
polymers

Article

Novel Magnetic-to-Thermal Conversion and Thermal
Energy Management Composite Phase
Change Material

Xiaoqiao Fan, Jinqiu Xiao, Wentao Wang, Yuang Zhang, Shufen Zhang and Bingtao Tang * ID

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China;
fxq@mail.dlut.edu.cn (X.F.); xjq@dlut.edu.cn (J.X.); wentao_wang@mail.dlut.edu.cn (W.W.);
zhangyuang@mail.dlut.edu.cn (Y.Z.); zhangsf01@sohu.com (S.Z.)
* Correspondence: tangbt@dlut.edu.cn; Tel.: +86-411-8498-6267

Received: 9 April 2018; Accepted: 21 May 2018; Published: 27 May 2018
����������
�������

Abstract: Superparamagnetic materials have elicited increasing interest due to their high-efficiency
magnetothermal conversion. However, it is difficult to effectively manage the magnetothermal energy
due to the continuous magnetothermal effect at present. In this study, we designed and synthesized
a novel Fe3O4/PEG/SiO2 composite phase change material (PCM) that can simultaneously realize
magnetic-to-thermal conversion and thermal energy management because of outstanding thermal
energy storage ability of PCM. The composite was fabricated by in situ doping of superparamagnetic
Fe3O4 nanoclusters through a simple sol–gel method. The synthesized Fe3O4/PEG/SiO2 PCM
exhibited good thermal stability, high phase change enthalpy, and excellent shape-stabilized property.
This study provides an additional promising route for application of the magnetothermal effect.

Keywords: superparamagnetic Fe3O4 nanocluster; magnetothermal conversion; phase-change
material; thermal energy management

1. Introduction

Under the alternating magnetic field, magnetic nanoparticles can produce a large amount of
heat energy by the magnetothermal effect as a result of Néel relaxation or Brownian relaxation [1–4].
More importantly, magnetic nanoparticles exhibit superparamagnetism when their size is reduced to a
certain extent [5,6], which has relatively high magnetic susceptibility and no remanence or coercivity
after removal of the magnetic field [7,8]. These advantages, coupled with magnetothermal effect of
magnetic nanoparticles, provide various useful applications that range from cancer treatment [9,10]
to magnetically triggered drug delivery [11,12]. However, the thermal energy from magnetothermal
conversion of superparamagnetic materials was difficult to manage effectively due to the continuous
magnetothermal effect [13–15].

Phase change material (PCM), a substance that changes its state (from liquid to solid, or solid to
liquid) and provides latent heat as the temperature changes, is one of the most prospective thermal
energy management materials [16–21]. These materials can store and release a large amount of heat
energy at a small temperature change during phase transition [22–35]. If superparamagnetic Fe3O4

and PCM are combined, obtained composite will have dual functions of magnetothermal conversion
and heat management.

Based on the above idea, we reported a novel Fe3O4/PEG/SiO2 composite PCM via the facile
doping of superparamagnetic nano Fe3O4 through in situ sol–gel method. Superparamagnetic
nano Fe3O4 possess high saturation magnetization (Ms) and negligible remanence, and they were
successfully combined with a form-stable PCM system in this work. The thermal energy dissipated by
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superparamagnetic nano Fe3O4 was stored by PCM in the way of phase transition (Figure 1). Thus,
this strategy can effectively control the temperature of the magnetothermal conversion system by
managing the thermal energy from magnetothermal conversion of superparamagnetic materials.
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Figure 1. Schematic of magnetic-to-heat conversion and storage.

2. Materials and Methods

2.1. Materials

Iron (III) chloride anhydrous (FeCl3) was obtained from Xilong Chemical Company, Ltd.,
Shantou, China. Diethylene glycol (DEG) and Sodium acetate anhydrous (CH3COONa) were supplied
by Guangfu Fine Chemical Research Institute, Tianjin, China. Ethylene glycol (EG) was obtained from
Fuyu Fine Chemical Company, Tianjin, China. Trisodium citrate dihydrate (C6H5Na3O7·2H2O) was
purchased from Damao Chemical Reagent Factory, Tianjin, China. Analytical grade polyethylene
glycol (PEG, Mn = 6000) was purchased from Aladdin, Shanghai, China. Tetraethoxylsilane (TEOS,
98% purity) was provided from Sigma-Aldrich, St. Louis, MO, USA. All other reagents were of
analytical grade.

