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Abstract: Thermally and mechanically enhanced poly(propylene carbonate) (PPC) with networks was
prepared by adding a cyclic carboxylic dianhydride, bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxylic
dianhydride (BTCDA), in the CO2/propylene oxide (PO) copolymerization. The obtained copolymers
were characterized by FT-IR, 1H NMR, DSC, and TGA. The gel, melt flow rate, hot-set elongation,
and tensile properties were also measured. The formation of networks was confirmed by the presence
of gel and the shape recovery after the hot-set elongation test. The minimum permanent deformation
of the copolymer is 3.8% and that of PPC is 4539% higher than this value. The results show that
BTCDA units are inserted into the backbone of PPC, and the PPC chains are connected successfully
owing to cyclic multifunctional anhydride groups in BTCDA. With increasing feed molar ratio of
BTCDA to PO from 1 to 4%, the yield strength of copolymers increases from 18.1 to 37.4 MPa compared
to 12.9 MPa of PPC. The 5% weight-loss degradation temperatures and maximum weight-loss
degradation temperatures greatly increase up to 276.4 and 294.7 ◦C, respectively, which are 58.6 ◦C
and 55.1 ◦C higher than those of PPC. These enhanced properties originate from the formation of
crosslinks by the rigid and bulky multifunctional dianhydride.

Keywords: poly(propylene carbonate); networks; dianhydride; terpolymerization; modification

1. Introduction

Poly(propylene carbonate) (PPC) from the CO2/propylene oxide (PO) catalyzed copolymerization,
as a biodegradable polymer, has been drawing much attention in both academic and industrial fields.
It has a wide range of potential applications, such as binders, brazing pastes and solutions, propellants,
and diamond cutting tools [1]. In the past decades, great efforts were devoted to develop and
commercialize the catalysts [2–10]. However, PPC still has considerable shortcomings, such as its low
decomposition temperature and low glass transition temperature (Tg), that severely limit its thermal
stability and practical application as a viable biodegradable plastic [11,12]. Thus, the reinforcement of
PPC is in urgent demand to extend its applications. Crystallization may enhance PPC, but it is difficult
to crystallize PPC even though stereogradient PPC has been synthesized [10,13], and stretching does
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not make PPC crystallize, although aliphatic polycarbonates of similar structure to PPC, such as
poly(cyclohexene carbonate) or poly(trimethylene carbonate), can crystallize by stereoregularization
or stretching [14,15]. Up to now, many attempts, such as terpolymerization with co-monomers [16–19],
crosslinking [20–22], and fabrication with other polymers [23–27], inorganic fillers [28–32], or organic
compounds [33–36] have been carried out to improve the thermal and mechanical properties.
In addition, PPC-inorganic hybrid materials like PPC grafted multi-walled carbon nanotubes were
prepared [37]. In fact, several efficient strategies have been achieved. Nevertheless, the difficulty in
the modification of PPC is how to comprehensively improve its properties under the premise that
the second component is introduced in a very small amount, otherwise the significance of using CO2

resource is weakened. It is worth noting that both physical and chemical crosslinking has become
a quite effective modification method for PPC. For example, a small quantity (1 wt %) of graphene
oxide (GO) nanosheets can greatly reinforce PPC. The uniform dispersion and physical crosslinking of
GO in PPC matrix were considered as the main mechanism [28]. Adding 2.5 wt % of hyperbranched
poly(ester-amide) (HBP) into PPC also obviously enhanced PPC, in which the formed hydrogen bonds
between many hydroxy/amino groups in HBP and carbonyls in PPC played a key role [12]. Here,
the physical crosslinking of hydrogen bonds is clear. What’s more, the crosslinked PPC exhibited
very good thermal stability and mechanical strength, especially excellent dimensional stability at
elevated temperature despite having a low Tg [20], that can effectively solve the issue of cold flow
for PPC. Crosslinking customarily requires two steps including introducing a crosslinkable moiety
like double bonds into the PPC backbone and subsequently crosslinking using radical initiators.
It was also reported that crosslinked PPC can be obtained by the terpolymerization of CO2, PO,
and diepoxide [22,38]. However, the addition of diepoxide in the CO2/PO copolymerization did not
always form crosslinked PPC [39,40].

