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Abstract: Six liquid branched poly(methylhydrosiloxanes) of new random structures (PMHS-Q),
containing quadruple branching units SiO4/2 (Q), both MeHSiO (DH) and Me2SiO (D) chain building
units (or only mers MeHSiO), and terminal groups Me3SiO0.5 (M) were prepared by a hydrolytic
polycondensation method of appropriate organic chlorosilanes and tetraethyl ortosilicate (TEOS),
in diethyl ether medium at temperature below 0 ◦C. Volatile low molecular weight siloxanes were
removed by a vacuum distillation at 150–155 ◦C. Yields of PMHS-Q reached from 55–69 wt%.
Their dynamic viscosities were measured in the Brookfield HBDV+IIcP cone-plate viscometer
and ranged from 10.7–13.1 cP. Molecular weights (MW) of PMHS-Q (Mn = 2440–6310 g/mol,
Mw = 5750–10,350 g/mol) and polydispersities of MW (Mw/Mn = 2.0–2.8) were determined by
a size exclusion chromatography (SEC). All polymers were characterized by FTIR, 1H- and 29Si-NMR,
and an elemental analysis. A microstructure of siloxane chains was proposed on a basis of 29Si-NMR
results and compared with literature data.

Keywords: hyperbranched poly(methylhydrosiloxanes); hydrolytic polycondensation; 29Si-NMR;
topology of polysiloxane chains

1. Introduction

Poly(methylhydrosiloxanes) (PMHS) are inorganic–organic hybrid polymers with inorganic
backbone, composed of alternatively bound silicon and oxygen atoms. Hydrogen atoms and methyl
groups are the main substituents of silicon atoms in PMHS; however, other organic groups may be
attached to silicon atoms in their structures as well. Most PMHS are colorless oils, though some of
them are solids [1–9]. Linear, star, hyperbranched and dendritic poly(methylhydrosiloxanes), as well as
spherical hydrosilicates, are important classes of functional silicones. Many methods of their preparation
were described in our previous publication, concerning synthesis and characterization of branched
PMHS containing triple branching units MeSiO1.5 (T) [9]. PMHS find numerous practical applications.
Most often they are used as cross-linking agents in a technology of silicone elastomers [9–15].

One of the newer synthetic methods used for the preparation of poly(dimethylsiloxanes-
-co-methylhydrosiloxanes) (PDMS-co-PMHS) is based on an equilibration polymerization of
poly(dimethylsiloxanes) with linear hydrosiloxane polymer and hexamethyldisiloxane Me3SiOSiMe3,
towards phosphonitrile catalyst [Cl3P(NPCl2)2PCl3]+PCl6− at elevated temperature [16–20].
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A polymerization of 1,3,5,7-tetramethylcyclotetrasiloxane (DH
4) [DH = H(CH3)SiO] was carried

out in the presence of the non-ionic emulgator C12H25(OCH2CH2)23OH and dodecylbenzene-
sulphonic acid and it was accelerated by ultrasounds [21,22].

Weber and Paulasaari obtained poly(1-hydro-1,3,3,5,5-pentamethyltrisiloxane) with a regular
chain structure by the polymerization of a new monomer, pentamethylcyclotrisiloxane
c-(Me2SiO)2(MeHSiO) [c-D2DH; D = (CH3)2SiO] in tetrahydrofurane (THF), in the presence of
Ph2Si(OLi)2, at −79 ◦C [23]. The starting monomer c-D2DH was prepared by heterocondensation
of MeHSiCl2 with HO(Me2SiO)2H (yield: 49%). At the same time was elaborated a new sequential
polycondensation method (“one-pot”) leading to three homological series of new PDMS-b-PMHS with
a general formula:

RMe2SiO[(Me2SiO)m(MeHSiO)k]n(Me2SiO)mSiMe2R, (1)

(where: R = –OH or –Me; m = 2, 6, 10, 14, ~50; k = 1–4; n = 5, 10, 15, 20), containing single or multiple
MeHSiO units in macromolecules [9,24]. This synthetic method is based on a non-stoichiometric
polycondensation of appropriate dimethylsiloxane-α,ω-diols HO(Me2SiO)mH with siloxane oligomers
of a general formula Cl(MeHSiO)k-1SiHMeCl, having chloro(hydro)silyl functionalities, followed by
termination reactions with chlorotrimethylsilane Me3SiCl, when PDMS-b-PMHS chains were blocked
with (CH3)3SiO0.5 (M) groups. An isolation and characterization of many model H-siloxanes helped
us to establish the regular microstructure of prepared PDMS-b-PMHS, which was further confirmed
by 1H- and 29Si-NMR studies [9,25].

