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Abstract: The effect of the polymer chain topology structure on the adsorption behavior in the
polymer-nanoparticle (NP) interface is investigated by employing coarse-grained molecular dynamics
simulations in various polymer-NP interaction and chain stiffness. At a weak polymer-NP interaction,
ring chain with a closed topology structure has a slight priority to occupy the interfacial region than
linear chain. At a strong polymer-NP interaction, the “middle” adsorption mechanism dominates the
polymer local packing in the interface. As the increase of chain stiffness, an interesting transition from
ring to linear chain preferential adsorption behavior occurs. The semiflexible linear chain squeezes
ring chain out of the interfacial region by forming a helical structure and wrapping tightly the surface
of NP. In particular, this selective adsorption behavior becomes more dramatic for the case of rigid-like
chain, in which 3D tangent conformation of linear chain is absolutely prior to the 2D plane orbital
structure of ring chain. The local packing and competitive adsorption behavior of bidisperse matrix
in polymer-NP interface can be explained based on the adsorption mechanism of monodisperse
(pure ring or linear) case. These investigations may provide some insights into polymer-NP interfacial
adsorption behavior and guide the design of high-performance nanocomposites.
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1. Introduction

Polymer nanocomposites that consist of mixtures of polymers and organic/inorganic particles
are a new member of composite materials, which have been used in a wide variety fields [1].
The macroscopic properties (such as mechanic, electronic, optical, and so forth) of nanocomposites
not only depend on the microscopic morphology of constituent nanoparticle (NP) in the polymer
matrix [2–6], but also are sensitive to the polymer conformation, especially the local packing at
polymer-NP interface. For example, carbon black particles are immersed to increase the strength,
viscosity, and durability of rubbers [7,8], and fullerenes are used to enhance the efficiency of
polymer-based photovoltaic devices [9].

Nevertheless, it has been proven that the adding of particles into polymeric materials frequently
results in agglomeration and phase separation, a uniform dispersion of NPs in polymer matrix is hard
to get, owing to the strong interparticle interactions and weak polymer-NP interfacial interaction.
Many experimental [10,11], theoretical [12,13], and simulation [14–17] studies have been devoted to
investigating this issue. Hooper et al. theoretically pointed out that there are four general categories
of polymer-mediated NP organization: contact aggregation due to depletion attraction, segment
level tight particle bridging, steric stabilization due to thermodynamically stable “bound polymer
layers”, and “tele-bridging” where distinct adsorbed layers coexist with longer range bridging [12].
Mackay et al. experimentally demonstrated that thermodynamically stable dispersion of NPs into
a polymeric liquid is enhanced when the radius of gyration of the linear polymer is greater than
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the NP radius [10]. Liu et al. emphasized that a homogeneous filler dispersion exists just at the
intermediate interfacial interaction by computer simulations [14]. In a subsequent study by Singh et
al., they analyzed the transitions between different structures in the polymer-NP system caused by the
polymer-NP interaction strength and polymer chain length, respectively [15].