Cyclic anhydrides can terpolymerize with CO2 and PO [41–46]. But, reports of directly
generating crosslinked PPC through adding dianhydride in the CO2/PO copolymerization are rare.
In previous work [47], we prepared the pseudo-interpenetrating poly (propylene carbonate) networks
by terpolymerization of CO2, PO, and pyromellitic dianhydride (PMDA). In relevant work, Song and
coworkers prepared crosslinked PPC by CO2/PO/itaconic anhydride terpolymerization [48]. Hilf and
coworkers prepared it using two-step method in which PPC with furyl pandants was first synthesized
and then crosslinked by dianhydride crosslinkers [49], but there were no mechanical properties given.
We recently also prepared the similar crosslinked PPC through Diels–Alder reaction between PPC chains
separately containing maleic anhydride units and furyl pandants. It is amazing that the mechanical
strength not only did not rise, but reduced although PPC was crosslinked. This phenomenon has been
not observed about crosslinked PPC up to now. So, we infer that the bulk and rigid properties of the
crosslinker play an important role in improving PPC’s performance. Here, we try to introduce a cyclic
dianhydride with bridged-ring structure, bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxylic dianhydride
(BTCDA), into the PPC chains which are supposed to be connected by the former. The thermal and
mechanical properties and dimensional stability were fully investigated in this work.

2. Materials and Methods

2.1. Materials

PO was refluxed over calcium hydride for 8 h, distilled under dried nitrogen gas, and stored
over 0.4 nm molecular sieves prior to use. CO2 of 99.99% was commercially obtained without further
purification. BTCDA was purchased from Aladdin Industrial Corporation and used without further
purification. Zinc glutarate (ZnGA) was synthesized according to Ref. [2]. All other reagents and
solvents were of analytical grade and used without further purification.
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2.2. General Copolymerization Procedure

The terpolymerization were carried out in a 100 mL autoclave reactor equipped with a magnetic
stirrer. The pre-dried 0.1 g of ZnGA catalyst and a proportion of BTCDA were put into the autoclave
and were dried under vacuum at 100 ◦C for 8 h. Then the autoclave was cooled to under 15 ◦C
and was purged carefully with N2 and evacuated alternatively three times, followed by injecting
30 mL PO with a syringe. The autoclave reactor was then pressurized to 5.0 MPa via a CO2 cylinder.
The terpolymerization was performed at 60 ◦C under stirring for 40 h. Afterwards the autoclave was
cooled to room temperature and the pressure was released. The hard-lump product was dissolved in a
sufficient volume of chloroform containing 5% solution of hydrochloric acid to decompose the catalyst.
The organic layer was washed into the neutral reaction and slowly added to excess, while vigorously
stirred with ethanol to precipitate the copolymers. Dissolution and precipitation of the copolymers
was carried out repeatedly to remove a small quantity of cyclic propylene carbonate and unreacted
BTCDA until they gave no 1H NMR signals. Then, the copolymers were dried at 80 ◦C under vacuum
to a constant weight and the yields were calculated.

PPC was also synthesized in a similar procedure to that of the copolymers, except that no BTCDA
was added to the autoclave.

2.3. Characterization and Measurements

Fourier transform infrared spectroscopy (FT-IR) measurements were performed on a Thermo
Scientific Nicolet 6700 spectrometer (Madison, WI, USA) equipped with an attenuated total reflection
(ATR) accessory.

1H NMR spectra were measured using a Bruker DRX-400 spectrometer (Rheinstetten, Germany)
with deuterated chloroform as solvent.

The gel contents were measured according to ASTM D2765 using a Soxhlet extractor. A sample
was refluxed in boiling chloroform for 24 h. The insoluble portion was dried to a constant weight at
80 ◦C under vacuum. The gel content was defined as the percentage of the weight of insoluble portion
in the sample. The data were recorded as the average value of three parallel determinations.

The thermogravimetric analysis (TGA) measurements were performed on a PerkinElmer
simultaneous thermal analyzer (Model STA 6000, Waltham, MA, USA). The samples were tested
under nitrogen flow of 40 mL·min−1 from 25 to 400 ◦C at a heating rate of 20 ◦C·min−1.

The differential scanning calorimetry (DSC) measurements were conducted using a Q100 TA
instrument (New Castle, DE, USA) under a high purity nitrogen flow over the temperature range from
−25 to 200 ◦C at a heating rate of 10 ◦C·min−1. The Tg of the sample was taken as the onset of the
change in heat capacity as a function of temperature.