In recent years a growing interest has been observed in the field of syntheses of star, highly
branched, and dendritic poly(methylhydrosiloxanes). Cage silsesquioxanes (“spherosiloxanes”): TH

8,
TH

10, TH
12, TH

14, and TH
16 (TH = HSiO1.5) are solids, which can be prepared by the hydrolytic

polycondensation of: (a) trichlorosilane HSiCl3, carried out in the presence of FeCl3 in methanol
medium [24,26–28], or (b) trimethoxysilane HSi(OCH3)3, saturated with anhydrous HCl, in acetic
acid solution [29–32], or in the presence of concentrated H2SO4 [33,34]. Octakis(dimethylsiloxy)-
octasilsesquioxane [(HMe2SiO)SiO1.5]8 [Q8MH

8, Q = SiO4/2, MH = H(CH3)2SiO0.5] can be prepared with
high yields in reaction of octakis(tetramethylammonium)octasilsesquioxane with ClSiMe2H [35–37], up to
85–91% yield [38,39]. Currently a low molecular mass star tetrakis(dimethylsiloxy)silane Si[OSi(CH3)2H]4,
octahydrosilsesquioxane (TH

8) and cubic Q8MH
8 are commercially available [35,40–46].

Recently siloxane-polyhedral silsesquioxane copolymers (soluble in THF) were prepared by
the dehydrogenative condensation of TH

8 with diphenylsilanediol, tetraphenyldisiloxane diol or
oligodimethylsiloxane-α,ω-diols in the presence of diethylhydroxylamine, followed by trimethyl-
silylation [47,48]. TH

8 was also applied as a precursor of mezoporous silica, which was prepared
without using any template or surfactant [49].

An equilibration of octamethylcyclotetrasiloxane [(Me2SiO)4, D4] with Si[OSi(CH3)2H]4 and
trifluoromethanesulphonic acid led to tetraarm star polysiloxane Si{[OSi(CH3)2]nOSi(CH3)2H}4 [50,51].
Six- and eight-membered silicates: hexakis(dimethylsiloxy)cyclotrisiloxane [(HMe2SiO)2SiO]3 and
octakis(dimethylsiloxy)cyclotetrasiloxane [(HMe2SiO)2SiO]4 were synthesized with low yields, from
reactions of pyrolysis products of wollastonite. [(HMe2SiO)2SiO]3 was prepared in reaction of
chlorodimethylsilane HMe2SiCl with pseudowollastonite Ca3Si3O9Cl6, while [(HMe2SiO)2SiO]4

was prepared by heating octakis(trimethylsiloxy)cyclotetrasiloxane [(Me3SiO)2SiO]4 with 1,1,3,3-
-tetramethyldisiloxane HMe2SiOSiMe2H in the presence of trifluoromethanesulphonic acid [52,53].
The equilibration of [(HMe2SiO)2SiO]3 with D4 and triflic acid gave PMHS of the following branched
structure: –{–OSi[(OSiMe2O)nSiMe2H]2–}6– [52]. The Si–H terminated multifunctional silicone
dendrimer, i.e., tetrakis(dimethylsiloxy)silane, was prepared with 69% yield by the reaction of TEOS
and dimethoxysilane [54].

Zhang et al. synthesized polysilsesquioxanes of a ladder structure, containing units HSiO1.5 and
MeSiO1.5, by hydrolysis of byproducts prepared through condensation of HSiCl3 and MeSiCl3 with
p-phenylenediamine or ethylenediamine [55–57].
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A silicone dendrimer of a third generation with symmetrical structure and the general formula
(CH3SiO1.5)22[(CH3)2SiO)]162[H(CH3)2SiO0.5]24 was prepared by Masamune et al. [58] in a multistep
synthesis from siloxane oligomers containing functional groups: Si-H, Si-Cl, Si-Br and Si-OH.
It had 24 terminal functional Si-H groups “on the surface”. Branched resins, containing 10–14
Si-H functional groups in macromolecules were synthesized by the hydrolytic polycondensation
of methyldichlorosilane with dimethyldichlorosilane, trimethylchlorosilane and methyltriethoxy)-
silane or phenyl(triethoxy)silane. These resins were used as crosslinking agents for addition of cured
silicone elastomers [59]. Condensation of (triethoxy)silane HSi(OC2H5)3, towards HCl solution,
in the mixture of THF and methylisobutyl ketone (MIBK), led to soluble multifunctional poly-
(hydrogensilsesquioxanes) (PHSSQ) of combined cage-like and network-like structures [60]. A solid
four-membered silsesquioxane ring compound (PhSiO1.5)8(MeHSiO)2, so-called ”double-decker-
shaped-silsesquioxane”, was prepared from reaction of MeHSiCl2 with a byproduct, which was
obtained via a condensation of phenyl(trimethoxy)silane and NaOH with 20% yield [61].

