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Abstract: Although lignin blending with thermoplastic polymers has been widely studied,
the usefulness of the lignin–polymer composites is limited by the poor compatibility of the two
components. In the present study, alkali lignin/PVA composite membranes were prepared by
incorporating 10%, 15%, 20% and 25% alkali lignin into the composites. The thermodynamic
parameters of the composites were measured using inverse gas chromatography (IGC). Composite
membranes with 10%, 15%, 20%, and 25% alkali lignin had solubility parameters of 17.51, 18.70,
16.64 and 16.38 (J/cm3)0.5, respectively, indicating that the solubility parameter firstly increased, and
then decreased, with increasing proportions of alkali lignin. When the alkali lignin content was 15%,
the composites had the largest solubility parameters. The composite membrane with an alkali lignin
content of 15% had a tensile strength of 18.86 MPa and a hydrophilic contact angle of 89◦. We have
shown that the solubility parameters of blends were related to mechanical and hydrophilic properties
of the composites and the relationships have been verified experimentally and theoretically.

Keywords: alkali lignin; composite membrane; inverse gas chromatography; the solubility parameter;
preparation of composites; performance of composites

1. Introduction

Apart from cellulose, lignin is the most abundant macromolecule and is the only large-volume
renewable feedstock that is composed of aromatics [1]. Lignin regenerates quickly per year, and
alkali lignin is available in large quantities from numerous pulping processes in China [2,3]. Lignin,
which is a complex three-dimensional network rich in active functional groups, including phenols and
methoxy groups, has the advantages of being nontoxic, renewable, and biodegradable [4,5]. Lignin also
contains abundant phenylpropane units which are relatively hydrophobic and aromatic in nature [6].
Much attention has been paid to lignin as a globally available biomass and various compositions have
been subjected to surface modifications to modify their original properties [7]. Lignin has been used in
composites with plastic and rubber or as an additive of adhesives to produce novel polymers with
antimicrobial activity, low toxicity, and good resistance to weathering and ultraviolet irradiation [8–11].
Lignin blending with polymer composites has become a feasible way to research high-value utilization
of lignin.

Alkali lignin is a co-product of biofuel production and the paper industry and is also the most
common type of lignin that is produced [12]. Polyvinyl alcohol (PVA), a polymer that has good
film-forming, mechanical, and compatibility properties, contains a large number of hydroxyl groups,
which confer high polarity and aqueous solubility [13]. Composite materials comprising alkali lignin
and PVA held together by intermolecular forces can be prepared by simple mechanical blending [14].
Although interfacial compatibility is good, these composites still show obvious phase separation.
The solubility parameter is widely used for predicting compatibility between two materials [15–18].
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Materials with similar solubility parameter will show physical affinities, so lignin forms miscible blends
with polyethylene terephthalate (PET) and polyethylene oxide (PEO) and immiscible blends with
polypropylene (PP) and polyvinyl alcohol (PVA) [19].Compatibility of the composite interface is usually
evaluated by analyzing chemical interactions, and measuring thermal and mechanical properties,
or by the swelling method, which allows qualitative analysis of two-component interactions [20,21].
Deshpande et al. [22] were among the first to apply an inverse gas chromatography (IGC) technique
for the determination of the interaction between a polymer and a nonpolymeric compound. Later,
this method was also utilized to measure the compatibility of polymer blends [23–25]. Quantitative
characterization of the composite of PVA and alkali lignin is, however, lacking and few studies
have provided a quantitative representation of the interactions between the two components and the
relationship with their properties.

Inverse gas chromatography (IGC) has been used to determine the physicochemical properties
of polymers in organic materials such as powders [26], crude oils [27], nanomaterials [28],
fibers [29], copolymers [30], polymer blends [31], hyperbranched polymers [32], and some nonfood
carbohydrates [33]. IGC has also been used to determinate the solubility parameter of polymers [34,35].
The technique requires a chromatographic column filled with the material under study [36]. A series
of probe solvents and test temperatures are selected, and the retention volume (V0

g ) is used to quantify
the interaction of the probe solvent with the stationary phase at the working temperature.

The present study attempts to introduce solubility parameter theory into a quantitative study of
the compatibility of lignin composite materials. The solubility parameters and related thermodynamic
parameter of alkali lignin/PVA were quantified by IGC and the relationship between solubility
parameters and relevant properties of composites was established.

2. Materials and Methods

2.1. Materials

Commercial alkali lignin, isolated by alkali-assisted extractions from wheat straw (composition:
82.69% lignin, 8.35% carbohydrates, and 8.96% ash) was supplied by Tralin Paper Co., Ltd. (Shandong,
China). PVA 2488 (AR) was supplied by Sinopec Sichuan Vinylon Works (Changshou, China). Organic
solvents were obtained from Aladdin Industrial Co., Ltd. (Shanghai, China).