The tensile tests were conducted using a CMT 6104 testing machine (MTS industrial systems
(China) Co., Shenzhen, China) according to ASTM D638. The cross-head speed was 50 mm·min−1.
The data were recorded as the average value of five parallel determinations. The dumbbell-shaped
specimens were prepared by hot-pressing into sheets, followed by cutting using a dumbbell cutter.
Prior to measurements, the specimens were conditioned at 23 ◦C and 50% ± 5% humidity for 24 h.

The melt flow rate (MFR) measurements were carried out using a melt index meter (JQ-400A,
Jian Qiao Test Equipment Co., Dongguan, China) according to GB/T 3682-2000. The temperature
and the load of the test process were 170 ◦C and 2.16 kg, respectively. The data were recorded as the
average value of four parallel determinations.

The hot-set elongation tests were carried out in an oven. The dumbbell-shaped specimen was
loaded under 0.14 MPa and marked as reference length L0 (L0 = 20 mm). The loaded specimen was
placed in an oven at 60 ◦C, and the length L1 between the two markers was measured after 15 min.
Then the load was released and the specimen was allowed to relax at 60 ◦C for 5 min. Afterwards the
specimen was taken out of the oven and continued to be cooled to room temperature. The length L2 was
measured. The hot-set elongation and permanent deformation were calculated as (L1 − L0)/L0 × 100%
and (L2 − L0)/L0 × 100%, respectively.
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3. Results and Discussions

3.1. Synthesis

As expected, owing to the multifunctional anhydride groups of BTCDA, a unit of BTCDA linked
to four PO/CO2 copolymer arms forms once BTCDA enters into the reaction upon introducing BTCDA
in the PO/CO2 copolymerization. Random joining of these many units produces connected PPC chains
(Scheme 1). The results of yield and gel content measurements indicate that the addition of BTCDA has
a considerable influence on increased gel content and an adverse one on decreased yields of copolymers
(Table 1). When BTCDA increased from 0 to 4 mol % of PO, the yields of copolymers decrease modestly,
while the gel content of copolymers increases from 0% to 38.2%. The presence of gel indicates that
BTCDA is inserted into the backbone of PPC and the PPC chains are connected successfully.
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Table 1. The results of yields and gel contents of PPC and PPC with networks.

Sample Feed Molar Ratio of BTCDA to PO (%) Yield (g Copolymer/g ZnGA) Gel (%)

PPC 0 28.2 0
PPC-1 1 25.4 11.4 ± 1.1
PPC-2 2 23.0 14.6 ± 1.3
PPC-3 3 22.5 30.3 ± 2.0
PPC-4 4 22.8 38.2 ± 2.3

The FT-IR and 1H NMR measurements were used to determine the structure of the copolymers.
As shown in Figures S1 and S2, the copolymer has the new characteristic FT-IR absorption peaks at 751 and
698 cm−1 that are attributed to the out-of-plane bending vibration of C–H from the cis-disubstituted alkene
derived from BTCDA units [50]. The peaks at 2990, 1739, 1455, 1400, 1229, 1165, 1070, 976, and 787 cm−1

are similar to those of PPC and they are ascribed to the carbonyl and open ring of propylene oxide [47].
It indicates that the units of BTCDA were incorporated into PPC successfully. The copolymers have the
same 1H NMR peaks as PPC (δ, ppm): 4.94 (s, CH), 4.13~4.19 (m, CH2), and 1.30 (s, CH3) [2]. They are
attributed carbonate linkages formed by alternating CO2/PO copolymerization. In addition, there are
two peaks at 3.4~3.6 and 1.1 ppm (Figure S3), which are signals of CH, CH2, and CH3 from ether
linkages, respectively [2]. Based on the integration of methyl groups from the carbonate linkages
(δ1.3 ppm) and from ether linkages (δ1.1 ppm), respectively, the contents of ether linkages for PPC and
PPC-1~PPC-4 are 5.7, 3.3, 3.0, 2.7, and 2.7 percent. This implies that the incorporation of BTCDA into
PPC backbones can repress the continuous insertion of PO monomers into growing chains, resulting in
the reduction in ether linkages. However, the absence of 1H NMR signals from BTCDA units shows
that BTCDA units are mostly limited in the gel which is insoluble in CDCl3 solvent. In addition,
there were no 1H NMR peaks at 6.38 ppm from the hydrogen of carbon=carbon double bond in the
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BTCDA unit [50], and a methyl appeared at 1.50 ppm in cyclic propylene carbonate [50]. This shows
that the unreacted BTCDA and byproduct cyclic propylene carbonate were removed in the purification.