2.2. Synthesis of Fe3O4/PEG/SiO2 Composite

The preparation of Fe3O4/PEG/SiO2 composite was divided into two procedures. The first
procedure was the synthesis of superparamagnetic Fe3O4 nanoclusters. In this procedure, Fe3O4

nanoclusters were prepared using a typical solvothermal method. Firstly, FeCl3 (10 mmol) and Na3Cit
(1 g) were added to a mixed solvent of DEG and EG (DEG:EG = 1:1, total volume = 80 mL) under
mechanical stirring at 120 ◦C and dissolved to form a clear solution. Secondly, NaAc (50 mmol) was
put in the clear solution and stirred vigorously for the next 1h. Then, the obtained homogeneous
solution was transferred into a 100 mL of Teflon-lined stainless steel autoclave and heated to 200 ◦C.
After maintaining this condition for 10 h, the sealed autoclave was cooled to room temperature. Finally,
the obtained precipitate was separated from the mixed solvent by a magnet and rinsed with deionized
water for several times.

In the second procedure, Fe3O4/PEG/SiO2 composite PCM was synthesized via a sol–gel method.
Figure 2 illustrates a schematic of the preparation method of Fe3O4/PEG/SiO2 composite. A specified
amount of TEOS was mixed with deionized water at a mole ratio of 1:10. After stirring for several
minutes, 0.5 M of hydrochloric acid was dropped into the solution, and the pH of the solution was
adjusted to 1–2. The hydrolysis reaction proceeded until the solution became clear. Subsequently,
100 g·L−1 of sodium carbonate solution was added to adjust pH to 5–6, and the melted PEG and Fe3O4

homogeneous aqueous solution was put in silica sol under stirring. Silica gel containing PEG and
Fe3O4 was obtained after 100 g·L−1 of Na2CO3 solution was added to adjust the pH of the solution.
The PCM whose PEG content was 80 wt % was obtained when the gel was dried in a vacuum drying
oven at 50 ◦C.
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Figure 2. Schematic of the synthesis of Fe3O4/PEG/SiO2 composite.

2.3. Characterization

Scanning electron microscopy (SEM) images were obtained on a FEI Nova NanoSEM
450 apparatus. High-resolution transmission electron microscopy (HRTEM) was recorded on a FEI
Tecnai G2 F30 microscope operating at 300 kV. X-ray powder diffraction (XRD) patterns of the products
were performed on a Japan Rigaku D/Max 2400 automatic X-ray powder diffractometer equipped
with Cu-Kα radiation (λ = 1.54178 Å) within 5–80◦. FTIR spectra of the products were recorded using
a Nicolet 460 FTIR spectrophotometer from 4000–600 cm−1. Thermogravimetric analyses (TGA) and
differential scanning calorimeter (DSC) curves were performed by using a TA Instruments Universal
Analysis 2000. All DSC measurements were both carried out from 5 ◦C to 80 ◦C at the heating/cooling
rate of 10 ◦C/min and a N2 flow rate of 50 mL/min. All TG measurements were performed in N2

atmosphere and the range of heating is from room temperature to 700 ◦C. The M–H and ZFC–FC
curves were measured with a Quantum Design MPMSXL-7 system. Digital photos were taken with a
Nikon digital camera.

Magnetic-to-thermal conversion and energy storage test of the Fe3O4/PEG/SiO2 composites: the
1 g of composites were put into small bottles (internal diameter, 1.2 cm); a certain alternating magnetic
field (1.36 MHz and 550 A·m−1) was applied to the composites with an alternating current generator;
changing temperature of product was measured using a fiber sensor plugged into it.