Twelve new liquid branched poly(methylhydrosiloxanes) with statistical structures (b-r-PMHS),
containing triple branching units MeSiO1.5 (T), both Me2SiO (D) and MeHSiO (DH) chain building
units (or only mers MeHSiO), and two b-r-PMHS containing five different structural units: D, DH,
T and TH and trimethylsiloxy end groups Me3SiO0.5 (M) were prepared by the hydrolytic poly-
condensation method of appropriate chlorosilanes in diethyl ether medium at temperature <0 ◦C.
Yields of b-r-PMHS ranged from 57–84 wt% (after removal of low molecular weight oligosiloxanes
by a vacuum distillation at 125–150 ◦C). All polymeric products were characterized by FTIR, 1H- and
29Si-NMR, and elemental analysis. Their dynamic viscosities were very low and usually ranged from
~8–30 cP, which presumably resulted from their globular structure [9].

Methyl-substituted silica gels with Si-H functionalities were prepared by hydrolysis and
condensation reactions of triethoxysilane and methyldiethoxysilane, used in various molar ratios [62].
They gave higher ceramic residue after pyrolysis than gels based only on MeSiO1.5 branching units [63].

In the present work, we describe the hydrolytic polycondensation synthetic route to new liquid
branched poly(methylhydrosiloxanes) of random structures (PMHS-Q), containing both MeHSiO (DH)
and Me2SiO (D) chain building units (or only mers MeHSiO), quadruple branching units SiO4/2 (Q),
and terminal groups Me3SiO0.5, from appropriate organic chlorosilanes and tetraethoxysilane.

2. Materials and Methods

Dichloromethylsilane MeHSiCl2 (MDS, 99%, b.p. 41 ◦C), dichlorodimethylsilane Me2SiCl2 (DDS,
b.p. 70–71 ◦C), tetraethoxysilane Si(OC2H5)4 (b.p. 168 ◦C), (4-dimetylamino)pyridine (DMAP, 99%)
were all sourced from Aldrich Chemical Company Inc., USA. Chlorotrimethylsilane Me3SiCl was
obtained from Fluka, Seelze, Germany (TMCS, >99%, b.p. 57 ◦C). Tetraethoxysilane Si(OEt)4 was
obtained from Unisil, Tarnów, Poland (TEOS, 99%, b.p. 168 ◦C). Triethylamine (>99%, Fluka) was
dried with anhydrous KOH, decanted, and distilled over P2O5. Diethyl ether was purified and dried
with anhydrous KOH, and distilled over CaH2.

All products were analyzed by a nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR)
and gel chromatography (SEC). FTIR spectra (neat) were done on spectrophotometer IR Bio-Rad 175 C
(American Laboratory Trading, East Lyme, CT 06333, USA) for samples placed between NaCI plates.
1H-NMR and 29Si-NMR (INEPT) spectra were recorded on Bruker DRX 500 machine (Bruker Physik
AG, Karlsruhe, Germany) at CBMM PAN in Łódź. Hexamethyldisiloxane Me3SiOSiMe3 was used as
an external standard in 29Si-NMR (δ = 6.98 ppm, in CDCl3).

An elementary analysis (% C and % H) was performed at the Centre of Molecular and
Macromolecular Studies of the Polish Academy of Sciences in Łódź (CBMM PAN). The content
of Si-H groups was calculated from an integration ratio of their signals to CH3 signals in 1H-NMR
spectra, and compared to theoretical integration ratios of Si-H and CH3 signals. The content of Si was
determined by the gravimetric method with H2SO4 (p.a.) [64].
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Dynamic viscosities (η25) of polysiloxanes were measured at 25.0 ◦C in a Brookfield cone-plate
reoviscometer HBDV-II+cP (Brookfield Engineering Laboratories, Inc., Middleboro, MA 02346, USA),
using a cone cP40.

The molecular masses and molecular mass distribution of polysiloxanes were analyzed by a size
exclusion chromatography (SEC) in toluene solution, using LDC analytical chromatograph (Artisan
Technology Group, Champaign, IL 61822, USA) equipped with refractoMonitor and a battery of two
phenogel columns covering the MW range 102–105 g·mol−1. Calibration was made with polystyrene
Ultrastyrogel standards with MWs: 102, 103, and 104 g·mol−1.

