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Abstract: Four novel choline carboxylate aqueous solution systems were developed by mixing H2O
with choline nicotinate [Ch][Na], choline ferulate [Ch][Fa], choline vanillate [Ch][Va] and choline
syringate [Ch][Sa]. The solubility of lignin in the four solvents was determined at 25 ◦C. The influence
of the molar ratio of H2O to [Ch][Na] ([Ch][Fa], [Ch][Va] and [Ch][Sa]) and the anionic structure
on lignin solubility were systematically investigated. It was found that, the anionic structure and
H2O content significantly affected lignin dissolution. Interestingly, H2O/[Ch][Na] and H2O/[Ch][Fa]
solvents show efficient capacity for lignin dissolution even at room temperatures. The dissolution of
lignin in H2O/[Ch][Na] and H2O/[Ch][Fa] solvents is mainly ascribed to the interaction of lignin
with the alkyl chain in the anion and cation dissociated from [Ch][Na]([Ch][Fa]) by H2O. In addition,
the recycling of the lignin solvent was examined, and the structure and thermostability of the lignin
regenerated from the solvent were also estimated.

Keywords: lignin; H2O/choline carboxylate solvent; dissolution mechanism; recycling; regenerated
lignin properties

1. Introduction

With the rapid depletion of fossil resources, the production of chemicals and materials from
renewable lignocellulosic biomass in place of fossil resources is attracting much attention [1]. Lignin is
one of the three principal components (lignin, cellulose and hemicellulose) of lignocellulosic biomass [2,3].
At the same time, lignin is also the second most abundant biopolymer in nature next to cellulose and the
only native biopolymer on the Earth that contains aromatic phenolpropanoid monomers. Lignin has been
regarded as a promising alternative to fossil resources. Lignin is a cross-linked amorphous copolymer
synthesized from random polymerization of three primary phenylpropane monomers, coniferyl alcohol,
paracoumaryl alcohol and sinapyl alcohol, which are bonded together through several different C–O–C
and C–C interunit linkages [4]. The complex structure results in low solubility or insolubility in classical
organic solvents and water [5], which is one of the main challenges for the efficient utilization of lignin.
Therefore, many efforts have been made for improving lignin dissolution.

Over the past years, ionic liquids (ILs) have been utilized to dissolve/process lignocellulosic
biomass in view of their outstanding properties such as non-detectable vapor pressure, physicochemical
tunabilities, recoverability, and so on [6–16]. The reported ILs for dissolving/processing lignin
include imidazolium-based ILs [17–19], ammonium (phosphonium and pyrrolidinium) based ILs [20],
pyridinium carboxylate ILs [21], and bio-derived ILs which are composed of ions derived from naturally
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occurring bases (e.g., choline) and acids (e.g., amino acids and carboxylic acids) [22,23]. However, the ILs
are usually expensive, very viscous or toxic and the bio-derived ILs exhibit poor dissolution capacity for
lignin. In this context, some IL–water solutions were developed as lignin solvents. Wang et al. found
that some aqueous dialkylimidazolium-based IL solution systems could dissolve lignin at 60 ◦C, and
39.8 g/100 g of the maximum lignin solubility was obtained in aqueous 1-ethyl-3-methylimidazolium
acetate ([C2mim][CH3COO]) solution containing 70 wt % of [C2mim][CH3COO] [24]. Recently, binary
solvent systems consisting of γ-valerolactone + water (dimethyl sulfoxide, N,N-dimethylformamide or
ILs) have been reported to efficiently dissolve various types of lignin [25]. It has also been reported that
two novel solvents including eco-friendly polysorbate aqueous solvents and aqueous glycol solvents
display excellent dissolving capacity for lignin [26,27]. Very recently, Xu et al. developed 13 novel kinds
of choline carboxylate/H2O solvents for lignin [28]. The authors find that the solubility of lignin increases
with increasing alkyl chain length in the carboxylate anions, and a substitution of H in carboxylate anions
by the OH or NH2 group as well as the use of choline di-/tri-carboxylates leads to the decrease of lignin
solubility, or even makes the lignin insoluble in the solvents.