On the other hand, some researchers have paid their attention to the polymer conformation
behavior in nanocomposites, such as the dimension [11,16,18–20]. However, up to date, there is also
controversy as to whether the addition of NPs to a polymer melt causes polymer chains either to
expand, shrink or be unperturbed compared to their size in the bulk. For instance, Mackay et al.
found that when the radius of gyration of the polymer is larger than the chemically identical NP
radius, a 10–20% expansion in deuterated polystyrene (d-PS) chain dimensions occurs by neutron
scattering [11]. However, Crawford et al. ensured a spatially uniform dispersion of 13 nm silica
NPs miscible in polystyrene melts by neutron scattering, X-ray scattering, and transmission electron
microscopy. They found that the polymer size in nanocomposites remains unaltered regardless of the
relative size between components and NP loading [16]. From a simulation point of view, Clarke et al.
demonstrated that the polymer chains are unperturbed by the presence of repulsive NPs, while it
can be stretched and flattened by the attractive NPs with very small size [20]. Yan et al. reviewed
the recent progress on the structure, dynamics, and physical properties of PNCs [21]. Besides the
investigation on the NP dispersion and polymer conformation, some attentions are also drawn to
understanding the local packing [14,22–25] and dynamics [26–29] of polymer matrix at the polymer-NP
interface. Chen et al. [22] experimentally observed double glass transition and interfacial immobilized
layer in in-Situ-Synthesized PVA/Silica Nanocomposites, and pointed out the interfacial layer is
mainly composed of partial segments of different polymer chains, which is further verified by the
molecular dynamics simulation of Liu et al. [14]. Vacatello et al. used Monte Carlo (MC) simulations
to obtain a general picture of the molecular arrangements in polymer-based nanocomposites, in which
the chains are classified as the sequences of interface, bridge and loop segments [24]. Ge et al. [26]
investigated the role of polymer topology in the dynamical coupling between NPs and polymers in
nanocomposites. Kumar et al. [27] studied the diffusion of nanoparticle in polymer nanocomposites
and provided an excellent understanding on the motion of NPs, which the size is smaller than the
polymer entanglement mesh size. Besides, Ying et al. [28,29] used molecular dynamics simulation to
study the effect of nanoparticle volume fraction on the dynamics of polymer and offered an explanation
for understanding the rheological properties of polymer composites.

Obviously, polymer chains around NP exhibit dramatically different interfacial behavior in
comparison with the bulk phase. Several groups [30–32] paid their attention on the adsorption
mechanism of polymers on flat surfaces. For instance, Cohen-Stuart et al. [30] performed MC
simulations for studying the competition between surface adsorption and folding of fibril-forming
polypeptides, and their results suggest that a weakly attractive surface can enhance the folding.
Sommer et al. [31] used computer simulations on the adsorption of branched and dendritic polymers
onto flat surfaces, there is a two-step adsorption scenario on temperature dependence related with
strong excluded volume effects.

Nevertheless, there is no general experimental, theoretical, and simulation consensus about
the accurate characterization and interpretation of the interfacial region, especially considering the
adsorption mechanism of polymer chains with polydispersity close to the surface of NP. We have
involved this issue by exploring the interfacial adsorption mechanism by varying the polymer-NP
interaction, which may be the main factor in determining the interfacial behavior. Our study further
confirmed that one of chain ends prefers to be in contact with NP and shows a perpendicular
conformation to the NP surface when the polymer-NP interactions are weak (i.e., endpoint adsorption);
while the inner chain monomers wrap NP tightly when the attractive interactions are strong (i.e., middle
adsorption) [25]. In order to further characterize the adsorption mechanism and local packing of
bidisperse matrix with different topologies in the polymer-NP interfacial region, we focus on the
mixtures of ring and linear polymer chain in nanocomposites.
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2. Model and Methods

In our simulation, a standard bead-spring model is used to model polymer chain. Each ring or
linear polymer chain consists of n spherical monomers with diameter of σ and mass of m, which are
interconnected by the finitely extendable nonlinear elastic (FENE) potential [33]:

UFENE(r) = −
KR2

0
2

ln

[
1−

(
r

R0

)2
]

, r < R0 (1)

where r is the distance between the two neighboring monomers. K = 30ε/σ2 is a spring constant and
R0 = 1.5σ is a finite extensibility to avoid chain crossing, where σ is the monomer diameter. The stiffness
of a polymer chain is described by a bending potential between adjacent bonds:

Ubending = kb(1 + cos θ) (2)

where θ is the angle between two consecutive bonds and the chain stiffness is controlled by varying
the value of kb. NP is modeled as a Lennard-Jones (LJ) sphere of radius Rn = 2.5σ. Mass density of
NPs are the same as the polymers, therefore the mass of NP is 125 times of that of a monomer.