Synthesis of Branched Polymethylhydrosiloxanes (PMHS-Q)

Branched polymethylhydrosiloxanes, containing only units DH and Q, terminated with Me3SiO0.5

groups, with structures described by a general formula:

(SiO4/2)y[CH3(H)SiO]n[(CH3)3SiO0.5]p (2)

(where: y = 1–3, n = 48–50, p = 2y + 2), and branched poly(dimethyl-co-methylhydro)siloxanes,
containing both mers D, as well mers DH, units Q and end Me3SiO0.5 groups, of a general formula:

(SiO4/2)y[(CH3)2SiO]m[CH3(H)SiO]n[(CH3)3SiO0.5]p (3)

(where: y = 1–3, m = n = 49–52, p = 2y + 2), were synthesized by the hydrolytic polycondensation of
mixtures of tetraethoxysilane Si(OEt)4 and appropriate chlorosilanes: dichloromethylsilane MeHSiCl2,
dichlorodimethylsilane Me2SiCl2, and chlorotrimethylsilane Me3SiCl, in the medium of diethyl ether
and water, at temperature ranged from −10–0 ◦C, within 3–5 h. Molar ratios of chlorosilanes were
changed, depending on expected molecular formula of polysiloxane. Amounts of substrates used
in syntheses of branched PMHS-Q and times of additions of chlorosilanes are presented in Table 1.
In the hydrolytic polycondensation reactions were used such amounts of distilled water, which were
sufficient for a formation of hydrochloric acid with a final concentration about 20 wt%.

Table 1. Amounts of substrates and a solvent, reaction time in syntheses of branched PMHS containing
quadruple branching points, and methods of drying of products solutions.

Substrates, solvent, and reaction conditions

Predicted molecular formulas of PMHS-Q *

Q
D

H
48

M
4

Q
2D

H
49

M
6

Q
3D

H
50

M
8

Q
D

52
D

H
52

M
4

Q
2D

49
D

H
49

M
6

Q
3D

50
D

H
50

M
8

Amounts of reagents and a solvent

Si(OEt)4
(mol) 0.01 0.04 0.06 0.01 0.02 0.03
(cm3) 2.2 8.9 13.4 2.2 4.6 6.7

MeHSiCl2 (MDS)
(mol) 0.48 0.98 1.0 0.52 0.49 0.50
(cm3) 50.0 102.0 104.1 54.1 51.5 52.1

Me2SiCl2 (DDS)
(mol) - - - 0.52 0.49 0.50
(cm3) - - - 63.1 59.8 60.6

Me3SiCl (TMCS)
(mol) 0.04 0.12 0.16 0.04 0.06 0.08
(cm3) 5.1 15.2 20.3 5.1 7.6 10.2

H2O
(mol) 9.11 18.94 19.66 19.33 18.38 18.94
(cm3) 164 341 354 348 331 341

(4-dimethylamino)-pyridine (DMAP) (mol) - - 0.003 0.0109 0.0108 0.01
(g) - - 0.3665 1.3316 1.3194 1.2217

Et3N (mol) - - 0.03 0.109 0.108 0.10
(cm3) - - 4.2 101.2 15.1 13.9

Diethyl ether (cm3) 50 80 60 100 80 90
Addition time of chlorosilanes and Si(OEt)4 (min) 50 60 95 80 55 95

Temperature during addition of chlorosilanes and Si(OEt)4 (◦C) −4–−2 −1–3 −1–3 −1–3 −1–6 −2–2
Stirring time after addition of chlorosilanes and Si(OEt)4 (min) 170 130 130 130 120 120

Drying of products: with anhydrous MgSO4 by cooling in a fridge

* Average molecular composition of polymers, based on a stoichiometry of monomers. PMHS-Q: liquid branched
poly(methylhydrosiloxanes) of random structures.
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Reaction mixture was allowed to warm to room temperature within 120–170 min, acid layer was
separated, and organosilicon layer was washed with water until neutral, transferred to an Erlenmayer
flask, and dried at ~4 ◦C with anhydrous magnesium sulfate overnight. Magnesium sulfate was filtered
through Schott funnel G-3 and washed with ether. Alternatively, instead of drying with anhydrous
MgSO4 traces of water were removed from products by cooling their ether solution in a refrigerator
overnight, warming up the content of the flask to room temperature, and the ether solution of products
was decanted from drops of water. The solvent was distilled off. In order to remove volatile cyclic and
linear low molecular weight siloxane oligomers, the prepared products were heated at temperature
150–155 ◦C under reduced pressure (16–21 mm Hg, 2128–2793 Pa), and subsequently under a vacuum
(3–5 mm Hg, 400–665 Pa).

In a second step of syntheses of Q3DH
50M8 and other poly(dimethyl-co-methylhydro)siloxanes,

containing both mers D and DH, with a general formula:

(SiO4/2)y[(CH3)2SiO]m[CH3(H)SiO]n[(CH3)3SiO0.5]p (3)

(where: y = 1–3, m = n = 49–52, p = 2y + 2), so called “extra blocking” of unreacted silanol groups
Si-OH was applied: in reactions with (chloro)trimethylsilane, in the presence of triethylamine, which
was used as an acceptor of hydrogen chloride with ~5% excess with respect to a stoichiometric amount.
(4-Dimethylamino)pyridine (DMAP) was used as a nucleophilic catalyst in 1:10 mole ratio with respect
to Et3N. Products untreated with extra amounts of TMCS and DMAP/Et3N showed increase of their
viscosity after few months and a presence of small drops of water from a homo- condensation reaction
of residual Si-OH groups.

