

Supplementary Information

Interfacial Properties and Hopping Diffusion of Small Nanoparticle in Polymer/Nanoparticle Composite with Attractive Interaction on Side Group

Kai-Xin Ren¹, Xiang-Meng Jia¹, Gui-Sheng Jiao^{1,†}, Tao Chen¹, Hu-Jun Qian ^{1*}¹⁰ and Zhong-Yuan Lu¹¹⁰

- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
- * Correspondence: hjqian@jlu.edu.cn; Tel.: +86-431-88498132
- + Current address: China Spallation Neutron Source (CSNS), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Dongguan 523803, China

Academic Editor: name Version May 28, 2018 submitted to Polymers

1 1. Supplementary Information

We have calculated the time autocorrelation function (ACF) of the end-to-end vector of PS and PP chains to extract the relaxation time of the polymer chain. Data of ACF curves are shown in Fig. S1. The relaxation time τ of chains can be obtained by fitting the ACF curves with the Kohlrausch-Williams-Watts (KWW) function [1,2] as follows:

$$ACF(t) = Aexp\left[-\left(\frac{t}{\tau}\right)\right]^{\beta}$$
(1)

- ² Where A is a pre-exponential factor that can capture relaxation processes happening at very short
- ³ times, the relaxation time that gives us an estimation of the characteristic decorrelation time of the
- end-to-end vector of the polymer chain, and β is an stretch exponent. The τ of the PS and PP chains are 792.03 ns and 0.86 ns, respectively.

Fig. S1 The time autocorrelation function (ACF) of the end-to-end vector of PS and PP chains (dash lines). The solid lines represent the corresponding KWW-fitting.

- ⁶ Fig. S2 shows the fitting results of using one and two Gaussians to fit the DDF at time scale of
- $_{7}$ 70ns for C₆₀ in PS, we see that single-Gaussian fitting does not match well with the data points while

two-Gaussians fitting works well.

Fig. S2 The fitting results of using either single-Gaussing or two-Gaussians to fit the DDF at 70ns for C_{60} in PS.

In order to characterize the deviation from Gaussian, non-Gaussian parameter α_2 is calculated:

$$\alpha_2(\Delta t) = \frac{3\langle \Delta r^4(\Delta t) \rangle}{5\langle \Delta r^2(\Delta t) \rangle^2} - 1.$$
⁽²⁾

- The results are shown in Fig. S3 for PS and PP systems. Generally, $\alpha_2 = 0$ indicates a perfect Gaussian
- ¹⁰ process. As expected, this parameter has a very small value in PP melt, indicating a homogeneous
- $_{11}$ Gaussian process. While when C_{60} NP diffuses in PS melt, its value increases with time indicating some
- ¹² deviations from Gaussian, while such deviation is not very significant since α_2 only has a maximum
- value of 0.6.

Fig. S3 The time dependant non-Gaussian parameter α_2 for the diffusion of C₆₀ in PS melt (solid line) and PP melt (dash line).

The trajectory of C_{60} NP in PP system on a small length scale are shown in Fig. S4. And from the

results we still do not observe any jump like motion of C_{60} in these figures.

Fig. S4 The trajectory of C_{60} NP in PP system on a small length scale.

16 References

- 17 1. He, Y.; Lutz, T.R.; Ediger, M.D.; Ayyagari, C.; Bedrov, D.; Smith, G.D. NMR Experiments and Molecular
- ¹⁸ Dynamics Simulations of the Segmental Dynamics of Polystyrene. *Macromolecules* **2004**, *37*, 5032–5039.
- 19 2. Harmandaris, V.A.; Floudas, G.; Kremer, K. Temperature and Pressure Dependence of Polystyrene

²⁰ Dynamics through Molecular Dynamics Simulations and Experiments. *Macromolecules* **2011**, 44, 393–402.

21 © 2018 by the authors. Submitted to *Polymers* for possible open access publication under the terms and conditions

²² of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).