamine (average size = 58.8 nm). Concentration of AuNPs:2.37 nM; concentration of melamine: 100 mol L^{-1} ; concentration of CPNs: 10 $\mu g/mL$.

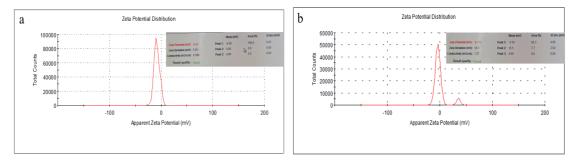


Fig. S2. Zeta potential of AuNPs (a) and CNPs (b) at pH = 7.0, respectively.