The “extra blocking” reactions of silanol groups were carried out after drying step of ether
solutions of products of the hydrolytic polycondensation, at room temperature within few hours.
Precipitates of amines hydrochlorides were dissolved in diluted solution (5–10 wt%) of hydrochloric
acid, a water layers were discarded and washed with distilled water until neutral, dried with anhydrous
MgSO4, and filtered. Ether was distilled off under atmospheric pressure and final products were
evacuated under vacuum at temperature 150–155 ◦C (Table 2). A chemical composition of volatile
siloxanes was not analyzed.

Table 2. Yields of PMHS-Q, conditions of removal of volatile products, and results of measurements of
dynamic viscosity of branched PMHS, containing quadruple branching units Q.

PMHS-Q Dynamic
viscosity

Evacuation conditions Volatile products

Predicted molecular formula
(polymer abreviation)

Yield Bath temp. Time B.p./pressure Mass

(g) (wt%) (cP) (◦C) (min) (◦C/mm Hg) (g)

QDH
48M4 (Q1) 20.14 62 12.8 152 190 24/16–79/3.5 9.27

Q2DH
49M6 (Q2) 48.70 68 11.0 154 200 23/16–77/3.5 18.14

Q3DH
50M8 (Q3) 52.82 69 13.1 155 190 23/18–70/3.5 16.71

QD52DH
52M4 (Q1D) 40.29 55 12.5 150 210 21/21–80/5 34.84

Q2D49DH
49M6 (Q2D) 40.49 56 11.8 155 200 27/19–78/4 31.06

Q3D50DH
50M8 (Q3D) 43.77 58 10.7 155 190 21/16–74/4.5 28.22

3. Results and Discussion

3.1. Synthesis of Branched Polymethylhydrosiloxanes (PMHS-Q)

Syntheses of poly(methylhydrosiloxanes) with statistical and branched structures containing
quadruple branching points SiO4/2 were carried out in the medium of diethyl ether at temperature
below 0 ◦C. Solutions of chlorosilanes and Si(OEt)4 in dry ether were added dropwise to water.
In all syntheses were used such amounts of water which were necessary for hydrolysis reactions and
dissolution of HCl, allowing to obtain hydrochloric acid with concentrations approximately 20 wt%.

Applying the hydrolytic polycondensation of mixtures of appropriate amounts of
(tetraethoxy)-silane Si(OEt)4 and chlorosilanes: MeHSiCl2, Me2SiCl2, and Me3SiCl, with water, at
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temperature from −10–0 ◦C, within 3–5 h, were prepared branched poly(methylhydrosiloxanes) with
SiO4/2 branching points and the general formula:

[SiO4/2]y[CH3(H)SiO]n[(CH3)3SiO0.5]p (2)

(where: y = 1–3, n = 48–50, p = 2y + 2), containing quadruple branching points SiO4/2 (Q), mers DH and
terminal groups Me3SiO0.5. Similarly, branched poly(dimethyl-co-methylhydro)siloxanescontaining
branching units Q, linear building blocks D, and DH, and terminal groups M, were synthesized with
the general formula:

[SiO4/2]y[(CH3)2SiO]m[CH3(H)SiO]n[(CH3)3SiO0.5]p (3)

where y = 1–3, m = n = 49–52, p = 2y + 2. After addition of substrates stirring of obtained reaction
mixtures was continued within next 2–3 h, in order to reach full conversion of substrates and full
hydrolysis of Si-Cl and Si-OC2H5 groups. In the case of syntheses of Q3, Q1D, Q2D, and Q3D
termination reactions (so called “extra blocking” reactions) of unreacted silanol groups Si-OH in
reactions with (chloro)trimethylsilane were applied, in the presence of: (1) triethylamine as the
acceptor of hydrogen chloride (used with ~5–10% excess with respect to stoichiometric amounts);
and (2) (4-dimethylamino)pyridine (DMAP) as the nucleophilic catalyst (used in 1:10 mole ratio with
respect to Et3N).

Products not treated with additional amounts of TMCS and DMAP/Et3N showed increase of
their viscosity after few months and a presence of traces of water, which could originate from the
homocondensation reaction of residual Si-OH groups. However, in the case of syntheses of Q1 and
Q2 “extra blocking” was not applied, and no increase of their viscosity was observed during longer
storage of these PMHS-Q. Ether solutions of products Q1, Q2, and Q3 were dried with anhydrous
MgSO4, while polymers Q1D, Q2D, and Q3D were dried by freezing traces of water in the refrigerator
overnight. Yields of prepared PMHS-Q ranged from 55–69 wt% (Table 2). The highest yield was
obtained for Q3.

The chemical structures of all PMHS-Q were confirmed by spectroscopic methods: FTIR and
NMR (1H and 29Si) and the elemental analysis (% C, % H, and % Si) (see Table 3).