Here a truncated and shifted Lennard-Jones (LJ) potential is used to model NP-NP and
polymer-NP interactions as well as the nonbonded interactions between all polymer monomers,
as follows [34]:

U(r) =

 4ε
[(

σ
r−rEV

)12
−
(

σ
r−rEV

)6
+ 1

4

]
r− rEV < rcutoff

0 r− rEV ≥ rcutoff

(3)

where ε is the LJ potential interaction energy and rcutoff stands for the distance (r− rEV) at which the
interaction is truncated and shifted so that the energy and force are zero. In our simulation, we offset
the interaction range by rEV to account for the excluded volume effects of different interaction sites.
For NP-NP and polymer-NP interactions, rEV equals to 2Rn − σ and Rn − σ/2, respectively, while for
polymer-polymer interactions, rEV is zero. Here εnn = εpp = 1.0 and rcutoff = 21/6σ in both NP-NP
and polymer-polymer interactions with repulsive only part of Equation (3). Meantime, εnp is varied to
simulate different interfacial interactions with an attractive nature of rcutoff = 2.5σ. Here we set ε and
σ to be unity for dimensionless simulation.

Our molecular dynamics simulations are performed in a NVT ensemble. The simulation box
is set as 35σ× 35σ× 35σ, where periodic boundary conditions are employed in all three directions.
NPs with a fixed number of M = 5 are embedded at a random position and allowed to move. Here the
polymer bulk density is set as ρ∗ = 0.8 and each polymer chain consists of n = 30 monomers. 570 ring
chains with n = 30 and 570 linear chains with n = 30 are mixed in bidisperse case, while 1140 pure
ring or linear chains with n = 30 are selected in monodisperse case. Additionally, the velocity-verlet
algorithm is used to integrate the equation of motions with time step ∆t = 0.01τ, where the unit of
time τ =

√
ε/mσ2 and m is the mass unit of a monomer. The desired temperature is set to T = 1.0 by

using a Langevin thermostat. Rapid annealing from the initial temperature T = 9 to T = 5 is initially
employed, followed by a slow anneal-temper process between T = 5 and the desired temperature is
performed, to prevent the simulations from trapping into a local minimum energy at a low temperature.
All simulations were performed by the open source LAMMPS molecular dynamics package [35].

3. Results and Discussion

To characterize the local packing and competitive adsorption mechanism of bidisperse matrix in
the polymer-NP interfacial region, the nanocomposites with the mixture of ring and linear polymer
chain are considered. We change the interaction strength, εnp, from 0.1 to 10.0, representing weak
to strong polymer-NP attraction, and the chain stiffness, kb, from 0 to 50, which corresponds to the
flexible, semiflexible, and rigid-like chain, respectively. Then the monodisperse case (pure ring or
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linear chain) is also analyzed to interpret the intrinsic reason for the competitive adsorption occurred
in bidisperse case.

Before the discussion, we first examine the local structure of polymer close to the surface of NP in
nanocomposites and define the polymer-NP interfacial region. Take pure linear chain for example,
as shown in Figure 1, the polymer-NP pair distribution function gnp(r) for various attraction εnp

exhibits an evident layering behavior. The obviously high monomer density in “Layer1” (shown
in Figure 1) establishes a well defined interface between the polymer and NP, therefore we take
the “Layer1” as the polymer-NP interfacial region in the following study. Meanwhile, we present
the whole chain in the snapshots of nanocomposites by only one or more monomers per chain
located within Layer1. Figure 1 also shows that the polymer density around NP increases with
increasing εnp from weak to strong attraction, which is consistent with the studies by Gao et al. [14]
and Karatrantos et al. [20].
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Figure 1. Polymer-nanoparticle (NP) pair distribution function gnp(r) in nanocomposites for various
attractive interactions εnp.