3. Results and Discussion

3.1. Characterization of Superparamagnetic Fe3O4

Fe3O4 superparamagnetic nanoclusters were fabricated via a modified solvothermal method.
The morphology and microstructure of nano Fe3O4 were investigated through SEM and TEM.
The obtained results are shown in Figure 3a–d. Figure 3a,b revealed that the diameter of nanoclusters
was about 159 nm on the average and the morphology of nano Fe3O4 was spherical. Lattice fringes were
recorded for an isolated nanocluster, and whose diameter was 152 nm, as shown in the high-resolution
TEM (HRTEM) image in Figure 3c. Obviously, a cluster consisted of many small primary particles
according to this image. The measured distance between two adjacent planes in the same direction was
0.25 nm, which conformed to the lattice spacing of (311) planes of cubic magnetite. The selected-area
electron diffraction (SAED) pattern recorded for the same particle was diffraction rings and revealed
that nano Fe3O4 is polycrystalline. The diffraction spots were widened into narrow arcs, which
indicated slight misalignments among the primary nanocrystals.
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Mass magnetization of the as-prepared products was measured at room temperature (300 K) in an
applied magnetic field, in which the cycle range of H was from −20 kOe to 20 kOe. Figure 3e indicated
that Fe3O4 nanoclusters had a saturation magnetization (Ms) of 66.7 emu g−1 and negligible coercivity
and remanence, suggesting that the obtained nanoclusters are superparamagnetic at room temperature.
To further demonstrate the superparamagnetic behavior of nano Fe3O4 at room temperature, standard
zero field cooling (ZFC) and field cooling (FC) curves were measured under a magnetic field of
500 Oe (Figure 3f). The maximum of the ZFC curve appeared at about 190 K, which was the
superparamagnetic blocking temperature (Tb) of the Fe3O4 nanoclusters [36], and the temperature
illustrated a transition from a magnetically blocked state (at low temperature) to a superparamagnetic
state (at high temperature). After this temperature, a bifurcation point was observed at around 260 K
in the ZFC−FC curve, which is the irreversibility temperature where the ZFC magnetization curve
departs from the FC curve.

Polymers 2018, 10, x FOR PEER REVIEW  4 of 11 

 

selected-area electron diffraction (SAED) pattern recorded for the same particle was diffraction rings 

and revealed that nano Fe3O4 is polycrystalline. The diffraction spots were widened into narrow arcs, 

which indicated slight misalignments among the primary nanocrystals. 

Mass magnetization of the as-prepared products was measured at room temperature (300 K) in 

an applied magnetic field, in which the cycle range of H was from −20 kOe to 20 kOe. Figure 3e 

indicated that Fe3O4 nanoclusters had a saturation magnetization (Ms) of 66.7 emu g-1 and negligible 

coercivity and remanence, suggesting that the obtained nanoclusters are superparamagnetic at room 

temperature. To further demonstrate the superparamagnetic behavior of nano Fe3O4 at room 

temperature, standard zero field cooling (ZFC) and field cooling (FC) curves were measured under a 

magnetic field of 500 Oe (Figure 3f). The maximum of the ZFC curve appeared at about 190 K, which 

was the superparamagnetic blocking temperature (Tb) of the Fe3O4 nanoclusters [36], and the 

temperature illustrated a transition from a magnetically blocked state (at low temperature) to a 

superparamagnetic state (at high temperature). After this temperature, a bifurcation point was 

observed at around 260 K in the ZFC−FC curve, which is the irreversibility temperature where the 

ZFC magnetization curve departs from the FC curve. 

 

Figure 3. (a) SEM image of nano Fe3O4. (b,c) Low-and high-magnification TEM images of nano Fe3O4, 

the inset of (c) is lattice fringe images of 152 nm Fe3O4. (d) SAED pattern of the cluster in (c). (e) 

Hysteresis loops of the Fe3O4 nanoclusters at 300 K. (f) The ZFC-FC curves of nano Fe3O4 at 500 Oe. 