Although previous investigations revealed some important aspects in the development of
lignin solvents, the dissolution performance of lignin is unknown in H2O/[Ch][Na], H2O/[Ch][Fa],
H2O/[Ch][Va] and H2O/[Ch][Sa] solvents. Therefore, in this work, [Ch][Na], [Ch][Fa], [Ch][Va] and
[Ch][Sa] were synthesized. At the same time, their thermal properties melting/glass transition and
thermal decomposition temperatures were also determined for safe application. Then H2O/[Ch][Na],
H2O/[Ch][Fa], H2O/[Ch][Va] and H2O/[Ch][Sa] solvents were obtained by mixing H2O with
[Ch][Na], [Ch][Fa], [Ch][Va] and [Ch][Sa]. Furthermore, the solubilities of lignin in the solvents were
determined at 25 ◦C, the effects of the H2O/[Ch][Na], H2O/[Ch][Fa], H2O/[Ch][Va] and H2O/[Ch][Sa]
molar ratios and the anionic structure on lignin solubility were systematically investigated, and
the possible dissolution mechanism was proposed. In addition, the lignin generated from choline
carboxylate/H2O/lignin solution was characterized by Fourier transform infrared (FT-IR) spectroscopy,
thermogravimetric analysis (TGA) and molecular weight examination. The selection of [Ch][Na],
[Ch][Fa], [Ch][Va] and [Ch][Sa] is based on the fact that choline cation is biodegradable [29], and the
paired anions [Na]−, [Fa]−, [Va]− and [Sa]− are derived from nicotinic acid, ferulic acid, vanillic acid
and syringic acid, respectively. Nicotinic acid is vitamin B3, and ferulic acid, vanillic acid and syringic
acid are often used as medicine, spice and food additives.

2. Materials and Experiment

2.1. Materials

Lignin (alkali) with a moisture content of 5% was purchased from Sigma-Aldrich (St. Louis, MO,
USA). The enzymatically hydrolyzed lignin, isolated from cellulolytic enzyme hydrolysis of corncob,
was from Shandong Longlive Bio-Technology Co., Ltd. (Shandong, China) [30]. The two lignins were
dried before use under vacuum at 60 ◦C; choline hydroxide aqueous solution (46%, w/w) was from
Alfa Aesar (Haverhill, MA, USA); nicotinic acid (98.0%), ferulic acid (99.0%), vanillic acid (98.0%),
and syringic acid (98.0%) were purchased from Aladdin Industrial Corporation (Shanghai, China);
deuterated DMSO (DMSO-d6) used for nuclear magnetic resonance (NMR) spectra examination was
purchased from Qingdao Weibo Tenglong Technol. Co. Ltd (Qingdao, China). These materials were
used as received. Distilled water was used throughout the experiments.

2.2. Synthesis of [Ch][Na], [Ch][Fa], [Ch][Va] and [Ch][Sa]

[Ch][Na], [Ch][Fa], [Ch][Va] and [Ch][Sa] were synthesized by using the procedure described in
the literatures [22,23]. Briefly, an aqueous solution of choline hydroxide [Ch][OH] was neutralized with
equal molar nicotinic acid to obtain [Ch][Na] aqueous solution. Water in [Ch][Na] aqueous solution
was then removed by evaporation under reduced pressure. The [Ch][Na] obtained was finally dried
under vacuum. [Ch][Fa], [Ch][Va] and [Ch][Sa] were synthesized by a similar procedure. In addition,
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measurements of the thermal properties of [Ch][Na], [Ch][Fa], [Ch][Va] and [Ch][Sa] are included in
the Supplementary Materials.

2.3. Dissolution of Lignin

As a representative, water, at a given molar ratio, was added to [Ch][Na] to obtain [Ch][Na]/H2O
solvent. This solvent was generally prepared prior to use. Lignin was added to 2.0 g of [Ch][Na]/H2O
solvent in a 25 mL glass-stoppered colorimetric tube. The tube was then immersed in an oil bath
(DF-101S, Gongyi Yingyu Instrument Factory, Gongyi, China). The temperature instability was
estimated to be ±0.5 ◦C. The lignin/[Ch][Na]/H2O mixture in the tube was stirred at 25.0 ◦C.
Additional lignin was added after the lignin in the tube was completely solubilized, based on
observations using a polarizing microscope. When lignin became saturated to the point that no
more lignin was dissolved further, its solubility (expressed by gram per 100 g of solvent) at 25 ◦C was
calculated from the amount of the solvent and lignin added.