3.2. Thermal Properties

TGA measurements show that the copolymers can enhance the thermal stability significantly.
As shown in Figure 1 and Figure S4, for PPC, the 5% weight-loss degradation temperature (Td,−5%) is
217.8 ◦C, and there are two maximum weight-loss degradation temperatures (Td,maxs) of 239.6 and
255.4 ◦C. According to the decomposition mechanism of PPC investigated using thermogravimetric
analysis/infrared spectrometry techniques [51], the above two Td,maxs arise from chain scission and
unzipping reactions, respectively. The Td,−5% and Td,max of each copolymer is over 270 and 290 ◦C,
respectively. This great improvement in thermostability is attributed to the formation of crosslinks
in the PPC matrix through introducing BTCDA into PPC chains, even when the lowest BTCDA feed
concentration (1 mol % of PO) was used, because the crosslinks obviously restrict the unzipping
reaction. It is seen that both the Td,−5% and Td,max change little with increasing BTCDA feed (Table 2).
It indicates that the decomposition temperatures of copolymers don’t increase indefinitely with
increasing BTCDA content. That is, when BTCDA feed contents increase from 0 to 1 mol % of PO,
the decomposition temperatures should increase gradually at first or from a certain content and become
constant thereafter. It is enough to use a small amount of BTCDA, at least below 1 mol% of PO, to focus
on the improvement of thermal stability, although it is significant to study the thermal stability at
lower BTCDA feed contents and find the maximum BTCDA feed content when the decomposition
temperatures begin to gently increase. But, the combined effect on the tensile properties is that BTCDA
content below 1 mol% is not enough to enhance the tensile strength, so the terpolymerization using
lower BTCDA feed content was not conducted. On the other hand, the glass transition temperatures
(Tgs) of PPC and copolymers are in the range of about 25~30 ◦C and have little difference (Figure 2
and Table 2). It is noteworthy that PPC-4 has another Tg of 45.2 besides 30.3 ◦C. Obviously, the low Tg

arises from the CO2/PO copolymer chains and the high one arises from the chains containing a high
content of BTCDA units.
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Table 2. The thermal properties of PPC and PPC with networks.

Sample Td,−5% (◦C) Td,max (◦C) Tg (◦C)

PPC 217.8 239.6, 255.4 25.7
PPC-1 271.9 294.4 26.3
PPC-2 274.4 293.5 26.3
PPC-3 275.3 294.9 26.0
PPC-4 276.4 294.7 30.3, 45.2Polymers 2018, 10, x FOR PEER REVIEW  6 of 11 
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3.3. Mechanical Properties

The mechanical properties of the copolymers are shown in Table 3 and Figure S5. The tensile
strength of copolymers can be significantly improved by introducing BTCDA. With increasing BTCDA
from 1 to 4 mol %, the tensile strength increases from 18.1 to 37.4 MPa, compared to 12.9 MPa of PPC.
Accordingly, the increase of BTCDA content reduces the ductility and toughness of the copolymers.
Overall, PPC-2 possesses comprehensive performance with a tensile strength of ~30 MPa and an
elongation at break of ~98 percent.

Table 3. The mechanical properties of PPC and PPC with networks.

Sample Tensile Strength/MPa Young’s Modulus/MPa Elongation at Break/%

PPC 12.9 ± 1.6 1233 ± 17 652.3 ± 16
PPC-1 18.1 ± 1.3 1465.4 ± 21 413.8 ± 13
PPC-2 29.5 ± 1.8 1932.2 ± 13 97.8 ± 5
PPC-3 31.9 ± 1.5 2329.2 ± 18 60.9 ± 3
PPC-4 37.4 ± 1.6 2491.5 ± 23 7.4 ± 1

3.4. Hot-Set Elongation and Permanent Deformation

It is known that PPC shows very poor heat resistance above Tg and it will soften while being
held in hand. Nevertheless, maintaining the dimensional stability of PPC at above 60–70 ◦C is crucial
for many applications. As shown in Table 4, the hot-set elongation and permanent deformation of
PPC is 337.5% and 176.3%, respectively. With increasing BTCDA, the hot-set elongations reduce
sharply to 19%, indicating that the incorporation of BTCDA has a considerable influence on heat
resistance. What’s more, the permanent deformations greatly reduce from 176.3% to 3.8% (Figure S6).
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These phenomena also prove that the networks form in the copolymers and these networks enable the
copolymers to have stronger resistance to strain and deformation at higher temperatures than PPC.