3.2. Characterization of Fe3O4/PEG/SiO2 Composite 

X-ray diffraction (XRD) is an efficient means to investigate the crystallization property of 

materials. Figure 4a shows the XRD patterns of PEG/SiO2, Fe3O4/PEG/SiO2, and PEG6000. As shown 

in the picture, sharp and intense diffraction peaks were observed at approximately 18.9° and 23.1° 

for PEG/SiO2 and Fe3O4/PEG/SiO2 composite, respectively, similar to pure PEG6000. Therefore, SiO2 

and Fe3O4 exerted no effect on the crystal structure of PEG6000 [37]. In addition, the lower intensity 

of peaks observed in XRD pattern of PEG/SiO2 and Fe3O4/PEG/SiO2 compared to PEG 6000. 

Notwithstaning, PEG/SiO2 and Fe3O4/PEG/SiO2 composite still possessed good crystalline properties, 

which guaranteed the energy storage ability of the PCMs because thermal energy storage was closely 

related to the crystallization property of PCM [38]. 

Figure 4b shows the FTIR spectra of PEG6000, PEG/SiO2, and Fe3O4/PEG/SiO2 composites. The 

pure PEG6000 had the following characteristic absorption bands: (i) stretching vibration of O–H at 

3430 cm−1, (ii) stretching vibration of CH3 at 2917 cm−1, (iii) stretching vibration of CH2 at 2889 cm−1, 

and (iv) symmetric stretching vibration of C–O–C at 1106 cm−1. Compared to that of pure PEG, the 

FTIR spectra of the synthesized Fe3O4(4%)/PEG/SiO2 and PEG/SiO2 included a symmetric stretching 

vibration of Si–OH in the range of 3032–3700 cm−1, asymmetric stretching vibration of Si–O–Si at 1050 

cm−1, and bending vibration of SiO–H at 796 cm−1, besides all representative bands for pure PEG6000. 

Figure 3. (a) SEM image of nano Fe3O4. (b,c) Low-and high-magnification TEM images of nano
Fe3O4, the inset of (c) is lattice fringe images of 152 nm Fe3O4. (d) SAED pattern of the cluster in (c).
(e) Hysteresis loops of the Fe3O4 nanoclusters at 300 K. (f) The ZFC-FC curves of nano Fe3O4 at 500 Oe.

3.2. Characterization of Fe3O4/PEG/SiO2 Composite

X-ray diffraction (XRD) is an efficient means to investigate the crystallization property of materials.
Figure 4a shows the XRD patterns of PEG/SiO2, Fe3O4/PEG/SiO2, and PEG6000. As shown in
the picture, sharp and intense diffraction peaks were observed at approximately 18.9◦ and 23.1◦

for PEG/SiO2 and Fe3O4/PEG/SiO2 composite, respectively, similar to pure PEG6000. Therefore,
SiO2 and Fe3O4 exerted no effect on the crystal structure of PEG6000 [37]. In addition, the
lower intensity of peaks observed in XRD pattern of PEG/SiO2 and Fe3O4/PEG/SiO2 compared
to PEG6000. Notwithstaning, PEG/SiO2 and Fe3O4/PEG/SiO2 composite still possessed good
crystalline properties, which guaranteed the energy storage ability of the PCMs because thermal
energy storage was closely related to the crystallization property of PCM [38].