Dynamic viscosities (η25) of PMHS-Q containing quadruple branching points SiO4/2, were very
low and ranged from 10.7–13.1 cP. Low viscosities of PMHS-Q in comparison with linear polysiloxanes
having similar molecular weights presumably may result from a globular structure of hyperbranched
macromolecules. It is commonly known from a literature that dendrimers and hyperbranched
polymers in solution and in melt have low viscosities. Their viscosities and molecular weights
are much lower than those for linear analogs and depend on a degree of branching, a polarity of a
solvent, a kind of functional group on their “surface”, and also on pH of a polymer solution. Dendritic
and hyperbranched polymers have a variable hydrodynamic radii depending on the property of
solvents; they are smaller than those of their linear analogs with the same molar mass.

The values of molecular weights of prepared PMHS-Q determined by SEC method were
lower than calculated values for predicted molecular formulas: QD52DH

52M4, Q2D49DH
49M6, and

Q3D50DH
50M8. A polydispersity of molecular weights of PMHS-Q ranged from 2.0 to 2.8. The

molecular weights of dendrimers and hyperbranched polymers determined by SEC using polystyrene
standards are regarded with some scepticism. The hydrodynamic radii were also susceptible to the
polarity of functional groups on the periphery [65–67]. Values of Mn and Mw determined by SEC
method with polystyrene standards for hyperbranched polysiloxanes were much lower than MW
obtained with application of MALLS detectors [68–70].

Köhler et al. used the SEC, 1H- and 29Si NMR, and MALDI-TOF-MS methods for characterization
of a linear poly(dimethylsiloxane)-co-poly(hydromethysiloxane) (PDMS-co-PHMS) copolymer with
respect to chain length distribution, heterogeneity of chemical composition, and sequence
distribution [71].
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Table 3. Characteristics of polymethylhydrosiloxanes with branched, random structure of siloxane
chains, containing branching units Q.

PMHS-Q Mn (calc.) Mn Mw Mw/Mn
% C % H % Si

calc. found calc. found calc. found

QDH
48M4 3271 6310 17,750 2.81 22.03 21.51

21.76 7.03 6.61
6.90 45.50 44.87

Q2DH
49M6 3554 3220 8330 2.59 22.64 22.01

22.11 7.09 6.92
7.01 45.05 45.15

Q3DH
50M8 3836 3840 10,350 2.69 23.16 22.03

22.14 7.14 7.02
6.85 44.65 43.81

QD52DH
52M4 7367 2650 6280 2.36 27.39 28.89

28.70 7.60 7.89
8.03 41.55 41.54

Q2D49DH
49M6 7187 2440 5750 2.35 27.57 28.15

28.40 7.63 7.69
7.88 41.42 41.40

Q3D50DH
50M8 7544 5100 10,210 2.00 27.07 27.78

27.92 7.65 8.35
7.98 41.32 41.30

3.2. Characterization of PMHS-Q by FTIR

In all FTIR spectra of studied PMHS-Q containing quadruple branching points Q were present
absorption bands in the range 2160 cm−1, corresponding to stretching vibrations of Si-H bonds, and
also absorption bands of the remaining groups of atoms: Si-CH3 (2960, 2890, 1440, 1400, 1255, and
830–700 cm−1), Si-O-Si (1010–1110 cm−1), and Si(CH3)3 (750, 690 cm−1) (see data in Table 4). Examples
of the FTIR spectra of branched poly(methylhydrosiloxanes) are presented in Figures 1–3.

Table 4. Characteristic absorption bands in FTIR spectra of Q2D49DH
49M6.

Wave number [cm−1] Group or bond Vibration

found literature data [72]
2965 2975–2950 CH3 ν asym C-H
2878 2885–2860 CH3 ν sym C-H
2164 2300–2100 Si-H ν Si-H
1450 1470–1420 CH3 δ asym C-H
1410 1390–1365 CH3 δ sym C-H
1260 1265–1250 Si-CH3 δ asym Si-C

1115–1027 1100–1000 Si-O-Si ν asym Si-O
910 950–800 Si-H δ Si-H
864 860–750 Si-CH3 ν asym Si-C
830 910–830 Si-O ν asym Si-O
800 800 Si-CH3 δ sym Si-C
759 755 Si-(CH3)3 δ asym Si-C
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Figure 1. FTIR spectrum of Q2DH
49M6.
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50M8.
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Figure 3. FTIR spectrum of Q2D49DH
49M6.