2.4. Characterization of the Regenerated Lignin

Fourier transform infrared (FT-IR) spectra were determined on a Necolet Nexus spectrometer
(Nicolet iN10, Thermo Fisher Scientific, Waltham, MA, USA) to analyze the functional groups in the
regenerated lignin samples with KBr pellets. The FT-IR spectra for each sample were collected for
a total of 16 scans at a resolution of 2 cm−1 within the wavenumber range from 4000 to 400 cm−1.
Thermogravimetric analysis (TGA) was conducted on a NETZSCH STA 449 C thermal analyser
(Netzsch Corporation, Freistaat Bayern, Germany) using alumina crucibles under flowing N2 at
a heating rate of 10 ◦C min−1. The sample mass for each measurement was ca. 10–15 mg. The number
averaged (Mn) and weight averaged molecular weight (Mw) were examined on a Waters e2695
chromatographic instrument (Waters, MA, USA). N,N-Dimethylformamide was used as mobile phase.
Calibration of lignin molecular weight was achieved using polystyrene calibrants.

2.5. Measurements of 13C NMR Spectra

Measurements of 13C NMR spectra for [Ch][Na] in D2O/[Ch][Na] (R = 10) solvent and
D2O/[Ch][Na] (R = 10)/lignin (8 wt %) solution were performed at room temperature on a Bruker
Avance-400 NMR spectrometer (Bruker Corporation, Rheinstetten, Germany) operating at 400.13 MHz.
D2O was used as deuterated solvent and co-solvent in place of H2O for the convenience of 13C NMR
measurements due to the similarity of D2O with H2O. Chemical shifts were given in ppm downfield
from TMS.

3. Results and Discussion

3.1. Thermal Properties of [Ch][Na], [Ch][Fa], [Ch][Va] and [Ch][Sa]

In view of the safe application and no reported thermal property data of [Ch][Na], [Ch][Fa],
[Ch][Va] and [Ch][Sa], the thermal properties for them were determined and presented in Table 1.
It can be seen that the melting temperatures Tm or glass transition temperatures Tg range from −7 ◦C to
103 ◦C. This indicates that, for the choline carboxylates with the same [Ch]+ cation, Tm/Tg considerably
depends on anionic structure. Moreover, the replacement of the hydrogen atom of the benzene ring
in carboxylate anion by methoxy group significantly leads to a decrease in Tg. Consequently, Tg of
[Ch][Sa] (−2 ◦C) is markedly lower than that of [Ch][Va] (103 ◦C). At the same time, it was also found
that both the increase of alkyl chain length and the addition of ethylenic bond in the carboxylate anion
also significantly results in a decrease in Tg. For example, Tg of [Ch][Fa] (−7 ◦C) is notably lower than
that of [Ch][Va] (103 ◦C). In addition, Td is also influenced by the anionic structure, and is 163 ◦C for
[Ch][Fa], 171 ◦C for [Ch][Sa], 175 ◦C for [Ch][Va], and 219 ◦C for [Ch][Na], respectively (See Table 1).
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Table 1. Melting temperature (Tm), glass transition temperature (Tg), and thermal decomposition
temperature (Td).

IL Abbreviation
Schematic Stucture

Tm (◦C) Tg (◦C) Td (◦C)
Cation Anion

Choline nicotinate [Ch][Na]
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affected by anionic structure. For example, [Ch][Na]/H2O and [Ch][Fa]/H2O solvents can efficiently
dissolve lignin at a proper molar ratio range. However, lignin is not soluble at all in [Ch][Va]/H2O
and [Ch][Sa]/H2O solvents upon replacing the hydrogen atom of the benzene ring in carboxylate
anion by methoxy and/or hydroxyl groups. In addition, the solubilities of lignin in [Ch][Na]/H2O
solvents are generally higher than those in [Ch][Fa]/H2O solvents. As a matter fact, the addition of
57 wt % lignin to [Ch][Na]/H2O (R = 3:1–10:1) gave a highly viscous liquid that was hard to stir, and
we could not determine the final solubilities of lignin in the solvents. A similar trend is observed for
[Ch][Fa]/H2O solvents.