2.2. Determination of Solubility Parameters of Alkali Lignin/PVA Composite Materials by IGC

The solubility parameter was measured using an Agilent 6890 N Gas Chromatograph (Agilent
Technologies, Beijing, China). Mixtures of PVA and alkali lignin and 6201 red diatomaceous earth
(1:10 w/w) were uniformly mixed with moderate acetone and then were dried. The blends were then
packed in a solvent-rinsed stainless steel column by using a mechanical vibrator and a vacuum pump.
After packing, the column was conditioned overnight in a stream of nitrogen at 130 ◦C. Probe solvents
were injected manually using a 1 µL Hamilton syringe, with column temperatures maintained at 110,
120, 130, 140, and 150 ◦C. To achieve infinite dilution, the injection volume for each probe solvent was
0.5 µL. At least three injections were made for each probe solvent, and the average retention time, tR,
was used for the calculations of solubility parameters of alkali lignin/PVA composites.

2.3. Preparation of Alkali Lignin/PVA Composite Membrane

Blends of PVA and 10%, 15%, 20%, and 25% alkali lignin were placed in a 250 mL three-necked
flask and stirred at the speed of 500 r/min for about 2 h in a water bath at 90 ◦C. After ultrasound
treatment for 20 min, bubbles were removed in a vacuum oven (0.06 MPa). The solution was spread
onto a film plate and dried for 24 h at room temperature to form a homogeneous film, with a thickness
of approximately 60–80 µm. The composite material shapes were cut in a strip shape (as shown in
Figure 1).
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Figure 1. The shape of the composite materials. (a) PVA; (b) 10% alkali lignin/PVA; (c) 15% alkali 
lignin/PVA; (d) 20% alkali lignin/PVA; (e) 25% alkali lignin/PVA. 
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Figure 1. The shape of the composite materials. (a) PVA; (b) 10% alkali lignin/PVA; (c) 15% alkali
lignin/PVA; (d) 20% alkali lignin/PVA; (e) 25% alkali lignin/PVA.

2.4. Test of Mechanical Properties of Alkali Lignin/PVA Composite Membranes

The mechanical properties of the alkali lignin/PVA composite membranes were measured using
a universal testing machine (LDX-200, Beijing Landmark Packaging Material Co., Ltd., Beijing, China).
To determine the average thickness of the sample mold, the thickness at 10 randomly chosen points
on the sample was measured using a screw micrometer. Five rectangular strips, 160 mm × 20 mm,
were cut from each sample according to the GB/T13022-1991 standard and the composite membranes
were treated according to the GB/T2918-1998 standard. After treatment, samples were moved into
a container with relative humidity of 50% for about 90 h. The tensile strength of the composite
membranes was measured using a universal testing machine at a speed of 50 mm/min and the average
value from five measurements was recorded for each sample.

2.5. Test of Hydrophilic Properties of Alkali Lignin/PVA Composite Membranes

The water contact angle is a measure of the intrinsic hydrophilicity and the surface wettability
of the material [37]. The contact angle of the membrane surface was measured using a static contact
angle meter (JC2000C, Shanghai Zhongchen Digital Technic Apparatus Co., Ltd., Shanghai, China).
The smooth section of the alkali lignin/PVA composite membrane was cut into a shape 15 mm × 15 mm,
with three samples for each group. The sample was placed on the experimental platform of the contact
angle meter at room temperature and a drop of deionized water (5 µL) was then dripped on the surface
of the sample. At a set time (10 s), the membrane was photographed and the contact angle of the
sample membrane was measured. Each sample was measured three times and the average value was
used in the calculations.

3. Results and Discussion

3.1. Solubility Parameters of Alkali Lignin/PVA Composite Membranes with Different Proportions of
Alkali Lignin

3.1.1. Retention Volumes of Probe Solvents

The retention volume, V0
g , was calculated using Equation (1):

V0
g = 273.15JF

∆t
mT

(1)

where ∆t = tr − tm, tr is the retention time of the adsorbing solute probes, tm is the mobile phase
(n-pentane) hold-up time (dead time), F is the flow rate under ambient conditions, m is the mass of the
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solvent on the column packing, and T is the column temperature (K). The factor J, which corrects for
the influence of the pressure drop along the column, is given by

J =
3
2
(Pi/P0)

2 − 1

(Pi/P0)
3 − 1

(2)

where Pi and P0 are the inlet and outlet pressure, respectively [38].
As shown in Table A1 (Appendix A), alkali lignin and PVA are both polar and, according to the

theory of similarity and compatibility, the proper proportion of alkali lignin in a polar polymer results
in good interfacial compatibility of the polymer composite. At a given temperature, V0

g increases as the
amount of alkali lignin in the composite increases. Because of its unique three-dimensional network
structure, when the amount of alkali lignin increases, the small molecules of the probe solvent are more
easily introduced into the polymer, resulting in stronger interactive forces between the two. As the
strength of the interaction between the probe solvent and the polymer increases, the retention time of
the probe solvent in the column increases and the value of V0

g for the probe solvent also increases.