Figure 4b shows the FTIR spectra of PEG6000, PEG/SiO2, and Fe3O4/PEG/SiO2 composites.
The pure PEG6000 had the following characteristic absorption bands: (i) stretching vibration of O–H at
3430 cm−1, (ii) stretching vibration of CH3 at 2917 cm−1, (iii) stretching vibration of CH2 at 2889 cm−1,
and (iv) symmetric stretching vibration of C–O–C at 1106 cm−1. Compared to that of pure PEG,
the FTIR spectra of the synthesized Fe3O4(4%)/PEG/SiO2 and PEG/SiO2 included a symmetric
stretching vibration of Si–OH in the range of 3032–3700 cm−1, asymmetric stretching vibration of
Si–O–Si at 1050 cm−1, and bending vibration of SiO–H at 796 cm−1, besides all representative bands
for pure PEG6000.
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Figure 4c,d present SEM photographs of Fe3O4/PEG/SiO2 composite, in which the surface of
PEG/SiO2 showed small Fe3O4 nanoclusters and their distribution is denoted by yellow arrows
in Figure 4c. The result demonstrated that Fe3O4 superparamagnetic nanoclusters were loaded on
the PCM. Moreover, the Fe3O4 nanoclusters were distributed uniformly on the surface of PCM in
Figure 4d. EDS analysis in Figure 4e also demonstrated that ferrum (Fe) existed in the Fe3O4/PEG/SiO2

composite and was distributed uniformly.

3.3. Thermal Properties

The thermal characteristic plays a critical role in the thermal management ability of PCMs. Figure 5
presents the DSC curves of PEG6000, PEG/SiO2, and Fe3O4/PEG/SiO2 with different Fe3O4 contents.
The endothermic and exothermic enthalpy values and the phase transition temperatures obtained
from the DSC curves are listed in Table 1. The endothermic and exothermic enthalpy values of
the Fe3O4/PEG/SiO2 PCMs were 114–122 and 109–114 J/g, respectively. Enthalpies of fusion
of composites are 162.4 J/g in theory because additive amount of PEG is about 80% of total
mass of composites. Compared to the theoretical values, enthalpies of fusion of PEG/SiO2 and
Fe3O4/PEG/SiO2 composites decrease by 25–30%, which is likely to be caused by the interference
of SiO2 network with the crystallization of PEG, this phenomenon is consistent with the result
reported for confinement effects of SiO2 framework on phase change of PEG [39]. They had a high
phase-change enthalpy and heat storage capacity, although the PEG/SiO2 and Fe3O4/PEG/SiO2

composites showed a partial loss of latent heat compared with the pure PEG (Figure 5 and Table 1).
Enthalpy of Fe3O4 (3%)/PEG/SiO2 with the average diameter of 95 nm (130.5 J/g) is higher than that of
Fe3O4 (3%)/PEG/SiO2 with the average diameter of 159 nm (114.7 J/g). This is probably because that
smaller size of doped Fe3O4 is more favorable to microphase separation and causes a more continuous
PEG domain, which benefits crystallization of PEG in Fe3O4/PEG/SiO2 composites (Figure S1).
In addition, the phase transition temperatures listed in Table 1 are close to that of pure PEG6000.
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Table 1. Phase change behavior of pure PEG, PEG/SiO2, and Fe3O4/PEG/SiO2 composites with
different Fe3O4 contents.

Sample Phase Transition
∆H (J·g−1) Tr (◦C)

Heating Cycle Cooling Cycle Heating Cycle Cooling Cycle

PEG6000 Solid-liquid 203.0 197.0 62.0 44.3
PEG/SiO2 Form-stable 109.3 105.6 58.0 35.6

Fe3O4(1%)/PEG/SiO2 Form-stable 117.0 110.0 56.0 35.3
Fe3O4(2%)/PEG/SiO2 Form-stable 115.1 109.7 55.8 35.1
Fe3O4(3%)/PEG/SiO2 Form-stable 114.7 111.2 55.5 33.7
Fe3O4(4%)/PEG/SiO2 Form-stable 121.6 114.0 55.4 30.7