At the same time, as a representative, we also determined the solubility of the enzymatically
hydrolyzed lignin which has a similar structure to lignin in untreated lignocellulosic biomass [18], and
the solubility data of the lignin are given in Table 3. Apparently, [Ch][Fa]/H2O solvents still exhibit
powerful dissolution capacity for the enzymatically hydrolyzed lignin.

Table 2. Solubility of lignin (alkali) in the H2O/choline carboxylate solvent at 25 ◦C.

R
Solubility (g/100 g Solvent)

[Ch][Na] [Ch][Fa] [Ch][Va] and [Ch][Sa]

0 — a — a — a

1 — a — a — a

2 0.4 — a — a

3 >57 — a — a

4 >72 29 — a

6 — b >42 — a

7 >72 — b — a

8 >69 — b — a

10 >69 >51 — a

15 — a >50 — a

16 — a — a — a

17 — a — a — a

R is the mole ratio of H2O to choline carboxylate. a Insoluble at the given molar ratio. b Not measured.
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Table 3. Solubility of lignin (enzymatically hydrolyzed) in the [Ch][Fa]/H2O solvents at 25 ◦C.

Entry Solvent Solubility (Gram Per 100 g of Solvent)

1 [Ch][Fa]/H2O (R = 4:1) 31.0
2 [Ch][Fa]/H2O (R = 6:1) >45.0
3 [Ch][Fa]/H2O (R = 10:1) >51.0
4 [Ch][Fa]/H2O (R = 15:1) >50.0

R is the molar ratio of H2O to [Ch][Fa].

3.3. Effect of H2O Addition

At 25 ◦C, lignin is not soluble in H2O or [Ch][Fa], and [Ch][Na] is solid (see Table 2). Interestingly,
as H2O is added to [Ch][Na] and [Ch][Fa], lignin becomes readily soluble. However, it is also noted
that at all molar ratio ranges for [Ch][Va]/H2O and [Ch][Sa]/H2O solvents, lignin is not soluble at
all. This further indicates that the anionic structure of the choline carboxylate in the H2O/choline
carboxylate solvent dominates the dissolution of lignin. It has been reported that H2O can partially
dissociate an electrolyte into a free cation and anions [31]. Therefore, after the addition of H2O to
the choline carboxylate, the choline carboxylate is partially dissociated into free [Ch]+ cation and
carboxylate anions which interact with lignin and promote the dissolution of lignin. With respect to
the insolubility of lignin in [Ch][Va]/H2O and [Ch][Sa]/H2O solvents, it may be due to the interactions
of [Ch][Va]/[Ch][Sa]–H2O being stronger than those of the [Ch][Va]/[Ch][Sa]–lignin.

Moreover, it is also found that, in [Ch][Na]/H2O and [Ch][Fa]/H2O solvents, the lignin solubility
increases with increasing H2O content followed by reaching the maximum solubility. However, when
the H2O content further increases, the lignin solubility dramatically decreases. As mentioned above,
the choline [Ch]+ cation and carboxylate anion in [Ch][Na]/H2O and [Ch][Fa]/H2O solvents dominate
the lignin dissolution. Moreover, the concentrations of the dissociated choline [Ch]+ cation and
carboxylate anion increase with increasing H2O content. Hence, it is easy to understand why the
lignin solubility increases with increasing H2O content. However, the further increase in H2O content
decreases the concentration of the dissociated choline [Ch]+ cation and carboxylate anion, and thus the
lignin solubility decreases with increasing H2O.

3.4. Interaction between Lignin and [Ch][Na] in H2O/[Ch][Na] Solvent

To investigate the interaction in the H2O/[Ch][Na]/lignin solutions, the 13C NMR measurements
of [Ch][Na] in H2O/[Ch][Na] (R = 10) solvent and H2O/[Ch][Na] (R = 10)/lignin (8 wt %) solution
were performed. The results are given in the Supplementary Materials (Figures S1 and S2), and the
corresponding 13C NMR data are given in Table 4. At the same time, Figure 1 gives the schematic
structure and the numbering of the C atoms in [Ch][Na] to help understanding.