3.1.2. Thermodynamics Parameters of Probe Solvents

The weight fraction activity coefficient of the probe solvent at infinite dilution, Ω∞
1 , was calculated

using Equation (3):

ln Ω∞
1 = ln

273.15R
P0

1 V0
g M1

−
P0

1
RT

(B11 − V1) (3)

where M1 is the molecular mass of the probe solvent, R is the ideal gas constant, B11 is the second
virial coefficient, P0

1 is the saturated vapor pressure, and V1 is the molar volume of the probe solvent.
The values of B11, P0

1 , and V1 were calculated at column temperature [38].
The molar absorption enthalpy, ∆Hs

1, was obtained from the slope of the plot of 1/T versus lnV0
g

in Equation (4):

∆Hs
1 = −R

∂(ln V0
g )

∂(1/T)
. (4)

The partial molar heat of mixing, ∆H∞
1 , was obtained from the slope of the plot of 1/T versus

ln Ω∞
1 in Equation (5):

∆H∞
1 = R

∂(ln Ω∞
1 )

∂(1/T)
. (5)

The molar evaporation enthalpy, ∆Hv, of the probe solvent adsorbed by the polymers is related to
∆H∞

1 and ∆Hs
1 as follows:

∆Hv = ∆H∞
1 − ∆Hs

1. (6)

As is shown in Table A2 (Appendix A), values of ∆Hs
1 for all of the probe solvents were negative,

indicating that adsorption of the probe solvent onto the polymer is an exothermic process. Values of
∆Hv for all of the probe solvents were positive, indicating that evaporation of the probe solvent from
the polymer is an endothermic process. As the alkali lignin content increased, the absolute value of
∆Hs

1 firstly increased and then decreased.

3.1.3. Interaction Parameters

According to the Flory–Huggins theory, the interaction parameter, χ∞
12, of a given solute–polymer

pair is defined as [38]

χ∞
12 = ln

273.15R
P0

1 V0
g M1

−
P0

1
RT

(B11 − V1)− 1. (7)

As shown in Table A3 (Appendix A), when the value of χ∞
12 is <0.5 (critical value), the probe

solvent is generally characterized as a good solvent, whereas a value >1 designates a poor solvent that
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may lead to phase separation [26]. Because PVA is insoluble in these probe solvents, all values of χ∞
12

are >1 when only a small amount of alkali lignin was added. When the proportion of alkali lignin
reached 25%, values of χ∞

12 for all probe solvents, except tetrahydrofuran, acetone and methyl ethyl
ketone, were >1. The values of χ∞

12 that are <1 are attributable to the solubility of alkali lignin, and the
values reflect the inherent properties of PVA and alkali lignin.

3.1.4. Solubility Parameters

The solubility parameter of each probe solvent, δ1, was calculated using Equation 8:

δ1 =

(
∆Ev

V1

) 1
2
=

(
∆Hv − RT

V1

) 1
2

(8)

where ∆Ev is the energy of vaporization of the compound, V1 is the molar volume of the compound,
and ∆Hv is the molar heat of vaporization of the compound.

Values of δ1 decreased with increasing temperature for two reasons: (i) the heat of vaporization
decreases with temperature; and (ii) the molar volume increases with temperature. The solubility
parameter of the polymer, δ2, was calculated using Equations (9) and (10):(

δ1
2

RT
−

χ∞
12

V1

)
=

(
2δ2

RT

)
δ1 −

(
δ2

2

RT
+

χ∞
s

V1

)
, (9)

δ2 =
kRT

2
, (10)

where χ∞
s is the entropy term of the Flory–Huggins interaction parameter and k is the slope of

Equation (9) [35,39].
According to Equation (9), the correlation of δ1

2/(RT)-χ∞
12/V1 and δ1 was obtained as shown in

Figure 2a. The different slopes can be obtained, and values of δ2 for the alkali lignin/PVA composite
membrane at 383, 393, 403, 413 and 423 K are shown in Table 1 according to Equation (10). As calculated
by the extrapolation method [35] (Figure 2b), values of δ2 at 298.15 K for alkali lignin/PVA composite
membranes with alkali lignin contents of 10%, 15%, 20%, and 25% were 17.51, 18.70, 16.64, and
16.38 (J/cm3)0.5, respectively.
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Figure 2. (a) The calculated example of the solubility parameter (PVA); (b) Solubility parameters of
different proportions under 298.15 K by the extrapolation method.
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Table 1. Solubility parameters (δ2) of the mixture at different temperatures (J/cm3)0.5.