Then we focus on the bidisperse matrix of the mixture of ring and linear polymer chain with the
same amount of monomer. Figure 2 represents an overview of the selective adsorption states that
arise upon varying the two main variables, the polymer-NP interaction εnp and chain stiffness kb.
Here “ring chain in majority” in phase diagram indicates that the number of ring chain monomers in
polymer-NP interface is more than that of linear chain, while “linear chain in majority” is opposite.
The solid line in Figure 2 is used to divided the above two adsorption states. In the case of weak and
intermediate attractive interactions εnp such as from 0.1 to 2.0, ring chain always takes precedence
over the linear chain regardless of chain stiffness kb. For the strong attractive interactions, εnp > 2.0
there is a preferential transition from ‘ring chain in majority’ to ‘linear chain in majority’ as the chain
stiffness kb increases. From figure, we also can see that the transition point decreases with the increase
of kb. This finding may be related to the different local packing of ring and linear semiflexible chain,
which will be discussed detailly in the follow.
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Figure 2. The phase diagram of ring and linear chains adsorbed to polymer-NP interfacial region as a
function of polymer-NP interaction εnp and chain stiffness kb.

To further quantitatively understand the preferential adsorption behavior between ring chains
and linear chains in interfacial region, the fractions of ring chain to all monomers in polymer-NP
interface f for various interactions are calculated shown in Figure 3. As εnp = 1.0 or 2.0, the value of f
is in the range of 0.5 to 0.7, indicating that the ring chain slightly preferentially occupy the interfacial
region. As f approximately equals to 0.5, means that the interfacial region shows no selection for
ring or linear chains. At the strong polymer-NP interaction, εnp = 10.0, f > 0.5 as 0 < kb ≤ 6,
indicating that the ring chain preferentially occupy the interfacial region. Interestingly, the value of
f shifts down to be less than 0.5 as kb increases from 8 to 50. This result suggests the ring chains in
interfacial region are quickly replaced by linear chains, as the chain becomes stiffer. The minimum
value of f is even close to zero as kb ≈ 50, showing an absolute priority for linear chains to occupy the
polymer-NP interface.Polymers 2017, 9, x FOR PEER REVIEW  6 of 11 
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Meanwhile the polymer-NP pair distribution function gnp(r) and its representative snapshots for
bidisperse matrix are shown in Figures 4 and 5, respectively. At the weak polymer-NP interactions
εnp = 1.0 for kb = 0, 10, and 50, snapshots in Figure 4b display that the interfacial layer is composed
of partial segments of ring and linear polymer chains. Ring chains preferentially wet the interfacial
layer more than linear chains, in which the peak in gnp(r) for ring chain is slightly higher than the
peak for linear chain shown in Figure 4a. Similar behavior appears in nanocomposites regardless of
the chain stiffness varied from flexible (kb = 0) to semiflexible (kb = 10) and to rigid-like (kb = 50) chain.
Some related studies have pointed out that at a weak polymer-NP interaction, polymer chains prefer
to performing a “one-endpoint” adsorption behavior, which shows a perpendicular conformation to
the NP surface [14,25]. As a result, it can be referred that for weak polymer-NP interaction, ring chains
show a higher correlation with NP due to its closed topology structure, and there is no evident chain
stiffness dependence.
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For the strong polymer-NP interactions εnp = 10.0, our previous study also has given the
results that the inner monomers of chains prefer to wrap tightly the surface of NP, which performs a
“middle” adsorption behavior [25,36]. Figure 5 shows a ring-to-linear selective adsorption transition
with increasing chain stiffness. As kb = 0, i.e., flexible chain, this “middle” adsorption mechanism
that the middle monomers of polymer chain tend to cover the surface of NP, drives the ring chains
still in majority in comparison with linear chain, due to its closed topology structure. As kb = 10,
i.e., semiflexible chain, the middle image in Figure 5b shows that the linear chains favorably wrap
around NPs and predominantly crowd the ring chains out of the interfacial region. On the one
hand, this phenomenon can be attributed to the fact that the linear semiflexible chains with a proper
stiffness are inclined to form a chiral helical structure [37], which is commonly observed in biological
environments. For instance, the negatively charged stiff polymer (DNA) wraps around a cationic core
particle (protein), in which the packing manner is referred to as a nucleosome-like structure [38–40].
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On the other hand, for the ring chain, the entropy gain due to the possible number of states of
the chain near to the surface dominates the bending energy cost. As a result, the semiflexible linear
chain tends to occupy primarily the interfacial region. With increasing kb = 50, i.e., rigid-like chain,
the preferential adsorption behavior by linear chains becomes more pronounced shown in the curve
of gnp(r). The spiral linear chain begins to untie and tangentially cover the NP surface with the
middle parts of the chain, and little interfacial region is left for the rigid ring, which corresponds to the
adsorption state of f ≈ 0 mentioned in Figure 3.