Based on the 13C NMR data in Table 4 that, after lignin was dissolved in H2O/[Ch][Na] solvent,
the C9 signal in nicotinate anion slightly shifts upfield (chemical shift decreases). This is mainly
ascribed to the strong interaction of the carboxyl group in nicotinate anion with H2O, which disables
the carboxyl group to interact with lignin. At the same time, it is noted that the signals of the carbon
atoms C1–C8 except for C7 shift upfield (a decrease in the chemical shifts). This suggests that the
aromatic ring or/and alkyl units in cations and anions interact with lignin, resulting in the increase of
the electron cloud density of these atoms. Therefore, the dissolution of lignin in H2O/[Ch][Na] solvent
mainly results from the interaction of the alkyl chain instead of the carboxyl group in nicotinate anions,
which is similar to the results reported in the literature [26]. To verify this speculation, the solubility
of lignin in aqueous choline chloride (H2O/[Ch]Cl) solutions was determined at 25 ◦C at different
molar ratios of H2O to [Ch]Cl. [Ch]Cl was chosen because there is no alkyl chain in its anion. It was
found that lignin was not dissolved in H2O/[Ch]Cl solvents at any molar ratio of H2O to [Ch]Cl. This
further indicates that the aromatic ring or/and alkyl units in the cations and anions played a key
role in lignin dissolution. Additionally, in H2O/[Ch][Va]([Ch][Sa]) solvents, the replacement of H of
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benzene ring in carboxylate anions by OH and OCH3 group resulted in the remarkable enhancement
of hydrophilicity of the carboxylate anions, which strengthens IL-H2O interaction. Therefore, lignin
was insoluble in H2O/[Ch][Va]([Ch][Sa]) solvents. At the same time, it is also noted that [Fa]− and
[Va]− anions have the same benzene ring as well as the methoxy and hydroxyl groups, and lignin is
soluble in the H2O/[Ch][Fa] solvents at R = 4–15 owing to the existence of CH=CH in the [Fa]− anion,
but not soluble in the H2O/[Ch][Sa] solvents at all molar ratio ranges. This further indicates that the
aromatic ring and/or alkyl units in the cations and anions are favorable to lignin dissolution.

Table 4. 13C nuclear magnetic resonance (NMR) chemical shifts (δ) of [Ch][Na] in H2O/[Ch][Na]
(R = 10:1) solvent and H2O/[Ch][Na] (R = 10:1)/lignin solutions.

Lignin Concentration (wt %) C1 C2 C3 C4 C5 C6 C7 C8 C9

0 53.43 55.17 67.10 148.83 123.62 132.52 137.19 149.80 171.08
8.0 53.38 55.14 67.06 148.78 123.58 132.49 137.20 149.71 171.05
∆δ −0.05 −0.03 −0.04 −0.05 −0.04 −0.03 0.01 −0.09 −0.03
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3.5. Recovery of Solvent and Structure and Thermal Properties of the Regenerated Lignin

Recovery of H2O/choline carboxylate solvent was estimated. After the complete dissolution
of lignin in the H2O/choline carboxylate solvent, lignin can be regenerated and the H2O/choline
carboxylate solvent can be recovered by adding additional water. In a typical recovery trial, 4.0 g of
H2O/[Ch][Na] (R = 8:1) solvent and 40.0 wt % lignin solution were used. The lignin solution was
filtered using a 60 mL sand-core filter funnel to obtain lignin, and the lignin was then washed 4–5 times
by 50 g H2O to ensure that [Ch][Na] had been washed out. The recovered lignin was about 89 wt %. All
filtrate was collected together. The H2O/[Ch][Na] solvent recovered could be obtained by evaporating
off H2O. Interestingly, after three dissolving-recovering cycles, the solvent still displayed the same
dissolution capacity of lignin as the original solvent.