Alkali Lignin Content 383 K 393 K 403 K 413 K 423 K

0% 19.08 18.04 17.08 16.02 14.97
10% 15.51 15.08 14.97 14.68 14.49
15% 16.33 15.74 15.62 15.39 15.04
20% 15.12 14.73 14.45 14.50 14.27
25% 15.67 15.46 15.40 15.20 15.34

3.2. Relationship between Mechanical Properties and Solubility Parameters (δ2) of Lignin/PVA
Composite Membranes

The relationship between the solubility parameter (δ2) and the tensile strength and elongation
at the break of the lignin/PVA composite film is shown in Figures 3 and 4. As the proportion
of alkali lignin increases, the solubility parameter and tensile strength of the composites firstly
decreases, then increases, and finally decreases again. When the alkali lignin content was 10% or 15%,
two peaks appeared. The difference between the two values of the solubility parameter of alkali lignin
(δ = 20.09 (J/cm3)0.5) and PVA (δ = 27.69 (J/cm3)0.5) is large, which might lead to bad compatibility.
When alkali lignin was added (10%), the single system might be broken and both the solubility
parameter and tensile strength decreased. With added alkali lignin (15%), their interaction may
increase because of hydrogen bond function increasing compatibility. More alkali lignin was added
(20% and 25% lignin), leading to the internal structure of composites being loose and, consequently,
bad compatibility. As the proportion of alkali lignin increases, elongation at the break decreases
continuously, which may be partly due to the fact that alkali lignin and PVA chains can bind tightly,
but also partly due to the fact that alkali lignin only acts as infilling in the network structure. Also,
it can be concluded that the reason for the reduction of elongation at the break of the blend membranes
may be due to the low ductility of membranes as the mass of alkali lignin increases.

The solubility parameters (δ2) and related thermodynamic parameters of alkali lignin/PVA
composite membranes were measured by IGC and were analyzed at different temperatures. The tensile
strength of the composite membranes was measured using a universal testing machine and
the relationship between the solubility parameter and mechanical strength was also analyzed.
These experiments were designed to establish a quantitative relationship between the solubility
parameter (δ2) and the tensile strength of the alkali lignin/PVA composite membrane, and to provide a
reference for study of the relationship between the interface compatibility and the mechanical strength
of alkali lignin/PVA composites (Figure A1). The degree of difference in the linear regression equation
was tested using the F-test. The binomial relationship between the solubility parameter and the
tensile strength of the lignin/PVA composite membrane was calculated using the F-test. Values of
F = 171.868 > F (1, 3) = 10.128 (Appendix C) and p = 0.006 < 0.05 (Table A4) were obtained, indicating
that X impacts Y significantly and R2 has statistical significance by the statistical method, meeting
the trend of the quadratic function. Therefore, there is a significant correlation between the solubility
parameter and the tensile strength of the composite.

The relationship between the tensile strength and the solubility parameter (δ2) of the alkali
lignin/PVA composite membranes is shown in Figure 5. The relationship between the two parameters,
obtained by mathematical analysis, fitted the binomial relationship Y = 19.797 − 0.709X + 0.036X2

(0 < X < 27.44), where X is the tensile strength and Y is the solubility parameter of the composite.
The linear correlation coefficient was 0.989. The tensile strength of lignin/PVA composites increased
with increases in the value of the solubility parameter.
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Figure 5. Tensile strength vs solubility parameter (δ2) of alkali lignin/PVA composite membranes.

To verify the reliability of the model, lignin/PVA composite membranes with alkali lignin
proportions of 3% and 5% were measured by the same method. The solubility parameters of composite
membranes with alkali lignin contents of 3% and 5% were 26.29 and 25.16 J/cm3, respectively, and the
values of tensile strength were 26.40 and 25.30 MPa, respectively (Figure 5). The solubility parameters,
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calculated using the binomial relationship, were 26.36 and 25.09 J/cm3, indicating that the theoretical
value obtained from the binomial was consistent with the actual measured value. The tensile strength
of lignin/PVA composite membranes increased as the solubility parameter increased.