3.4. Shape-Stabilized Properties

Shape-stabilized properties are crucial aspects in the application of PCMs. Figure 6 shows digital
photos of PCMs at different temperatures. The samples were placed in an oven at constant temperature.
The changes in the macroscopic morphology of samples were observed and recorded by a digital
camera immediately after 20 min. Pure PEG6000 appeared a melted ring and melted completely when
it was placed in the oven for 20 min at 65 ◦C and 95 ◦C, respectively. However, the PEG/SiO2 and
Fe3O4/PEG/SiO2 composites were shape-stabilized and did not show any leakage behavior at either
65 ◦C or 95 ◦C. This is because that the PEG is a long-chain polymeric PCM that can completely or
partially interpenetrate the network of SiO2 gel. The SiO2 gel network can limit the leakage of PEG by
capillary force and surface tension when PEG changes from solid to liquid [27,40]. Therefore, PCMs
doped with superparamagnetic Fe3O4 possess an excellent shape-stabilized property.
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3.5. Magnetic-To-Thermal Conversion and Thermal Energy Management Performance

Synthesized Fe3O4/PEG/SiO2 composite PCMs exhibited excellent magnetothermal conversion
and thermal energy management behavior under an alternating magnetic field. Figure 7
shows the magnetic-to-thermal energy conversion and thermal energy management curves of the
Fe3O4/PEG/SiO2 composites. As shown in the magnetic heating curves, when the content of
nano Fe3O4 in the composites increased, temperature rise rate increased—i.e., heating efficiency
increased—so Fe3O4/PEG/SiO2 possess the best heating efficiency when additive amount of Fe3O4

is 4 wt %. After heating for 420s under the alternating magnetic field, the temperatures of the
Fe3O4/PEG/SiO2 materials with Fe3O4 contents of 1% to 4% reached 53.4 ◦C, 58.5 ◦C, 78.6 ◦C,
and 90.7 ◦C, respectively. There is a growth platform appeared between 42 ◦C and 57 ◦C for
Fe3O4/PEG/SiO2 PCMs (2, 3, and 4%) when the alternating magnetic field was applied (inset of
Figure 7). The times that Fe3O4/PEG/SiO2 PCMs (2, 3, and 4%) are in the growth platform stage of
temperature are 120, 165, and 277 s, respectively. In this stage, thermal energy from magnetothermal
conversion is stored in the way of latent heat. Fe3O4 (1%)/PEG/SiO2 did not have this growth
platform because it had less magnetic particles, such that phase transition did not occur completely in
the same period of time. Likewise, the phenomenon appeared in the process of natural cooling.
Moreover, the temperature of PEG/SiO2 increased slowly, which is a reflection of the fact that
PEG/SiO2 composite did not have the component of nano Fe3O4. In addition, heating rate increases
and time of melting platform shortens, when the intensity of alternative magnetic field increases
(Figure S2). Overall, combining with PCM can achieve effective management of thermal energy from
magnetothermal conversion.
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Figure 7. Magnetic-to-thermal energy conversion and thermal management curves of the samples
(m = 1 g) under the alternating magnetic field (1.36 MHz, 900 A·m−1). (a) Curves of storing thermal
energy in magnetic heating process, inset shows temperature change platform of phase change process.
(b) Curves of releasing thermal energy in natural cooling process.

3.6. Reversible Stability

It is important for composite phase change materials that have good reversibility of energy storage
and releasing when managing magnetothermal energy. Therefore, the magnetic-to-thermal conversion
cycling tests were performed in this work. Figure 8a shows the results of the first and 50th cycles under
the same conditions. The curve of the 50th cycle was nearly coincident with that of the first cycle.
The DSC curves before and after the cycling test were also almost identical (Figure 8b). The peaks
after the cycling test presented a very small shift compared with the peaks before the cycling test.
These findings confirm that the synthesized Fe3O4/PEG/SiO2 materials possess high reversibility.
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3.7. Thermal Stability

Besides reversible stability, thermal stability is also vital for Fe3O4/PEG/SiO2 composite PCM. The
TG and DTG curves in Figure 9 explain the thermal degradation behaviors of the PCMs. Both PEG/SiO2

and Fe3O4/PEG/SiO2 composites had a steep thermal degradation process that occurred between
325 ◦C and 476 ◦C, which is consistent with that of pure PEG and far above phase transition temperature.
Furthermore, the weight losses of approximately 76.2 wt % and 75.4 wt % in composites were observed
in TG curves from room temperature to 700 ◦C, which is nearly close to the theoretical content of
PEG in composites (80 wt %, in accordance with the synthesis experiment). These results show that
obtained PCM composites possess high thermal stability at phase transition temperature.