The averaged molecular weight is shown in Table 5. The molecular weight of the regenerated
lignin from [Ch][Fa]/H2O (R = 10:1)/lignin solution is close to that of original lignin, indicating that
the molecular structure of the regenerated lignin is hardly disrupted. The molecular weight of the
regenerated lignin from [Ch][Na] (R = 8:1)/H2O/lignin solution is slightly higher than that of the
original lignin. This is mainly ascribed to the fact that in the regeneration processes, the lignins of
some small number weight are washed off.

Table 5. The number averaged (Mn) and weight averaged molecular weight (Mw) of samples.

Sample Mn Mw

Regenerated lignin from [Ch][Fa]/H2O (R = 10:1)/lignin solution 2,062,903 2,738,281
Regenerated lignin from [Ch][Na] (R = 8:1)/H2O/lignin solution 2,244,528 2,842,232

Original lignin 2,056,690 2,796,590

Figure 2 shows the FT-IR spectra of the original lignin and the regenerated lignin. The FT-IR
spectra for the regenerated lignins from [Ch][Fa]/H2O (R = 10:1)/lignin solution and [Ch][Na]
(R = 8:1)/H2O/lignin solution are in excellent agreement with those from the original lignin, hence
confirming that no chemical reaction occurs between the solvents and lignin in the dissolution and
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regeneration processes. The detailed affiliation for the absorption bands of the original and regenerated
lignin are placed in Supplementary Materials. The FT-IR spectra of the original and regenerated lignin
are similar to those reported in the literature [32–34].Polymers 2018, 10, x FOR PEER REVIEW  7 of 9 
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Figure 3 shows the TGA curves of the original lignin and regenerated lignin. It can be seen that
the regenerated lignins from H2O/[Ch][Na] (R = 10:1)/lignin solution (244 ◦C) and H2O/[Ch][Fa]
(R = 10:1)/lignin solution (204 ◦C) exhibit a slightly lower onset temperature for the decomposition
compared to the original lignin (260 ◦C). It is likely that the lower molecular weight lignins are washed
away after the dissolution and regeneration process. Moreover, it is also found that, upon heating to
650 ◦C, the residual char yield of the original lignin is about 45 wt %, and the residual char yield of the
regenerated lignin from H2O/[Ch][Na] (R = 10:1)/lignin solution is about 38 wt % and 43 wt % for the
regenerated lignin fron H2O/[Ch][Fa] (R = 10:1)/lignin solution.
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4. Conclusions

Novel solvents have been developed by adding H2O to [Ch][Na], [Ch][Fa], [Ch][Va] and [Ch][Sa].
Anionic structure significantly affects the lignin solubility in the choline carboxylate/H2O solvents.
[Ch][Na]([Ch][Fa])/H2O solvents can readily dissolve lignin even at ambient temperatures, but lignin
is not insoluble in [Ch][Va]([Ch][Sa])/H2O solvents due to the replacement of the hydrogen atom
in the benzene ring in the benzoate anion by methoxy and/or hydroxyl groups. The dissolution
of lignin in [Ch][Na]([Ch][Fa])/H2O solvents mainly results from the interaction of the alkyl chain
in [Ch][Na]([Ch][Fa]) with lignin, and the role of H2O serves to dissociate [Ch][Na] and [Ch][Fa]
into free anions and cations. [Ch][Na]([Ch][Fa])/H2O solvents can be recovered and reused, and the
recovered solvent still displays the same dissolution capacity of lignin as the original solvent after three
dissolving–recovering cycles. Moreover, the regenerated lignin exhibits good thermal stability and
hardly disrupted molecular structure according to FT-IR, TGA and molecular weight investigations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/8/840/s1.
Figure S1: The 13C NMR spectra of [Ch][Na] in H2O/[Ch][Na] (R = 10) solvent at room temperature; Figure S2:
The 13C NMR spectra of [Ch][CH3CH2COO] in [Ch][Na] in H2O/[Ch][Na] (R = 10)/lignin (8 wt %) solution at
room temperature; FT-IR spectra analysis of the original lignin and the regenerated lignin; Measurements of the
thermal properties of [Ch][Na], [Ch][Fa], [Ch][Va] and [Ch][Sa].
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