3.3. Relationship between Contact Angle and Solubility Parameter (δ2) of Alkali Lignin/PVA
Composite Membranes

The contact angles of the alkali lignin/PVA composite membranes were measured on a static
contact angle meter, using 5 µL of deionized water at room temperature. Each sample was measured
three times and average values were calculated. The contact angles of alkali lignin/PVA composite
membranes with alkali lignin contents of 0%, 10%, 15%, 20%, and 25% were 34.5◦, 77.0◦, 89.0◦, 79.0◦,
and 74.5◦, respectively. PVA contains a large number of hydroxyl groups and, when dissolved in
aqueous solution, these form hydrogen bonds with water, so the PVA film contact angle is small
(Figure 6a). Because of the low hydrophilicity of alkali lignin, the contact angle of the membrane firstly
increased markedly when alkali lignin was added. The contact angle of the membrane decreased
because of poor compatibility as the proportion of alkali lignin increased further (Figure 6). This can be
explained by the internal structure of composites being loose, and the fact that water molecules easily
penetrated the composites above 15% alkali lignin. The contact angle was largest when the proportion
of alkali lignin was 15%, indicating that this membrane has good hydrophobicity. The hydrophobicity
of the membrane is consistent with the maximum value of δ2 obtained for the 15% alkali lignin/PVA
composite membrane.
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A quantitative relationship between the solubility parameter (δ2) of the alkali lignin/PVA
composite membrane and the static contact angle of the surface of the film has thus been established
and provides a reference for study of the relationship between the lignin/PVA composite interface and
its contact angle (Figure A2). The binary relationship of the solubility parameter and the static contact
angle of the composite membrane was tested by the regression equation F-test, F = 87.579 > F (1, 3) =
10.128 and p = 0.01 < 0.05 (Table A5), indicating that X impacts Y significantly and R2 has statistical
significance by the statistical method, meeting the trend of the quadratic function. Therefore, there is a
significant correlation between the solubility parameters and the static contact angle of the composite
membrane. The relationship between the static contact angle and the solubility parameter (δ2) of
alkali lignin/PVA composite membrane is shown in Figure 7. The binomial relationship Y = −343.258
+ 42.650X − 1.048X2 (16.38 < X < 27.69) was obtained through mathematical analysis, where X is
the solubility parameter and Y is the static contact angle of the composite membrane. The linear
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correlation coefficient is 0.977. The static contact angle of the film firstly increases and then decreases
as the solubility parameter (δ2) of the composite membrane increases. The maximum static contact
angle occurs when the solubility parameter is between 20 and 21 (J/cm3)0.5.
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To verify the reliability of the model, the static contact angle of alkali lignin/PVA composite
membranes with alkali lignin contents of 3% and 5% were measured using the same method; the values
of the static contact angle were 51.1◦ and 68.0◦, respectively. The static contact angles calculated using
the binomial relationship were 52.1◦, and 65.3◦, indicating that the theoretical value obtained from the
binomial was consistent with the actual measured value. The static contact angle of the membrane
was shown to firstly increase and then decrease as the solubility parameter (δ2) of the composite
membrane increases.

4. Conclusions

The aim of this study was to quantitatively evaluate the compatibility of alkali lignin/PVA
composites. Solubility parameters and thermodynamic parameters were determined by IGC. When the
proportion of alkali lignin was 25%, alkali lignin/PVA composites dissolved in the probe solvent of
tetrahydrofuran under the range of conditions used in this study. When the proportion of alkali lignin
was 15%, the composite had the highest solubility parameter (18.70 (J/cm3)0.5) and the composite
had the best tensile strength (18.86 MPa) and hydrophilicity (contact angle 89◦). We also established
a relationship between the solubility parameter (δ2) and tensile strength, which fitted the binomial
relationship Y = 19.797 − 0.709X + 0.036X2 (0 < X < 27.44), where X is the composite material solubility
parameter and Y is the composite tensile strength. A relationship between the solubility parameter
(δ2) and the tensile strength was also established and fitted the binomial relationship Y = −343.258 +
42.650X − 1.048X2 (16.38 < X < 27.69). The polarity of PVA is higher than that of alkali lignin and the
difference in the solubility parameters of PVA (27.69 (J/cm3)0.5) and alkali lignin (20.09 (J/cm3)0.5) has
a bad effect on the compatibility. In future study, alkali lignin will be modified to narrow the difference
between the solubility parameters of alkali lignin and PVA for better compatibility.
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Appendix A

Table A1. Specific retention volumes (V0
g ) at different temperatures (mL·g−1).

Probe Solvent
10% Alkali Lignin 15% Alkali Lignin

383 K 393 K 403 K 413 K 423 K 383 K 393 K 403 K 413 K 423 K

n-hexane 1.01 0.68 0.4 0.38 0.31 1.13 0.82 0.62 0.21 0.32
n-heptane 3.03 2.11 1.35 1.09 0.79 3.83 2.47 1.72 1.12 0.8
n-octane 8.28 5.41 3.54 2.48 1.73 10.31 6.69 4.51 2.96 2.17
n-nonane 19.46 12.32 8.08 5.6 3.87 22.49 15.12 10.2 6.54 4.7
n-decane 41.29 25.72 16.79 11.24 7.61 49.49 31.06 21.03 13.45 9.37

cyclopentane 0.2 0.13 0.08 0.11 0.07 0.1 0.14 0.04 −0.08 0.08
cyclohexane 1.32 0.85 0.6 0.48 0.37 1.28 1.05 0.66 0.29 0.28

benzene 2.18 1.44 1.07 0.95 0.77 2.36 1.56 1.24 0.79 0.76
methylbenzene 7.14 4.33 2.84 2.32 1.64 7.76 5.5 3.84 2.37 1.73
tetrahydrofuran 3.57 2.37 1.79 1.52 1.21 3.73 2.79 2.12 1.29 1.17

methanol 8.24 5.26 3.82 2.99 2.34 12.52 8.25 6.05 4.12 3.34
ethanol 6.94 4.1 3.04 2.21 1.55 8.69 5.13 3.58 2.21 1.97