Polymers 2018, 10, x FOR PEER REVIEW  8 of 11 

 

 

Figure 8. (a) Magnetic-to-thermal energy conversion curves of the Fe3O4/PEG/SiO2 composite before 

and after the 50 cycles. (b) DSC curves of the Fe3O4/PEG/SiO2 composite before and after the 50 cycles. 

3.7. Thermal Stability 

Besides reversible stability, thermal stability is also vital for Fe3O4/PEG/SiO2 composite PCM. 

The TG and DTG curves in Figure 9 explain the thermal degradation behaviors of the PCMs. Both 

PEG/SiO2 and Fe3O4/PEG/SiO2 composites had a steep thermal degradation process that occurred 

between 325 °C and 476 °C, which is consistent with that of pure PEG and far above phase transition 

temperature. Furthermore, the weight losses of approximately 76.2 wt % and 75.4 wt % in composites 

were observed in TG curves from room temperature to 700 °C, which is nearly close to the theoretical 

content of PEG in composites (80 wt %, in accordance with the synthesis experiment). These results 

show that obtained PCM composites possess high thermal stability at phase transition temperature. 

 

Figure 9. TG (a) and DTG (b) curves of PEG6000, PEG/SiO2, and Fe3O4/PEG/SiO2 composites. 

4. Conclusions 

In conclusion, we designed and synthesized a novel composite of Fe3O4/PEG/SiO2 that can 

achieve effective thermal energy management for magnetic-to-thermal conversion process. The 

composite was fabricated by in situ doping of superparamagnetic Fe3O4 nanoclusters through a 

simple sol–gel method. Nano Fe3O4 effectively converted magnetic work into internal energy that 

was released into the surrounding environment in the form of thermal energy when applying 

alternative magnetic field, and the converted thermal energy was stored in the PCM and can be 

exploited. In addition, the synthesized Fe3O4/PEG/SiO2 composite demonstrated several outstanding 

characteristics, such as high thermal stability and excellent shape-stabilized properties, which meets 

the requirements for practical application. Thus, our composites exhibit the potential for realizing the 

conversion from electromagnetic energy to thermal energy, and moreover, management and control 

Figure 9. TG (a) and DTG (b) curves of PEG6000, PEG/SiO2, and Fe3O4/PEG/SiO2 composites.

4. Conclusions

In conclusion, we designed and synthesized a novel composite of Fe3O4/PEG/SiO2 that
can achieve effective thermal energy management for magnetic-to-thermal conversion process.
The composite was fabricated by in situ doping of superparamagnetic Fe3O4 nanoclusters through
a simple sol–gel method. Nano Fe3O4 effectively converted magnetic work into internal energy
that was released into the surrounding environment in the form of thermal energy when applying
alternative magnetic field, and the converted thermal energy was stored in the PCM and can
be exploited. In addition, the synthesized Fe3O4/PEG/SiO2 composite demonstrated several
outstanding characteristics, such as high thermal stability and excellent shape-stabilized properties,
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which meets the requirements for practical application. Thus, our composites exhibit the potential for
realizing the conversion from electromagnetic energy to thermal energy, and moreover, management
and control of the resulting thermal energy can also be realized by phase transition component
in composites. This study will be a helpful strategy for management of magnetothermal energy, such
as temperature control in magnetic hyperthermia.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/6/585/s1,
Figure S1: (a) SEM image of Fe3O4 nanoparticles with the average diameter of 95 nm. (b) DSC curves of
Fe3O4(3%)/PEG/SiO2 composites with different sizes of doped Fe3O4 nanoparticles; Figure S2: The temperature
evolution curves of Fe3O4(4%)/PEG/SiO2 at alternative magnetic field with different magnetic strengths.
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