3.3. Characterization of PMHS-Q by NMR

In 1H–NMR spectra of copolymers, QDH
48M4, Q2DH

49M6 and Q3DH
50M8 were present

signals at δ 0.01–0.22 ppm, corresponding to hydrogen atoms of Si-CH3 groups and signals at δ
about five parts per million, characteristic for hydrosilane groups Si-H. In the 1H-NMR spectra of
copolymers: QD52DH

52M4, Q2D49DH
49M6, and Q3D50DH

50M8 were present signals at δ 0.0–0.30
ppm, corresponding to hydrogen atoms of Si–CH3 groups and signals at δ about five parts per
million, characteristic for Si-H groups. Examples of the 1H-NMR and 29Si-NMR spectra of branched
poly(methylhydrosiloxanes) are presented in Figures 4–7.
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Figure 4. 1H-NMR spectrum (in C6D6) of polymethylhydrosiloxane Q3DH
50M8.

In 29Si-NMR INEPT spectra of copolymers QDH
48M4, Q2DH

49M6 and Q3DH
50M8 were present

signals at δ −31.62–−39.97 ppm corresponding to silicon atoms of units DH [8,9,54] and at δ
9.40–11.25 ppm corresponding to silicon atoms of end groups Me3SiO0.5 (M). In the range of δ
−63–−68 ppm in INEPT 29Si-NMR spectra were present signals of a very low intensity, from Si atoms
of branching units MeSiO1,5, which could be formed during trace hydrolysis of Si-H bonds. In the
INEPT NMR spectra of copolymers QD52DH

52M4 (Q1D), Q2D49DH
49M6 (Q2D), and Q3D50DH

50M8

(Q3D) existed signals at δ 7.27–9.92 ppm, corresponding to silicon atoms of end groups Me3SiO0.5 and
at δ −34.61 to −38.87 ppm, characteristic for mers MeHSiO (DH), and also at δ −18.77–−21.85 ppm
from silicon atoms of units Me2SiO (D) [8,9,52]. It was impossible to observe signals of quadruple
silicon atoms of units SiO4/2 in 29Si-NMR spectra, which were registered by the INEPT technique, so
it was necessary to run 29Si–NMR spectra with application of the INVGATE program. A summary
of chemical shifts data in the 1H- and 29Si-NMR (INEPT and INVGATE) spectra of all PMHS-Q is
presented in Table 5.

In the 29Si-NMR INVGATE spectra of branched random PMHS were present signals of silicon
atoms corresponding to linear mers:

CH3(H)SiO at δ −34.0–−36.0 ppm (for Q1, Q2, and Q3),
at δ −34.0–−37.5 ppm (for Q1D, Q2D, and Q3D),

(CH3)2SiO at δ −16.5–−22.0 ppm (for Q1D, Q2D, and Q3D),
and terminal groups (CH3)3SiO1/2:

at δ 9.5–11.3 ppm (for Q1, Q2, and Q3),

at δ 7.3–7.9 and 9.8–10.0 ppm (for Q1D, Q2D, and Q3D).

Resonance signals of Si atoms of branching units Q were present in the range of δ:

−100.3–−112.4 ppm,

and they overlapped with very strong 29Si signals of a borosilicate glass.
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50M8.

In the 29Si-NMR INVGATE spectra of copolymers: QDH
48M4, Q2DH

49M6 and Q3DH
50M8

were present signals at: δ 9.40–11.25 ppm, corresponding to the terminal groups Me3SiO0.5, at δ
−31.81–−36.25 ppm, characteristic for units MeHSiO (DH), and also resonance signals in the range
of δ −100.3–−112.3 ppm for Si atoms from units Q. According to data in the literature [73] chemical
shifts of Si atoms from units Q exist in the range of δ −100–−106 ppm.
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Chemical shifts at δ 9–11 ppm have been assigned to resonances of Si atoms of Me3SiO0.5 (M)
groups in the following sequences of the siloxane chain ends: MDHDHDH, MDHDHD, MDHDDH,
MDHDD, MDHDHQ, MDHQDH, MDHDQ, and MDHQD, while chemical shifts at δ 7–8 ppm belong
to resonances of Si atoms of end groups M in the sequences: MDDD, MDDDH, MDDHD, MDDHDH,
MDDQ, MDQD, MQDD, and MQDDH. Chemical shifts of middle silicon atoms of units D change in
pentades, and magnetic interactions are shifted through four bonds in chain ends.

The sequences of dimethylsiloxane linkages in polymethylhydrosiloxane copolymers might be
the following: DDHDDHD, DDHDDHDH, DHDHDDHDH, QDHDDHQ, MDHDDHD, MDHDDHDH,
MDHDDHQ, MDHDDHD (δ of middle silicon atoms of units D: −20–−22 ppm), and: DHDDDHDH,
DHDDDHD, DDDDHDH, DDDDHD (δ of middle silicon atoms of units D: −18–−19.7 ppm).