1-propanol 6.35 3.8 2.57 1.91 1.39 7.61 3.66 2.87 2.04 1.41
isopropanol 5.32 3.57 2.23 1.79 1.3 5.01 3.3 2.43 1.46 1.25

acetone 4.69 2.11 1.53 1.47 1.13 4.32 2.84 2.34 1.29 1.37
methyl ethyl ketone 5.1 3.91 3.02 2.38 1.75 5.2 4.21 3.22 2.12 1.73

methyl isobutyl ketone 13.11 10.78 7.16 6.14 4.13 14.48 10.67 8.17 5.37 4.22
dichloromethane 0.79 0.63 0.6 0.61 0.51 0.98 0.78 0.84 0.46 0.76
trichloromethane 1.68 1.31 1.03 0.93 0.8 1.91 1.65 1.37 0.87 1.09
trichloroethylene 2.99 1.99 1.43 1.28 1.02 3.29 2.38 1.72 1.29 1.17

Probe Solvent
20% Alkali Lignin 25% Alkali Lignin

383 K 393 K 403 K 413 K 423 K 383 K 393 K 403 K 413 K 423 K

n-hexane 1.34 0.93 0.63 0.37 0.29 2.41 2.16 1.63 1.07 0.86
n-heptane 3.99 2.72 1.88 1.3 0.93 7.03 5.5 4.02 2.9 2.22
n-octane 10.12 6.78 4.63 3.37 2.09 17.08 12.36 8.75 6.24 4.92
n-nonane 23.25 15.15 10.04 6.92 4.59 38.15 26.13 18.01 12.38 9.13
n-decane 49.07 31.89 20.64 13.9 9.36 85.77 54.61 36.02 23.09 16.61

cyclopentane 0.32 0.17 0.13 0.09 0.06 0.21 0.56 0.48 0.3 0.06
cyclohexane 1.45 1.13 0.81 0.56 0.41 2.31 2.01 1.58 1.07 0.67

benzene 2.22 1.73 1.25 0.93 0.64 3.93 3.43 2.68 2.04 1.63
methylbenzene 7.76 5.18 3.44 2.44 1.74 11.55 8.66 6.57 4.72 3.96
tetrahydrofuran 2.93 2.26 1.75 1.08 0.84 11.13 8.03 5.94 4.16 3.33

methanol – – – – – – – – – –
ethanol 6.17 3.65 2.53 1.91 1.4 15.59 11.43 8.71 6.05 4.69

1-propanol 4.97 3.19 2.06 1.67 1.02 15.11 10.49 7.5 5.06 3.9
isopropanol 4.41 2.99 2.06 1.39 0.93 15.43 10.53 7.23 4.91 3.73

acetone 3.28 2.19 1.5 1.2 0.76 14.39 9.99 7.54 5.3 4.15
methyl ethyl ketone 5.29 3.69 2.5 1.91 1.4 22.54 14.3 10.77 7.64 5.24

methyl isobutyl ketone 13.51 10.4 6.82 5.16 3.66 70.15 45.41 30.17 20.04 13.43
dichloromethane 0.88 0.63 0.44 0.43 0.38 1.6 1.71 1.45 0.92 0.9
trichloromethane 1.94 1.46 1.19 0.9 0.76 3.98 3.04 2.4 1.59 1.53
trichloroethylene 3.28 2.39 1.69 1.42 1.13 5.48 4.24 3.21 2.47 1.86
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Table A2. Thermodynamic parameters of the probe solvents (kJ/mol).

Probe Solvent
10% Alkali Lignin 15% Alkali Lignin

∆Hs
1 ∆H∞

1 ∆Hv ∆Hs
1 ∆H∞

1 ∆Hv

n-hexane −39.82 −13.66 26.16 −52.60 −26.44 26.16
n-heptane −45.46 −14.79 30.67 −52.73 −22.05 30.67
n-octane −52.72 −17.69 35.03 −53.05 −18.02 35.03
n-nonane −54.22 −14.90 39.32 −53.48 −14.16 39.32
n-decane −56.77 −13.18 43.59 −56.18 −12.59 43.59

cyclopentane −29.11 −5.15 23.96 −12.47 11.49 23.96
cyclohexane −42.61 −14.64 27.97 −58.03 −30.06 27.97

benzene −33.85 −5.17 28.68 −39.66 −10.98 28.68
methylbenzene −48.14 −15.42 32.72 −51.74 −19.02 32.72
tetrahydrofuran −35.35 −16.11 19.24 −41.80 −22.55 19.24

methanol −41.72 −8.09 33.63 −45.08 −11.45 33.63
ethanol −48.78 −11.95 36.83 −51.59 −14.76 36.83

1-propanol −50.47 −9.87 40.60 −53.58 −12.98 40.60
isopropanol −47.48 −13.13 34.35 −48.58 −14.23 34.35

acetone −43.69 −17.09 26.60 −41.81 −15.21 26.60
methyl ethyl ketone −35.41 −5.82 29.59 −38.88 −9.29 29.59

methyl isobutyl ketone −38.69 −21.42 17.27 −42.46 −25.19 17.27
dichloromethane −12.16 12.22 24.39 −14.18 10.21 24.39
trichloromethane −24.62 1.70 26.32 −23.99 2.33 26.32
trichloroethylene −35.03 −4.97 30.06 −36.36 −6.30 30.06