To interpret the intrinsic reason for the competitive adsorption transition occurred in bidisperse
case, we focus on the monodisperse matrix of pure ring or linear chain. At the strong polymer-NP
interaction, chain stiffness kb is also increased from 0 to 50. The different polymer conformations for
pure linear and ring chain are presented in the snapshots of Figure 6a,b, respectively. For pure linear
chain, we can obtain a general picture of local packing of linear chain in polymer-based nanocomposites,
in which the linear chain is classified as the sequences of bridge adsorption, chiral helical adsorption,
and tangent adsorption. In contrast, the ring chain shows a sequence of conformations of double
bridges adsorption, coexistence of double bridges and orbital adsorption, and only orbital adsorption.
In fact, this finding provides a direct support for understanding the competitive adsorption transition
occurred in bidisperse case.

The schematic diagram shown in Figure 7 offers a clear view for the local packing of monodisperse
and bidisperse polymer matrix at the polymer-NP interface. As known by above, the “middle”
adsorption mechanism dominates the polymer local packing in the interface under the strong
polymer-NP interactions. Let us focus on the cartoons of Figure 7c. As the chain stiffness is weak, i.e.,
flexible chain, double bridge conformation of ring chain is superior to the single bridge packing of
linear chain, illustrating “ring chain in majority” appeared in phase diagram of Figure 2. With the
increase of chain stiffness, i.e., semiflexible chain, the helical structure of linear chain is benefit for
wrapping the whole surface of NP, and crowding ring chain out of interface region. This finding can
reveal the preferential transition from “ring chain in majority” to “linear chain in majority” occurred
in phase diagram of Figure 2. Finally, as rigid-like chain, 3D tangent conformation of linear chain
is absolute precedence over the 2D orbital plane structure of rigid-like ring, exactly explaining the
absolute dominant adsorption state of f ≈ 0 shown in Figure 3. Our work may provide a theoretical
guidance for understanding the forming mechanisms of the conformations differences between linear
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chain and ring chain. Rcently, Iwamoto et al. investigated the conformations of ring plystyrenes by
SANS and concluded Flory’s exponent ν in Rg = Nν for rings may not be constant but rather show
molecular weight dependence due to their topological constraint [41].
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4. Conclusions

In conclusion, we investigated the local packing and competitive adsorption behavior of bidisperse
matrix with ring and linear polymer chain using coarse-grained molecular dynamics simulations.
It is found that for the weak polymer-NP interaction, ring chain are slightly preferred to occupy the
interfacial region than linear chain, due to its closed topology structure and regardless of chain stiffness.
While for the strong polymer-NP interaction, the “middle” adsorption mechanism dominates the
polymer local packing in the interface, and the selective adsorption behavior of bidisperse matrix
is sensitive to the chain stiffness. For flexible polymer chain, double bridge conformation of ring
chain is superior to the single bridge packing from linear chain, resulting in “ring chain in majority”.
As increasing chain stiffness, a ring-to-linear selective adsorption transition occurs. The semiflexible
linear chain squeezes ring chain out of the interfacial region by forming a helical structure and
wrapping tightly the surface of NP, while semiflexible ring chains still have the configurations of double
bridge or 2D plane orbit. Further increasing stiffness to rigid-like chain, “linear chain in majority”
selective adsorption behavior becomes more dramatic, in which 3D tangent conformation of linear
chain is absolutely prior to the 2D plane orbital structure of ring chain. In addition, the monodisperse of
pure ring or linear chain is also considered to explain the ring-to-linear selective adsorption transition
with increasing chain stiffness. Besides, other topology structure e.g., star-like or dendritic chain will
be the next step toward this issue that the effect of topology structure on adsorption behavior occurred
at the polymer–NP interface.
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