Table 4. The results of the hot-set elongation tests.

Sample Hot-Set Elongation (%) Permanent Deformation (%)

PPC 337.5 176.3
PPC-1 71.5 38.8
PPC-2 55.0 16.3
PPC-3 26.5 6.3
PPC-4 19.0 3.8

3.5. Rheological Properties

The rheological performance of polymers is important for optimizing the processing conditions.
Therefore, MFR measurements were conducted to study the rheological properties of copolymers.
As shown in Figure 3, the addition of BTCDA has an apparent influence on the MFRs of copolymers.
The MFR of PPC is 2.89 g/10 min, and those of the copolymers reduced from 1.77 to 1.19 g/10 min
with increasing BTCDA. First, we tried to make dumbbell-shaped copolymer specimens for the tensile
tests by using an injection machine, but it was not easy to deal with the depression on the surface of the
specimens under injection conditions, whereas PPC is allowed for injection molding easily. However,
the crosslinking degree enabled the copolymers to be hot-pressure molded even though the PPC chains
are connected by BTCDA. The crosslinked PPC modified by 4,4′-diphenylmethane diisocyanate can
also be thermoplastic and be hot-pressed by controlling the degree of crosslinking [52].
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4. Conclusions

Focusing on improving the thermal and mechanical properties and dimensional stability of PPC,
we present a one-pot synthesis of PPC with networks by introducing a cyclic multifunctional carboxylic
dihydride, BTCDA, in the PO/CO2 copolymerization. The networks are confirmed by the presence
of gel and the great reduction of permanent deformation. The thermal and mechanical properties
and dimensional stability of copolymers were extensively improved owing to the networks generated
by introduction of BTCDA, and they are summarized in Table 5 and compared with those reported
by other groups. In addition, this PPC with networks is thermoplastic and can be hot-processed by
controlling the degree of crosslinking using various BTCDA feed contents.
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Table 5. Properties comparison of crosslinked PPCs prepared in this paper and reported by other groups.

Crosslinking Method a Feed
Content b

Td,−5%
(◦C)

Td,max
(◦C)

Tensile
Strength

(MPa)

Elongation
at Break

(%)

Hot-Set
Elongation

(%)

Permanent
Deformation

(%)

MFR
(g Copolymer/10 min)

CO2/PO/AGE
terpolymerization
followed crosslinked by
UV-radiation [20]

5:100 220.5 233.9 - d - 17.3 0 -

CO2/PO/MA
terpolymerization
followed crosslinked by
DCP [21]

1:30 261 300 45.6 - - - -

CO2/PO/MDI
terpolymerization [52] 1.5:100 c 242 275 36.9 12 - - -

CO2/PO/PMDA
terpolymerization [47] 3:100 281 306 41 406 - - -

CO2/PO/IAn
terpolymerization [48] 5:100 251.3 284.7 27.5 554.6 - - -

CO2/PO/BTCDA
terpolymerization

2:100 274.4 293.5 29.5 97.8 55 16.3 1.61

4:100 276.4 294.7 37.4 7.4 19 3.8 1.19
a MDI: 4,4′-diphenylmethane diisocyanate; MA: maleic anhydride; DCP: dicumyl peroxide; AGE: allyl glycidyl
ether; Ian: itaconic anhydride. b The feed molar ratio of third monomer to PO except where noted. c The feed
weight ratio of MDI to PO. d No data reported.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/5/552/s1,
Figure S1: The FT-IR spectrum of PPC, Figure S2: The FT-IR spectrum of PPC-3; Figure S3: The 1H NMR spectra
of PPC and PPC with networks. Figure S4: The DTG curves for PPC and PPC with networks. Figure S5:
The strain-stress curves for PPC and PPC with networks. Figure S6: The photos of dumbbell-shaped specimens
before (left) and after (right) hot-set test. (a) PPC, (b) PPC-4. The right photo is the permanent deformation result.
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