Probe Solvent
20% Alkali Lignin 25% Alkali Lignin

∆Hs
1 ∆H ∆Hv ∆Hs

1 ∆H∞
1 ∆Hv

n-hexane −53.62 −27.46 26.16 −37.09 −10.93 26.16
n-heptane −49.24 −18.57 30.67 −39.69 −9.02 30.67
n-octane −51.88 −16.84 35.03 −42.77 −7.73 35.03
n-nonane −54.28 −14.97 39.32 −48.63 −9.32 39.32
n-decane −55.87 −12.28 43.59 −55.90 −12.31 43.59

cyclopentane −53.73 −29.78 23.96 −40.43 −14.98 25.45
cyclohexane −43.66 −15.69 27.97 −41.55 −13.57 27.97

benzene −41.89 −13.21 28.68 −30.60 −1.92 28.68
methylbenzene −50.44 −17.72 32.72 −37.06 −4.34 32.72
tetrahydrofuran −43.41 −24.17 19.24 −41.40 −22.16 19.24

methanol – – – – – –
ethanol −48.95 −12.12 36.83 −40.94 −4.10 36.83

1-propanol −51.54 −10.94 40.60 −46.37 −5.77 40.60
isopropanol −52.24 −17.89 34.35 −48.61 −14.25 34.35

acetone −47.64 −21.04 26.60 −42.11 −15.52 26.60
methyl ethyl ketone −44.82 −15.23 29.59 −47.80 −18.21 29.59

methyl isobutyl ketone −44.61 −27.35 17.27 −55.59 −38.33 17.27
dichloromethane −28.19 −3.80 24.39 −23.59 0.79 24.39
trichloromethane −32.06 −5.74 26.32 −34.63 −8.31 26.32
trichloroethylene −35.77 −5.71 30.06 −36.35 −6.29 30.06



Polymers 2018, 10, 290 12 of 16

Table A3. Flory–Huggins interaction parameters (χ∞
12) of the probe solvents at different temperatures.

Probe Solvent
10% Alkali Lignin 15% Alkali Lignin

383 K 393 K 403 K 413 K 423 K 383 K 393 K 403 K 413 K 423 K

n-hexane 3.53 3.71 4.04 3.90 3.93 3.42 3.51 3.60 4.50 3.90
n-heptane 3.04 3.15 3.36 3.36 3.48 2.81 2.99 3.12 3.33 3.46
n-octane 2.66 2.80 2.96 3.07 3.19 2.45 2.59 2.72 2.89 2.96
n-nonane 2.44 2.58 2.70 2.79 2.89 2.30 2.37 2.47 2.63 2.70
n-decane 2.33 2.45 2.54 2.63 2.73 2.15 2.26 2.32 2.45 2.52

cyclopentane 4.85 5.12 5.40 4.87 5.16 5.57 5.04 5.99 5.19 5.06
cyclohexane 3.58 3.80 3.94 3.96 4.04 3.62 3.58 3.83 4.45 4.30

benzene 3.12 3.30 3.37 3.28 3.31 3.04 3.22 3.23 3.47 3.31
methylbenzene 2.57 2.80 2.97 2.94 3.07 2.49 2.57 2.67 2.92 3.02
tetrahydrofuran 1.21 1.46 1.59 1.62 1.73 1.17 1.30 1.42 1.78 1.76

methanol 1.95 2.12 2.19 2.19 2.21 1.53 1.68 1.73 1.87 1.86
ethanol 2.16 2.38 2.40 2.46 2.56 1.94 2.16 2.24 2.46 2.33

1-propanol 2.64 2.82 2.90 2.91 2.95 2.46 2.85 2.79 2.84 2.94
isopropanol 2.31 2.42 2.62 2.60 2.70 2.37 2.50 2.54 2.81 2.74

acetone 1.95 2.53 2.65 2.50 2.59 2.04 2.24 2.23 2.63 2.4
methyl ethyl ketone 2.29 2.31 2.34 2.37 2.48 2.27 2.24 2.28 2.48 2.49

methyl isobutyl ketone 4.43 4.47 4.74 4.78 5.07 4.33 4.48 4.61 4.91 5.05
dichloromethane 2.93 2.95 2.82 2.63 2.64 2.71 2.74 2.48 2.91 2.24
trichloromethane 2.46 2.50 2.53 2.45 2.42 2.33 2.27 2.25 2.51 2.12
trichloroethylene 2.45 2.61 2.71 2.61 2.63 2.35 2.43 2.52 2.60 2.50