In the 29Si-NMR spectra (recorded by INEPT and INVGATE techniques) in the range of δ
−33–−37 ppm exist signals of middle silicon atoms of units DH, which undergo changes in pentades
(Table 5). Signals of silicon atoms in the range of δ −102 to −109 ppm, presumably correspond to Si
atoms in the central units Q, in the following sequences of siloxane structures:
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Chemical shifts in the range of 7–11 ppm in the 29Si-NMR spectra (INEPT and INVGATE)
correspond to silicon atoms of the end groups M and change in tetrads (Table 5) [8,9,74].

Signals at δ −64 ppm of a very low intensity, registered both in INVGATE and INEPT 29Si-NMR
spectra of these three copolymers, probably come from Si atoms of units MeSiO1.5 (T), which were
formed during syntheses of PMHS-Q from trace hydrolysis of Si-H bonds [74].

Assignments of all 29Si-NMR signals resulting from the microstructure of siloxane chain of
branched polymethylhydrosiloxanes are summarized in Table 6.
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Table 5. Chemical shifts of PMHS-Q in their 1H- and 29Si-NMR spectra (in C6D6).

PMHS-Q

δ (ppm)

1H-NMR
29Si-NMR

INEPT INVGATE INEPT INVGATE INEPT INVGATE INEPT INVGATE

Si–H Si–CH3 Me3SiO0.5 Me2SiO MeHSiO MeSiO3/2 SiO4/2

QDH
48M4 4.90 0.01–0.22 9.75–11.03 9.98–10.96 - - −31.51–−37.42 −31.85–−35.90 −64.51 −64.58 −101.40–−108.13

Q2DH
49M6 4.80 0.01–0.12 9.40–11.24 9.70–10.32 - - −31.62–−39.97 −31.83–−36.25 −62.60–−64.61 - −101.37–−112.33

Q3DH
50M8 4.80 0.01–0.12 9.40–11.25 9.42–11.28 - - −37.46–−31.16 −32.16–−35.87 −62.97–−64.56 −64.54 −100.31–−110.20

QD52DH
52M4 4.92 0.05–0.22 9.92–7.27 7.30–9.96 −18.48–−21.74 −18.67–−21.44 −33.27–−38.87 −34.56–−37.30 −63.12–−65.39 −63.72–−65.89 −102.92–−109.92

Q2D49DH
49M6 4.92 0.01–0.30 9.92–7.26 7.32–9.98 −18.43–−21.85 −18.70–−21.69 −34.54–−37.33 −34.61–−37.03 −62.95–−65.26 −62.35–−66.16 −101.81–−109.71

Q3D50DH
50M8 4.83 0.01–0.23 9.91–7.27 7.32–9.98 −18.77–−21.75 −18.72–−21.29 −34.61–−37.57 −34.54–−36.10 −64.73 −63.35–−65.16 −102.84–−109.61
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Table 6. The microstructure of siloxane chains in PMHS-Q, containing quadruple branching units Q
(all possible sequences among tetrads of terminal groups, and linear and star pentads); values of δ
concern Si atoms in structural units denoted as bold and underlined.

δ 29Si-NMR (ppm)

9–11 7–8 −18–−19 −20–−22 −33–−37 −101–−109

MDHDHDH MDDD DDHDDHD DHDDDHDH

DHDDDHD
DDDDHDH

DDDDHD
DHDDDQ
DHDDQD
DDHDDQ
DDHDQD
DDDDQ
DDDQD
QDDDQ
QDDQD
DQDQD
DQDDQ
MDDDQ
MDDQD
MQDDD
MDDDQ
MQDQD

DHDHDHDHDH

DDHDHDHDH

DHDDHDHDH

DDHDHDHD
DDHDHDDH

DHDDHD DH

DHDDHDHQ
DHDHDHQDH

DDHDHDHQ
DHDDHDHQ
DHDDHQDH

DDHDHHQDH

DDDHQDH

DHDHDHDQ
DHDHDHQD
DDHDHDQ
DDHDHQD
DHDDHDQ
DHDDHQD
DDDHDHQ
DDDHDQ

MDHDHDHDH

MDHDHDH D
MDHDHDDH

MDDHDHDH

MDDHDHD
MDDHDDH

MDHDHDHQ
MDDHDHQ
MDHDHDQ
MDHDHQD

MDHDHQDH

MDDHQDH

MDDHDQ

D
MDHDHQ MDDDH DDHDDHDH DQD

D
MDHQDH MDDHD DHDHDDHDH

MDHDHD MDDHDH DDHDDHQ D
DQD

MDHDHDH MDDQ QDHDDHQ M

MDHDDH MDQD MDHDDHD
D

MDHDD MQDD MDHDDHDH DQM
M

MQDDH MDHDDHQ

MDHDDHD D
DQD

D

D
DQDH

DH

M
DQD
DH
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recorded FT-IR spectra, and W. Fortuniak (10% contribution) performed measurements of molecular weights of
PMHS by the SEC method. A manuscript has been written by J.J. Chruściel (55% total contribution).
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