Probe Solvent
20% Alkali Lignin 25% Alkali Lignin

383 K 393 K 403 K 413 K 423 K 383 K 393 K 403 K 413 K 423 K

n-hexane 3.24 3.39 3.59 3.93 4.00 2.66 2.55 2.63 2.86 2.91
n-heptane 2.77 2.90 3.04 3.19 3.31 2.20 2.19 2.27 2.38 2.44
n-octane 2.46 2.58 2.69 2.76 3.00 1.94 1.98 2.05 2.14 2.14
n-nonane 2.27 2.37 2.48 2.57 2.72 1.77 1.83 1.90 1.99 2.03
n-decane 2.16 2.23 2.33 2.42 2.52 1.60 1.69 1.78 1.91 1.95

cyclopentane 4.40 4.85 4.95 5.08 5.39 4.82 3.63 3.60 3.90 5.31
cyclohexane 3.49 3.51 3.63 3.81 3.93 3.02 2.94 2.96 3.15 3.43

benzene 3.10 3.11 3.22 3.31 3.49 2.52 2.43 2.45 2.52 2.55
methylbenzene 2.49 2.62 2.78 2.89 3.01 2.09 2.11 2.14 2.23 2.19
tetrahydrofuran 1.41 1.51 1.62 1.96 2.08 0.08 0.24 0.39 0.61 0.71

methanol – – – – – – – – – –
ethanol 2.28 2.50 2.58 2.60 2.67 1.35 1.36 1.35 1.45 1.46

1-propanol 2.88 2.99 3.12 3.04 3.26 1.77 1.80 1.83 1.93 1.92
isopropanol 2.50 2.60 2.70 2.85 3.03 1.24 1.34 1.45 1.59 1.65

acetone 2.31 2.50 2.67 2.70 2.99 0.83 0.98 1.06 1.22 1.29
methyl ethyl ketone 2.25 2.37 2.53 2.59 2.71 0.80 1.01 1.07 1.20 1.38

methyl isobutyl ketone 4.40 4.51 4.79 4.95 5.19 2.75 3.03 3.30 3.60 3.90
dichloromethane 2.82 2.95 3.13 2.97 2.94 2.22 1.95 1.93 2.21 2.07
trichloromethane 2.32 2.39 2.39 2.49 2.48 1.60 1.65 1.69 1.92 1.78
trichloroethylene 2.35 2.43 2.54 2.50 2.53 1.84 1.85 1.90 1.95 2.03

Appendix B

Table A4. Model summary and parameter estimates.

Dependent Variable: y-Axis

Equation
Model Summary Parameter Estimates

R Square F df1 df2 Sig. Constant

Linear 0.866 19.396 1 3 0.022
Logarithmic 0.696 6.856 1 3 0.079

Inverse 0.495 2.939 1 3 0.185
Quadratic 0.994 171.868 2 2 0.006

Cubic 0.997 108.908 3 1 0.070
Compound 0.892 24.847 1 3 0.016 12.339

Power 0.731 8.145 1 3 0.065 6.853
S 0.532 3.404 1 3 0.162 3.261

Growth 0.892 24.847 1 3 0.016 2.513
Exponential 0.892 24.847 1 3 0.016 12.339

Logistic 0.892 24.847 1 3 0.016 0.081

The independent variable is the x-axis.
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Table A5. Model summary and parameter estimates.

Dependent Variable: y-Axis

Equation
Model Summary Parameter Estimates

R Square F df1 df2 Sig. Constant

Linear 0.815 13.217 1 3 0.036
Logarithmic 0.779 10.548 1 3 0.048

Inverse 0.735 8.317 1 3 0.063
Quadratic 0.980 49.920 2 2 0.020

Cubic 0.982 54.733 2 2 0.018
Compound 0.876 21.286 1 3 0.019 289.986

Power 0.845 16.304 1 3 0.027 7731.486
S 0.805 12.410 1 3 0.039 2.417

Growth 0.876 21.286 1 3 0.019 5.670
Exponential 0.876 21.286 1 3 0.019 289.986

Logistic 0.876 21.286 1 3 0.019 0.003

The independent variable is the x-axis.
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Appendix C

There is a difference among the n observations and we used the observed value Yi and its mean
value Y, the deviation of the sum of the square, to represent the degree of difference. This is known as
the total deviation of the sum of squares, and is recorded as

Ssum =
n

∑
i=1

(
Yi − Y

)2
=

n

∑
i=1

(
Yi − Yi

)2
+

n

∑
i=1

(
Ŷi − Y

)2 (A1)

where
n
∑

i=1

(
Yi − Yi

)2 represents the regression sum of squares and is expressed as Sret.
n
∑

i=1

(
Ŷi − Y

)2

represents the residual sum of squares and is expressed as Sres.

Ssum = Sret + Sres (A2)

Sret =
n
∑

i=1

(
Ŷi − Y

)2

=
n
∑

i=1

(
a + bXi − a − bX

)2

= b2
n
∑

i=1

(
Xi − X

)2

(A3)

The degree of freedom of Sret is 1, the degree of freedom of Sres is n − 2, and the total degree of
freedom is n − 1. If X and Y have a clear linear relationship, then

F =
Sret/1

Sres/(n − 2)
> F(1, n − 2). (A4)
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